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1. Introduction

Standard theory applied to the study of experiments generally examines a

refinement of Nash equilibrium such as subgame perfection, and assumes that

participants are selfish in the sense that they care only about their own monetary income.3

Some (but not all) experiments cannot be explained by this theory.  Two robust sets of

experiments of this sort are those on ultimatum bargaining and on public goods

contribution games.

In ultimatum bargaining, the first player proposes a division of a fixed amount of

money that may be accepted or rejected by the second player.  According to the theory,

any demand that leaves the second player with anything should be accepted, and

consequently the proposer should either demand the entire amount or at least the greatest

amount less than the entire amount.  In fact proposers do not demand nearly this amount,

generally demanding between 50-60% of the total, and ungenerous demands that are

significantly less than the entire amount are frequently rejected.

In public goods contribution games, players may make a costly donation to a

common pool that provides a social benefit greater than the contribution.  Because of the

free rider problem, it is typically a dominant strategy not to contribute anything.  Never

the less, with as many as 10 or more players, some players contribute to the common

pool.

One explanation of these phenomena is that the equilibrium concept is wrong, and

this has been explored by a variety of authors such as Binmore and Samuelson [1995].

However, such explanations are difficult to accept since in public goods games dominant

strategies are involved, while in ultimatum bargaining it is puzzling that many demands

leaving the second player with 30% or more of the total amount are rejected.  The

                                                
3 There is much informal discussion of fairness, but little in the way of formal modeling applied to
experiments.
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rejection of such an offer is not a failure of equilibrium theory, but a failure of the

assumption of selfish players.

An alternative line of explanation is that players are not really selfish.  One such

explanation that is frequently discussed, particularly by the experimenters themselves, is

that some notion of fairness plays a role in individual decision making.  Rabin [1992] has

proposed a formal model of what this might mean.  The model presented here is similar

in spirit to Rabin’s model, but does not depart from the ordinary assumptions of game

theory. Moreover, Rabin examined only qualitative predictions of his model.  The goal of

this paper is to examine the quantitative implications of the theory: to what extent can a

simple model of players who are not selfish can explain the data from a variety of

experiments, including both ultimatum and public goods games.  A similar effort can be

found in Andreoni and Miller [1996].  That effort differs from this one in focusing only

on public goods contribution games, and on altruism, but not spitefulness.  In addition,

they allow players to have non-linear preferences over contributions.4  They find, as do

we, a remarkable degree of consistency in the attitude of players towards one another in

different games.

The basic theory is that players care not only about their own monetary payoffs,

but also about their opponent’s monetary payoffs.  The simplest such model is of the type

described by many authors, (see Ledyard [1995] for example) in which utility is a linear

function of both the player’s own monetary payoff, and his opponent’s.  It is convenient

to normalize the coefficient on the own monetary payoff to one.   The question is then,

what is the coefficient on the other player’s payoffs?  Public goods contributions games

suggest that this coefficient should be positive; ultimatum bargaining suggest that it

                                                
4 They assume that utility is defined over contributions in the particular game at hand, and not over total
wealth.  This, combined with non-linearity, can lead to some of the same paradoxes that occur when non-
Von Neumann Morgenstern preferences are considered in decision theory.  For example, it is possible to
construct a series of problems involving contributions in such a way that the optimal solutions to the
individual problems are sub-optimal in the joint problem of solving the problems simultaneously.



3

should be negative (so that offers will be rejected).  We adopt the point of view that the

coefficient differs between different individuals in the population, with some individuals

having positive coefficients and some negative coefficients, and with each individual’s

coefficient being private information.  The theory gains strength from the hypothesis that

this distribution is fixed across games of different types, so that the same distribution of

coefficients should be used to explain, for example, both ultimatum bargaining and public

goods contribution games.

In fact this simple model is inadequate to explain even the results of ultimatum

bargaining.  From the rejection rates in the experiment we can calculate how many

players moving second must be spiteful and how spiteful they must be.  However, the

players moving first must be drawn from the same population, so we can use the

distribution of spitefulness calculated from the rejection rates to compute what demands

should be made by the players moving first.  In fact the demands that should be made,

according to the theory, are substantially larger than those observed in the data.

As a result of this, we are led to a more complicated model of altruism.

Introspection suggests that players care not only about other players’ utility, but also that

their attitudes towards other players depend on how they feel they are being treated.  One

way to model this is to use the psychological game approach of Rabin [1983] and

Geanakoplos, Pearce and Stachetti [1989].  However, these models are complicated, and

depart quite radically from ordinary choice theory.  We will discuss the Rabin model in

greater detail below. As an alternative we propose a simpler model with the same flavor:

player’s weights on opponents monetary payoffs depends both on their own coefficient of

altruism (or spite), and on what they believe their opponents coefficient to be.  In

particular, a more positive weight is placed on the money received by an opponent who is

believed to be more altruistic, and a more negative weight on one that is believed to be

more spiteful.  Notice that the game played is now a signaling game, since players actions

will potentially reveal how altruistic they are, and their opponents care about this.
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It is useful to think what consequence this has in ultimatum bargaining.   First,

larger demands are a signal of greater spite.  Hence the degree of altruism needed to

explain the rejections is less than it would be in the absence of the signaling effect: even a

relatively altruistic player may behave meanly to a player believed to be spiteful.  In

addition to demands being lower because players are less spiteful, demands are lower

because an altruistic player will realize that acceptance of a large demand is a signal of an

altruistic opponent, and consequently will be less desirous of making such a demand.

Using this model, we examine ultimatum bargaining experimental results due to

Roth et al [1991].  We are able to fit the data quite well using the model, and pin down

most of the distribution of altruism, except that the data contains little information about

how altruistic the altruistic players are.

The departure of preferences from selfish preferences is substantial, so we next

examine whether the model is consistent with other experiments in which the selfish

theory together with subgame perfection has worked well.    One example of such an

experiment is the market experiment also reported in Roth et al.   Here the selfish theory

predicts the competitive equilibrium, and this is in fact what is observed.  However, the

structure of the game is such that there is little opportunity for transferring utility to or

from other players.  As a result we show that regardless of how altruism is distributed in

the population, there exist equilibria in which the coefficient of altruism does not matter,

and that consequently these equilibria are the same as the equilibria of the selfish model.

We then turn to another well-known experiment inconsistent with selfishness and

subgame perfection, the variation on grab-a-dollar studied by McKelvey and Palfrey

[1992].  In this experiment a player may either grab or pass.  If he passes the money is

doubled and his opponent gets the move, except in the final round.  The grabber gets 80%

of the money, his opponent 20%.  This is structured so that with selfish players the unique

Nash equilibrium is to grab immediately.   In fact only 8% of the population does so.

However, as in ultimatum bargaining, there is also a simple failure of decision theory. A
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substantial fraction of players choose to give money away in the final round.  So many do

so that it is optimal for a selfish player to stay in as long as possible in hopes of getting

lucky and meeting an altruistic opponent in the final round.  The distribution of altruism

from ultimatum is applied to study this game.  The play in the final round pins down the

extent to which the altruistic part of the population is altruistic, a parameter that could not

be identified from the ultimatum experiment.  This gives a complete distribution of

altruism, and we find that play in the earlier rounds is generally consistent with this

distribution.  This is a genuine test of the theory in the sense that there are no free

parameters available to explain play in the early rounds.

Finally, we turn to a public goods experiment by Isaac and Walker [1988].  Here

the model we use imperfectly represents the way in which the experiment was conducted,

and the results of the experiments are not perfectly consistent with the distribution of

altruism calculated in the other experiments.  Never the less the amount of altruism found

in the public goods experiments is reasonably consistent with the amount and degree of

altruism calculated from the other experiments.

In our concluding section we discuss in more detail the extent to which the simple

theory succeeds in explaining experiments, and speculate about how it might apply in

other experiments. One important issue we do not address is the issue of why players

should be altruistic or spiteful. It is natural to speculate about evolutionary explanations

for preferences of this type, and perhaps future research will identify evolutionary forces

that lead to the types of preferences modeled here.

2. Altruistic Preferences

We will be considering n person games with players i n= 1, ,K .  At terminal

nodes of the extensive form, player i receives a direct utility of ui .  Player i also has a

coefficient of altruism − < <1 1ai  and receives an adjusted utility of



6

v u
a a

ui i
i j

jj i
= +

+
+≠∑

λ
λ1

,

where 0 1≤ ≤λ .  The objective of players is to maximize their adjusted utility.   The

adjusted utility reflects the player’s own utility, and their regard for their opponents.  If

ai > 0  we refer to the player as altruistic, as such a player has a positive regard for his

opponents.  If ai = 0  we refer to the player as selfish, the usual case.  If ai < 0  we refer to

the player as spiteful.  The assumption that − < <1 1ai  means that no player has a higher

regard for his opponents (positive or negative) than for himself.

The coefficient λ  reflects the fact that players may have a higher regard for

altruistic opponents than spiteful ones.  When λ = 0  the model is one of pure altruism of

the type discussed by Ledyard [1995] as an explanation of the results of public goods

contribution games.   When λ > 0  the model can be regarded as incorporating an element

of fairness, not in the sense that players have a particular target they consider “fair,” but

in the sense that they are willing to be more altruistic to an opponent who is more

altruistic towards them.  One of our major conclusions is that λ = 0  is not consistent with

data from the ultimatum game.

  Obviously the coefficient ai  is not independent of the units in which utility is

measured, and utility must be measured in the “same” interpersonally comparable units

for all players.  The linearity of payoffs in opponents’ utility may be taken as a convenient

approximation.  It has the important implication that players respect each other’s

preferences over outcomes and gambles.  In general players regard for one another may

depend on who the opponent is, but in the types of experiments we will be considering,

players interact with each other anonymously, so regarding all opponents in a symmetric

manner seems not only sensible, but necessary.

Prior to the start of play, players are drawn independently from a population with

a distribution of altruism coefficients represented by a common cumulative distribution

function F ai( ) .  Each player i’ s altruism coefficient ai  is privately known, while the
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distribution F is common knowledge.  Consequently, we model a particular game as a

Bayesian game, augmented by the private information about types.  It is of some

importance in our analysis that players may reveal information about their altruism

coefficient through their play.  This can both act as a signal of how they are likely to play

in the future, and may change opponents’ attitudes towards them (when λ > 0 ).

In studying experiments, we will identify the participants’ utility with their

monetary income from the experiment.  Since the sums of money involved are trivial, it is

hard to believe that curvature in the utility function can play much of a role in explaining

behavior in the experiments.  It is important to note, however, that the money that is not

received by the participants reverts to the experimenter, and there is no reason for the

subjects to feel differently about the experimenter than the other subjects.  However, it

does not seem sensible to identify the utility of the experimenter with the amount of

money that reverts to him.  Instead we will assume that the marginal utility of the

experimenter for money that is not disbursed to the subjects is zero, so that in effect, from

the subjects point of view, the money is thrown away, and the altruism coefficient ai

does not matter.  Notice that it is possible to design experiments to control more carefully

for the effect of money that is not received by the subjects.  Rather than having the money

revert to the experimenter, one subject can be chosen to be the residual claimant with all

money not disbursed to the subjects being given to the residual claimant, who does not

otherwise participate in the experiment.  In this case, the utility of money not going to the

participants other than the residual claimant can be identified also with money income,

and the residual claimant should be viewed by the other subjects as having the population

mean value of ai .  According to the theory, this should have an effect on the outcome of

the experiment.

Our basic notion of equilibrium is that of sequential equilibrium: each player

optimizes given preferences and beliefs that are derived from a limit of strictly mixed

perturbations from equilibrium play and Bayes law.  As a technical aside, note that all the
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games considered here are relatively simple, and sequentiality in these games coincides

with the simpler notion of a perfect Bayes Nash equilibrium.   As all the distributions

over types F we will consider have finite support, for any given monetary payoffs in a

game, our theory of preferences induces an ordinary Bayesian game.  This game can be

analyzed by the ordinary tools of game theory: there are no new theorems or results about

games of this type.  The general theorems about sequential equilibria from Kreps and

Wilson [1982b] apply directly.  In particular, introducing altruistic preferences need not

eliminate the multiplicity of equilibria.   However, we should emphasize that the number

of Nash equilibria is reduced by means of sensible refinements.  The use of refinements

has fallen into disrepute in the study of experiments, because these refinements (including

sequentiality and subgame perfection) do quite poorly in describing actual play.

However, that is not the case in this theory: once preferences for altruism and spite are

taken into account refinements do relatively well.  Indeed, all the equilibria we explicitly

discuss are not only sequential, but satisfy the obvious monotonicity requirement on

beliefs in a signaling game: beliefs are that the type most likely to deviate is the type for

whom it is least disadvantageous.

We will explore the theory by means of quantitative examples drawn from the

experimental literature.  It is well known that there is considerable learning taking place

in the early rounds of experiments.  Since our model is a theory of equilibrium, we focus

on experiments in which players get several opportunities to play, and focus on the

outcome in the final rounds after the players have had time learn an equilibrium.  Our

goal is to explain why, even after the system appears to have stabilized, play does not

resemble an equilibrium with traditional preferences.  Our ideal experimental design is

one in which players are matched with different opponents every period, so that we may

legitimately ignore repeated game and reputational effects between rounds.   With the

exception of the public goods experiments of Isaac and Walker [1988], all the

experiments reported here follow that design.  The results of Isaac and Walker [1988] are
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included because, despite the possibility that repeated effects might have mattered, the

experimental design was well suited in other respects for examining the theory described

here.

3. Other Models of Altruism and Fairness

Before studying specific experimental data using the model of altruism outlined in

the previous section, it is useful to put the model in a broader perspective.  The model

described can be viewed as a particular parameterization of a class of models in which

preferences depend on payoffs to an individual player and to his rivals, as well as

depending on his own type and the type of his rivals.  As we indicated, because of the

stakes involved in the experimental setting, we have chosen a parameterization that is

linear in monetary payoffs.  This specification would obviously be unsuitable in a setting

where the stakes were large.

Within the linear framework, we can consider a broader class of models in which

adjusted utility is given by

v u ui i ij jj i
= +

¡
Í b ,

and the coefficients b ij  are determined from players types or other details about the

game.  For example, Ledyard [1995] proposes a specification in which b gij i j
f

ju u= -( ) ,

where uj
f  is a “fair amount” which he does not define.  A more detailed specification can

be found in Rabin [1993] who assumes that a player is interested in what is fair for

himself, rather than what is fair for the other player.  His specification is b gij i i i
fu u= -( )

where the “fair amount” is a fixed weighted average of the maximum and minimum

Pareto efficient payoff given player i’s own choice of strategy, and the coefficient g i

itself is endogenous in a somewhat complicated way. Both of these theories suppose that

players care about whether their opponents play “fairly” and run into the problem that

there is no obvious notion of fairness that applies to all games.  The strategy of the

specification we have chosen is to suppose that players do not care about whether their
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opponents play “fairly,” but rather whether their opponents are nice people.  This has the

advantage that there is no need to answer the question of what is “fair.”

4. Ultimatum

We begin with the study by Roth et al [1991] on ultimatum bargaining in four

countries.   The extensive form of this game is shown below.

1 2x

A
(x,$10-x)

(0,0)

R

Figure 1

Player 1 demands an amount x between 0 and $10.5  Player 2 may either accept or reject.

If he accepts, player 1 gets the demanded amount, and player 2 gets the remainder of $10.

If he rejects neither player receives anything.

In the usual selfish case where the altruism coefficient is ai = 0  for all players,

player 2 should accept any demand less than $10.  Subgame perfection then requires that

player 1 demand at least $9.95.6  The actual results of the experiments were quite

different. Table 1 below pools results7 of the final (of 10) periods of play in the 5

experiments reported in Roth et al [1991], with payoffs normalized to $10.  It should be

emphasized that in order to eliminate as much as possible the effect of learning, only data

                                                
5 This is the base case.  In other countries than the United States payoffs were calibrated to match $10 US in
local currency.  In one treatment in the US the payoff was $30 rather than $10.  Since the magnitude of the
payoffs do not matter for the theory here, we normalized all the payoffs to $10.
6 Players were constrained to demands stated in units equivalent to $0.05.
7 All four countries are pooled.  There are differences between the results of the different treatments, but
even with the pooled data, the evidence on altruism is very limited, as we shall see.  While the differences
are statistically significant, they are not large in absolute terms (in the US demands were generally $5, in
Israel generally $6).  Since the theory says the treatments should not make a difference we elected to pool
the data.
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from the last of 10 rounds is used.  The majority of players demanded no more than $6

and many demands of less than $10 are rejected.

Table 1

The altruistic model has implications for this game, independent of the

distribution F.

Proposition 1: Regardless of F, in no sequential equilibrium will any demand be made

for less than $5.00, and any demand of $5.00 or less will be accepted.

Proof:  First observe that 10 0− + >x xβ  if − <1 β  and x ≤ 5 , so indeed any demand of

$5.00 or less will be accepted.  But x x+ −β( )10  is increasing in x for β > −1 .  Since a

Demand Observations Acceptance

$9.00 1 100%

$8.25 1 100%

$8.00 4 50%

$7.50 5 80%

$7.00 10 80%

$6.75 5 20%

$6.50 6 83%

$6.25 5 80%

$6.00 30 83%

$5.75 9 100%

$5.50 17 71%

$5.25 5 100%

$5.00 31 100%

$4.75 1 100%
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demand of less than $5.00 can be increased without reducing the probability it will be

accepted, it cannot be optimal to make such a demand.

n

In fact in the data only one demand of less than $5.00 was ever made, and it was for $4.75

and was accepted, so the data are consistent with Proposition 1.

To simplify the remainder of the analysis, it will be convenient to pool the results.

The demands are grouped into three categories: demands in the range $4.75-$5.25 are

treated as $5.00 demands; demands in the range $5.50 to $6.50 are treated as $6.00

demands, and demands of $6.75 and higher are treated as $7.00 demands.  For simplicity,

we will only allow players to make demands in even dollars. The pooled data is

summarized in Table 2; the column labeled “Adjusted Acceptance” is explained below.

Demand Observations Frequency of

Observations

Accepted

Demands

Probability of

Acceptance

Adjusted

Acceptance

$5.00 37 28% 37 1.00 1.00

$6.00 67 52% 55 0.82 0.80

$7.00 26 20% 17 0.65 0.65

Table 2

We will assume that the distribution F of altruism coefficients places weight on

three points a a a> >0 .  We refer to these as the altruistic, normal and spiteful types of

players.  Since there are three demands made in equilibrium, and more altruistic types

will prefer to make lower demands, we will look for an equilibrium in which the altruistic

types demands $5.00, the normal type $6.00 and the spiteful type $7.00.  Consequently

the probabilities of the three types must be 0.28, 0.52 and 0.20 respectively, as this is the

frequency of demands in the sample.  The $5.00 demand is clearly accepted by all three

types.  The $6.00 demand is accepted by 82% of the population.  However, because of
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sampling error, it is impossible to reject the hypothesis that the actual acceptance rate is

0.80 at less than a 28% level of confidence.  Since 80% of the population corresponds to

the spiteful types rejecting the demand, we will assume that this is in fact the actual

acceptance rate (the column “Adjusted Acceptance” in Table 2).  In other words, we

assume that the $6.00 demand is rejected by the spiteful types and accepted by the normal

and altruistic types.  The $7.00 demand is accepted by 65% of the population,

corresponding to all the altruistic types (28%) and a fraction 71% (0 71 052 0 37. . .× ≈ ) of

the normal types.  This implies that the normal types must be indifferent between

accepting and rejecting the $7.00 demand.

Based on these considerations, we can characterize the parameters consistent with

equilibrium by means of 6 incentive constraints given in Lemma A in the Appendix. Our

next set of results examines more closely which parameter values are consistent with the

data.

Proposition 3: There is no sequential equilibrium with λ = 0 .

Proof:  Since the normal type must be indifferent to accepting or rejecting the $7.00

demand, we have

3
1

7 00+ +
+

=a aλ
λ

 (also equation (6) in Lemma A).  Setting l = 0 , we see that a0 3 7= − / ; that is, the

normal type must be relatively spiteful.  But we may calculate in this case that the utility

the normal type gets from making the $6.00 demand is $3.43, while the utility from

making the $7.00 demand is $3.71.  This contradicts the fact that the normal type must

prefer the $6.00 demand.

n

This is actually a corollary of the next proposition, but we give a separate proof, because

of the importance of the result.  What this proposition says is that a model of pure
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altruism is not consistent with the data from the ultimatum experiments.  The problem is

that the acceptance of demands is such that players must be relatively spiteful.  But

spiteful players would not make the modest demands observed in ultimatum.  We have

experimented with several other specifications of the distribution of the coefficient of

altruism in the model of pure altruism, and none can explain this feature of the data.

Proposition 4: In sequential equilibrium − ≤ ≤ −. .301 0950a , − < < −1 0 73a . ,

0584 0 222. .≥ ≥λ .

Proof:  From manipulating the incentive constraints characterizing and equilibrium; see

the Appendix for details.

n

There are a variety of parameter values for which there are sequential equilibria

consistent with the data. Each column of Table 3 gives a set of parameter values for

which there exists an equilibrium of the type described that is consistent with the data.

.

a 0.10 0.30 0.40 0.90 0.90 0.90 0.90

a0 -0.22 -0.22 -0.22 -0.22 -0.27 -0.26 -0.20

a -0.90 -0.90 -0.90 -0.90 -0.87 -0.90 -0.90

λ 0.45 0.45 0.45 0.45 0.36 0.35 0.49

Table 3

As can be seen a wide range of values of a  is consistent with the data.  Experimentation

indicates somewhat less flexibility in the remaining parameters than is indicated in

Proposition 3.  In particular, it appears to be difficult to get a  larger than -0.87 (versus

the known lower bound of -0.73).  Values of λ are difficult to find lower than 0.35

(against the known lower bound of 0.22).  Values of λ  are difficult to get higher than

0.49, as against the known upper bound of 0.58.  We were also unable to discover
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equilibria with values of a0  below -0.2, although the known lower bound is only −.301.

The parameters λ = 0 45. , a = −0 9.  and a0 0 22= − .  lie in the midrange of parameter

values consistent with proposition 3, and with the range of parameters experimentation

shows is feasible.  Moreover, from the table above, these parameters are consistent with a

wide variety of different values of a .   In the remainder of the paper, in evaluating other

experiments, we will, somewhat arbitrarily, choose to work with these parameter values.

While we have found a set of parameter values that is consistent with both

sequential equilibrium and with the data.  One question we have not yet answered is how

much predictive power the theory has.  In particular, for our favored parameter values, are

there other sequential equilibria than the one found in the data?  In particular can there be

a pooling equilibrium in which all players play the same way?  The question is

affirmative:

Proposition 5: If λ = 0 45. , a = −0 9. , a0 0 22= − . , a = 0 29. 8 and the corresponding

probabilities of the spiteful, normal and altruistic groups are 0 20 052 0 28. , . , .  then there are

two pooling equilibrium outcomes that are sequential: one in which all demands are

$7.00 and one in which all demands are $8.00.  In both cases, the sequential equilibrium

offers are accepted by normal and altruistic types, and rejected by the spiteful types.

Proof:  By computation; see the Appendix

n

The predictive power of the theory is about what we would expect from a

signaling model.  As usual, it is difficult to rule out pooling at different levels, and likely

there are several separating equilibria as well as the one observed.  On the other hand, it is

by no means true that anything is an equilibrium, and indeed, we are able to rule out

pooling equilibria at $5.00, $6.00, $9.00 and $10.00 which was not a priori obvious.

                                                
8 The value of a  is the estimate from the Centipede experiment discussed below, and is in the range
consistent with the separating equilibrium observed in ultimatum.
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Notice also that while these pooling equilibria are inconsistent with the data, they are

considerably close to the data than the equilibrium without altruism in which only very

large demands are made, and all are accepted.

5. Competitive Auction

For any value of λ  if the distribution F of altruism coefficient a  is degenerate

placing all weight on a = 0  the model is the traditional model of all selfish players.  Thus

the extent to which the distribution F distributes weight away from the origin measure the

extent to which the model is different than the selfish players model.  To explain the

ultimatum experiments, the departure from the selfish players model is quite large.   For

example, at least 20% of the population as a group has a mean coefficient of -0.73 or

worse; even the middle group of 52% of the population seems to have a substantial

degree of spite.  In other words, we are proposing a substantial departure from the model

of selfish agents.  This, however, poses a potential problem: in many experiments,

especially in market games, double oral auctions, and so forth, the model of selfish agents

explains the data well.  If the model proposed here is useful, then it must continue to

explain the results of games already explained by the selfish player model.

From an intuitive perspective, the experiments in which the selfish player model

has worked well are experiments with a high degree of competitiveness.  In a relatively

competitive environment, player can have a significant effect on their own utility, but it is

difficult for them to transfer utility to or from other players.  Consequently, we might

expect that spite or altruism would play very little role in such environments.  To explore

this issue, we turn now to another experiment conducted by Roth et al under very similar

conditions to the ultimatum experiment reported above.  We argue that regardless of the

distribution of altruism and spite in the population, we would expect to see the

competitive equilibrium occur in this experiment (as was indeed observed).
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In the market game experiment nine identical buyers submit an offer to a single

seller to buy an indivisible object worth nothing to the seller and $10.00 to the buyer.  If

the seller accepts he earns the highest price offered, and a buyer selected from the

winning bids by lottery earns the difference between the object’s value and the bid.  Each

player participates in 10 different market rounds with a changing population of buyers.

This game has two subgame perfect equilibrium outcomes: either the price is $10.00, or

everyone bids $9.95.  In fact by round 7 the price rose to $9.95 or $10.00 in every

experiment, and typically this occurred much earlier.

Altruistic equilibria may be partially characterized by:

Proposition 6: In any sequential equilibrium all offers of $5.00 or better are accepted.

There exist sequential equilibria in which buyer offers are independent of how altruistic

they are and the seller always sells.  If other buyer offers are independent of how altruistic

they are and the seller always sells, then buyer preferences are independent of how

altruistic the buyer is.  Consequently the set of sequential equilibria in which buyer offers

are independent of how altruistic they are is independent of the distribution of altruism in

the population.

Proof:  Let β  be the coefficient of altruism adjusted for the opponent’s altruism.  If the

seller accepts an offer of x he gets x x+ −β( )10 ; if he rejects he gets 0.  Hence he accepts

if x x+ − ≥β( )10 0 .  Since β > −1 this is true provided that x ≥ $5.00 , so all offers of

$5.00 or better are accepted, just as in the case of bargaining.

Turning to the buyers, if there are multiple offers at $10.00 then no buyer can have

any effect on their own utility, since the seller always gets $10.00 and the buyers $0.00

regardless of how any individual buyer deviates.  More generally, suppose that buyer

offers are independent of how altruistic they are, and the seller always buys.  The key

observation is that by bidding low a buyer does not prevent the transaction from taking

place, he merely fails to get a valuable item for himself.  In particular, if the buyer fails to
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buy, but the transaction takes place anyway, this yields a net benefit to the rest of the

population of 10. In other words, an offer x accepted with probability p gives utility

p x x p p x(( ) ) ( ) ( ) ( )10 1 10 10 1 10- + + - = + - -b b b b

which regardless of β  are the same preferences as p x( )10- .  Since preferences are

independent of altruism, players are willing to use strategies that are independent of how

altruistic they are, so every equilibrium without altruism is an equilibrium with altruism.

n

6. Centipede

So far we have merely fit parameters to observations; when the model with λ = 0

did not fit the data, we simply introduced a new parameter to explain the results.  To

actually test the theory, we must hold fixed the parameters we found from ultimatum, and

use them to explain the results of a different experiment.   One famous experiment that is

not explained well by selfish players is grab-a-dollar, and we will next examine such an

experiment.

The specific experiment is a variation on grab-a-dollar that McKelvey and Palfrey

[1992] call the centipede game.  The extensive form, together with the actual conditional

probabilities of moves computed from the 29 experiments over the last 5 of 10 rounds of

play, is reported in Figure 2.  Each round, players played against an opponent they had not

previously played against so repeated game effects should not be an issue here.
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1 2 1 2

($0.40,$0.10)($0.20,$0.80)($1.60,$0.40) ($0.80,$3.20)

($6.40,$1.60)

T1[0.08] T2 [0.49] T3[0.75] T4[0.82]

P1
[0.92]

P2
[0.51]

P3
[0.25]

P4
[0.18]

Figure 2

Without altruism, these results do not make much sense: 18% of player 2’s that

reach the final move choose to throw away money, for example.  Moreover, with normal

preferences, the unique Nash equilibrium is for all player 1’s to drop out immediately.

Note however, that altruistic players may wish to give money away at the end, since the

gain to the other player is much greater than the loss, and that this will give other players

reason to stay in the game.  Notice also that there is a kind of reputation effect of the type

discussed by Fudenberg and Levine [1989], in the sense that by staying in a player signals

he is an altruistic type, and as a result is more likely to receive kind treatment from his

opponent.

We will model this game using the same model of three types we used to analyze

ultimatum.  We will assume λ = 0 45. , a = −0 9.  and a0 0 22= − . , which are parameters

that have been narrowed down by the data on ultimatum.  The probabilities of the

spiteful, normal and altruistic groups are 0 20 052 0 28. , . , .  respectively.  Notice that

virtually no player 1’s drop out in the first move, so that the distribution of types the

second time player 1 moves should be essentially the prior distribution.  Moreover, in this

second move by player 1, 25% of the players choose to continue, which, within the

margin of sampling error, is quite close to the 28% of player 1’s that are altruistic.  So we

will assume that in player 1’s final move, all the altruistic types pass, and all the other

types take, and we will analyze the following modified data
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1 2 1 2

($0.40,$0.10)($0.20,$0.80)($1.60,$0.40)($0.80,$3.20)

($6.40,$1.60)

T1[0.08] T2 [0.49] T3[0.72] T4[0.82]

P1
[0.92]

P2
[0.51]

P3
[0.28]

P4
[0.18]

Figure 3

We examine the play of player 2’s at the final node first.  Since spiteful and

normal types will drop out before altruists, and fewer players pass than the 28% of the

population that are altruists, we conclude that the altruistic types must be indifferent

between passing and taking.  Since all player 1’s are known to player 2 to be altruists at

this point, this means that

320
1

080 160
1

6 40. . . .+ +
+

= + +
+

a a a aλ
λ

λ
λ

.

From this we may calculate a = ≈2 7 0 29/ . .  This is one of the wide range of values

consistent with the ultimatum data.  Notice that this does not yet represent a test of the

theory; we are merely calibrating the final parameter that was not pinned down by the

ultimatum experiment.  However, now that the entire distribution of altruism is pinned

down, we can test the theory be asking whether the decisions of players in earlier rounds

are consistent with the theory.

We consider player 1’s final decision to pass or take.  Since 51% of the player 2’s

previously passed, including all the altruistic player 2’s, this means that 0 28 051 055. / . .=

of the player 2’s are altruists and the remaining 0.45 are normal types.  If player 1 takes,

he then places a weight on his opponent’s utility of

 a
a a a

T ≡ + × + ×
+

= −0 0055 0 45

1
013

λ
λ

( . . )
. .

His utility if he takes is 160 0 40 155. . .+ =aT .  On the other hand, if he passes, he has a

0.18 chance of an altruistic opponent and getting $6.40 for himself and $1.60 for the

opponent, resulting in a utility of $6.31.  He also faces a 0.82 chance of an opponent who
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is 0 45 082 055. / . .=  likely to be normal and 0.45 likely to be altruistic.  This yields a

utility of  $0.33.  Averaging over his opponent passing and taking in the final round, yield

the expected utility to passing of $1.40, less than the utility of taking.  In other words, the

normal type should take.  This implies the spiteful type should take, and it is apparent

from the fact that the normal type is nearly indifferent that the altruistic type should pass.

This is as the data suggest.

Continuing on in this way, we can at each node compute the utility from taking

and passing as shown in Table 4:

Node Type Take Utility Pass Utility Difference

1’s last move a0 $1.55 $1.40 $0.14

2’s first move a0 $0.76 $0.85 -$0.09

1’s first move a $0.33 $0.49 -$0.16

Table 4

From the table we see that the spiteful type 1 player is never the less willing to pass in the

first period.  The only inconsistency is that the normal type of player 2 in his first move

should be indifferent between passing and taking, and in fact prefers to pass.  Notice

however, that we have made no effort to calibrate any of the parameters to the exact

indifference of this type, and despite this, the preference for passing is very slight: a mere

$0.09 advantage.  In fact the data seem strikingly consistent with the model and the

estimates of altruism and spitefulness from the ultimatum game and the final period of

this game.

One way to understand how well this model explains the data is to compare it to

the standard non-altruistic model.  In Fudenberg and Levine [1996] we argue that an

appropriate metric for measuring departures from the theory is the expected loss of

players.  We just calculated these losses for the altruism model.  The results are

summarized below in Table 5.  Here the column marked loss replicates the final column
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of Table 4.  The column marked population is the fraction of players (of both types) who

suffer the loss.   The second two columns report the same data for selfish players.  The

basis of the calculation it is optimal for a selfish player to pass in every round but the

final one.  In the penultimate round, player 1 can gets an expected money earning of

$1.80 by passing; in his first move, player 2 gets an expected money earning of $1.18 by

passing, while in the first move, it is worth $1.02 for player 1 to pass.  We do not include

the losses of selfish player 1’s that give money away in the final round, since in the

altruism model we used this data to fit a free parameter.

Altruism Model Standard Model

Node Loss Population Loss Population

1’s last move $0.00 $0.20 0.17

2’s first move $0.09 0.17 $0.38 0.23

1’s first move $0.16 0.04 $0.62 0.04

Table 5

We can summarize the results of this table by computing an overall expectation: the

deviation from the theory in the altruism model is an expected loss per player per game of

about 1.5¢.  By way of contrast, the deviation of the data from the standard model of

selfish players is an expected loss per player per game of about 14.5¢, nearly an order of

magnitude higher.

7. Public Goods Contribution Game

It is well known that there is a great deal of altruism in public goods contribution

games.   Our examination of ultimatum bargaining and centipede suggests a relatively

spiteful population with few (28%) altruists.  Can this be reconciled with the large

amount of altruism found in public goods contribution games?  To answer this question,

we examine a public goods contribution game studied by Isaac and Walker [1988].
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The game is a simultaneous move n person game, in which each individual must

decide whether or not to contribute a number of tokens to a common pool, or consume

them privately.  If mi  is the number of tokens contributed (we may normalize so that the

total number of available tokens per player is 1), the direct utility is given by

u m mi i jj

n= − + =∑γ
1

.

There were four different treatments  (pairs of values of γ ,n ), and each treatment was

repeated 6 times.

As in the case of ultimatum and centipede we assume λ = 0 45. , a = −0 9. ,

a0 0 22= − .  and a = 0 29. .  The corresponding probabilities of the spiteful, normal and

altruistic groups are 0 20 052 0 28. , . , .  respectively.  We may calculate the mean population

altruism equal to $ .a = −0 21.  An individual contemplating a contribution to the public

goods game assuming his opponents are drawn randomly with a population with degree

of mean altruism

v m m m
a a

n m m n mi i i i
i

i i i= − + + + +
+

− − + + −− − −γ λ
λ

γ$
$

( ) $ ( ( ) $1 6 1 6
1

1 1

where $m i−  is the mean contribution by players other than player i.  Differentiating this

with respect to the own contribution mi  we see that the player will wish to contribute if

and only if

− + + +
+

− ≥1
1

1 0γ λ
λ

γa a
ni $

( ) .

From this we may compute the unique cut-off value a *  such that a player with a higher

degree of altruism contributes, and player with a lower degree of altruism does not

contribute.  This is given by

a
n

a*
( )( )

( )
$= − +

−
−1 1

1

γ λ
γ

λ .

Using λ = 0 45.  and $ .a = −0 27 , we can compute the different cut-off values

corresponding to the different treatments.
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In the actual experiment four treatments were used with different numbers of

players and different values for the marginal per capital return γ . Following Isaac and

Walker [1988] we will consider the final round of play only; each treatment was repeated

three times.  The different treatments, the data from the experiments, and the cutoff

values a  are all reproduced in Table 6.   The column labeled m  reports the fraction of

the population that would have had to contribute if all contributions were either zero or

the maximum allowable.

Table 6

We should begin by noting that the experimental design was not ideal in the sense

that it does not reflect the simple one shot model we use to explain it.  In fact players

played repeatedly against the same opponents, and we can not be sure what information

was revealed about their types prior to the final round reported above.

We should begin by observing that most players that contributed tokens

contributed less than the maximum allowable.  This is inconsistent with our theory.

Because payoffs are linear in own and opponents monetary payoff, except in the zero

probability event of exact indifference, the contribution should either be the minimum or

maximum allowable.9  Although not part of the theory as exposited here, this failure is

                                                
9 It is natural to speculate that this problem could be remedied by the type of non-linear preferences
considered by Andreoni and Miller [1996].  However, while they are equally successful in predicting the

γ n m a *

0.3 4 0.00 1.13

0.3 10 0.07 0.38

0.75 4 0.29 0.17

0.75 10 0.24 0.06
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mitigated by the fact that both theoretically (see Fudenberg and Levine [1995]) and

empirically (see McKelvey and Palfrey [1995]) there is reason to believe players near

indifference randomize; the partial contribution can be the result of such randomization.

Because the theory cannot explain individual contributions, we take our objective to

explain the aggregate contributions made by the population.  This is measured by m , the

fraction of the population contributing all of their tokens required to match the aggregate

contribution level.

In the first treatment the theory predicts (since ai ≤ 1 for all players) there should

be no contributions, and indeed there are none.  In the second treatment, our theory has

28% of the population altruistic with an average coefficient of 0.28; here we see 7% of

the population with a coefficient of at least 0.38, consistent with the degree of altruism

from the previous experiments.

The third treatment yields 29% of the population with a coefficient of at least

0.17, also generally consistent with 28% of the population having an average altruism

coefficient of 0.28.

The final treatment is also generally consistent with the theory: 24% of the

population has an altruism coefficient of at least 0.06.  Notice however, that there were

fewer contributions in the fourth treatment than the third treatment, despite the fact that

the theory predicts the opposite.  This is consistent, however, with the possibility that the

anomalous results of the third treatment are due to sampling error: since each experiment

was repeated 3 times, there are only 12 observations.

If we assume that the large fraction of contributions in the third treatment is due to

sampling error, then we should conclude that the actual fraction of the population that

would contribute should be 0.24; the fraction of altruists 0.28 less the 0.04 of the

population who are altruists with coefficients below 0.17.  If we assume three types of

                                                                                                                                                
aggregate outcome of these experiments, they also have little success in predicting the number of
individuals who contribute nothing.
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altruists with coefficients 0.06+x, 0.17+x and 0.38+x and frequencies 0.04, 0.17 and 0.07

having, according to our previous conclusions, a mean of a = 0 29. , then x=0.073, and the

three altruistic groups have coefficients of 0.133, 0.243 and 0.453.

8. Conclusion

The theory fares relatively well in the experiments examined here, particularly in

comparison to the selfish theory, which makes wildly wrong predictions except in the

market game.   We can summarize the distribution of altruism coefficients that works

relatively well:

Distribution of Altruism
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The one really surprising feature of this distribution is the large mass of individuals with

relatively negative coefficients; that is, the group of 20% of the population with mean

coefficient -0.9.

We should point out the significance of this theory for games in which mixed

strategy equilibria are observed.  With selfish players, at the Nash equilibrium, a player

can transfer money to or from his opponent at no cost (since he is indifferent).  The

deviation from Nash equilibrium depends on whether at the Nash equilibrium the

marginal (indifferent) player is spiteful or altruistic.  In the case in which the spiteful
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player is marginal he will wish to transfer money away from his opponent.  To prevent

him from doing so, the opponent’s strategy will have to be adjusted to keep him

indifferent.  In a symmetric game, this means that (with the usual perverse comparative

statics of mixed strategies) equilibrium payoffs will be higher than would be the case with

purely selfish players.  It is known that non-zero sum mixed equilibria differ

systematically from Nash equilibria (see, for example, McKelvey and Palfrey [1995]): it

remains to be seen whether this can be explained by the population distribution of

altruism reported here.

There are several experiments that cannot be explained by this theory: one such is

the dictator experiment in which one player decides whether or not to contribute money to

an opponent.  In these experiments contributions are positive, although with linear utility

and ai < 1 the theory predicts no contributions will ever be made.10  It possible to dismiss

this result along the lines of the partial contributions in the public goods experiment:

players who are very altruistic are near indifferent and are randomizing.  In addition, we

am unaware of any dictator experiments conducted in the same way as the experiments

here where players played repeatedly and had a chance to gain experience with the game.

A less radical departure from the predictions of the theory, but an important one

can be found in recent work by Van Huyck, Battalio and Rankin [1996].  This is a public

goods experiment similar to Isaac and Walker’s, except that players had the opportunity

to be spiteful as well as altruistic.  In fact, despite the fact that the estimates here are that

many players are quite spiteful, very little spitefulness is observed in Van Huyck, Battalio

and Rankin [1996].   There also appears to be less altruism than in Isaac and Walker’s

experiment, which suggests that the experimental conditions may have been different in

an important way, but hardly begins to explain the lack of spitefulness.  There are two

significant ways in which the Van Huyck, Battalio and Rankin experiment differs from

                                                
10 The results of dictator are evidence in favor of the type of non-linearity favored by Andreoni and Miller
[1996], and indeed, their experiments focus on dictator.
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the experiments reported here in which spitefulness appeared to play an important role

(ultimatum and centipede).  The game is a one-shot game, so players could not react to

“spiteful” play by opponents, and the game is a four-player game rather than a two-player

game.

The fact that there was less spitefulness with four players raises an issue about the

theory: we have assumed that the altruism/spite coefficient is independent of how many

opponents there are.  This is sensible in the case of altruism, but one explanation of spite

is that it is really “competitiveness,” that is, the desire to outdo opponents. In this case, it

is not the total utility of opponents that matter, but some measure of their average or

maximum utility.  However, while there is obviously much scope for the systematic study

of how spite might vary with the number of opponents, even the simple adjustment of

deflating our estimated spite coefficients by the number of opponents does not reduce

predicted spiteful play to the low level observed in Van Huyck, Battalio and Rankin.

This is evidence in favor of the hypothesis that the extensive form of the game matters:

that is, that retaliation for past poor performance is not due only to signaling of types.

In discussing multi-player public goods experiments, we should mention also the

work of Palfrey and Prisbrey [1997] on altruism and the warm glow effect. They argue

that the value of contributions to other players are not so important as the cost of the

donation; that there is a “warm glow” effect that players wish to incur a particular cost of

contribution, regardless of the benefit.  If the cost is lower, there will more contribution,

but if the benefit is higher there will be no increase in contribution.  They study a 4-

person public goods contribution game in which players must decide whether or not to

contribute a single token.11 Each period each player would randomly draw a value x i  for

his token, uniformly distributed on 1 to 20. If the token were kept, the value of the token

                                                
11 There was also a treatment in which players could contribute up to 9 tokens.
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would be paid; if the token were contributed, a fixed amount g  would be paid to each

player.  The monetary payoffs, are given by

u m mi i i i jj

n= - +
=

Íx x g
1

.

Each player played 20 rounds with a fixed value of g .  They did this four times

with different values of g . Each round players were shuffled so as to minimize repeated

game effects.12  We consider only results from the second 10 rounds with each value of

g , so that players are relatively “experienced” and we can observe equilibrium behavior

rather than learning behavior.  Data from their experiment is reported in Table 7 below.13

Table 7

Because there are relatively few observations in each cell, the data is pooled as indicated

in the table.

The most significant feature of this data is that it does not bear out the Palfrey and

Prisbrey conclusion of a “warm glow” effect.    For a given net cost of contributing

x gi - , far more contributions are made when g = 15  than when g = 3 , indeed this is true

whenever the cost of contribution is positive.  This raises a methodological issue: their

conclusion is based on a hypothesis test using maximum likelihood estimation in a fully

                                                
12 A repeated game treatment was also considered with little consequence to the results.
13 I am grateful to Tom Palfrey for providing me with the raw data.

g = 3 g = 15

x gi - Gain ratio m Gain ratio m

5 1.8 0.00 9.0 0.60

3-4 2.7 0.18 13.1 0.67

1-2 6.8 0.27 33.7 0.79

0 � 0.88 � 0.86
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specified model.  To account for heterogeneity, they allow the warm glow effect to differ

from player to player, but not the degree to which they are altruistic.  As a result the

coefficient representing how altruistic players are (the weight on other players’ utility) is

effectively averaged over the population.   Since, as the table above shows, for many

players the slope was zero this specification error leads them to substantially

underestimate the extent to which a portion of the population was indeed altruistic.

While the maximum likelihood approach deals well with the problem of sampling

error, it deals poorly with specification error.   The approach we have taken here is to use

method of moments estimation, and, recognizing that the model is misspecified, to give

easily interpretable measures of the departures from the theory.  This for example, is the

approach we take in analyzing the centipede game, where we use the Fudenberg and

Levine [1996] approach of reporting players’ losses.  Similarly, while the model is clearly

misspecified in the public goods experiment, failing as it does to explain the fact that

individual players do not contribute all or nothing, we can ask the question of whether it

does a good job of predicting aggregate outcomes.   This idea that the model may work

well to explain features of the data we are interested in, while poorly describing some of

the details we are less interested in, is extremely difficult to capture in a maximum

likelihood approach.

Finally, we turn to other implications of the theory that could be tested in future

experiments.  For example, there is a set of implications of the theory for one-player

games that has not been examined experimentally: The theory predicts that spiteful play

should take place even in a one player setting.  In other words, if a single player is given

the option to deprive an opponent of money at a sufficiently modest cost to himself, then

we should observe 20% or more of players availing themselves of this option.  Moreover,

in two move games such as the best-shot game discussed by Prasnikar and Roth [1992],

in which all first players are observed to play the same way, the second mover should

exhibit the same degree of altruism (or spite) when posed with the simple second period
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decision problem with no first player move.14  In a similar vein, it is possible to confront

players with the same choices faced by the second player in ultimatum bargaining, but

also as a simple decision problem and no first period move.  The theory predicts that this

change will effect the play of the second players due to the absence of signaling by the

first player, but it makes very specific and easy to calculate predictions about the

frequency of acceptance and rejections.  Since this is a two-player experiment, it provides

a more direct test than Van Huyck, Battalio and Rankin that spite involves explicit

retaliation and not merely signaling.   Finally, a referee made the interesting suggestion

that it would be possible to have players engage in dictator experiments, with their

behavior in the experiment announced to their opponent in a subsequent ultimatum game.

According to the theory, relatively ungenerous players in dictator should get poor offers

in ultimatum.

                                                
14 In the full information best-shot reported in Prasnikar and Roth [1992] there is slightly less altruism and
slightly less spite exhibited by the second player than in the experiments reported here.  However, only
eight second players were involved in the experiment, so sampling error is a major problem.
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Appendix

Lemma A: A sequential equilibrium matching the data will be given by parameters

1 1 0 10> > > > − ≤ ≤a a a , λ  such that
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Proof:  We first consider the $5.00 demand.  Since all types will accept this demand, the

adjusted utility received by a player demanding this amount is

 5
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In addition, if the spiteful type accepts, all types will accept the demand.  Since the

demand is known to be made by the altruistic type, for spiteful type to accept we must

have

5
1

5 0+ +
+

≥a aλ
λ

However, this inequality is always satisfied for a a, > −1.
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We turn next to the $6.00 demand.  Since only the altruistic and normal types

accept this demand, the adjusted utility received by a player demanding this amount is

 (
(. . )

).6
35 65

1
4 80+ + +

+
a a aλ

λ

For the normal type this must yield more utility than the $5.00 demand (and therefore it

does also for the spiteful type)

(1) (
(. . )

). (
(. . . )

)6
35 65

1
4 8 5
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+
≥a a a a a a aλ

λ
λ
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while for the altruistic type it must yield less utility

(2) (
(. . )

). (
(. . . )

)6
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Moreover, the spiteful type must reject, and the normal type accept (in which case

the altruistic type will also accept) the $6.00 demand.  Since the demand is known to be

made by the normal type for the spiteful type to reject, we must have

(3) 4
1

6 00+ +
+

≤a aλ
λ

while for the normal type to accept, we must have

4
1

6 4 6 00 0
0+ +

+
= + ≥a a

a
λ
λ

Next we have the $7.00 demand.  Since the altruistic and 71% of the normal types

accept this demand, the adjusted utility received by a player demanding this amount is

 (
(. . )

).7
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1
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+
a a aλ

λ

The spiteful type must prefer this to the $6.00 demand so that

(4) (
(. . )

). (
(. . )
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while the normal type must prefer the $6.00 demand (implying that the altruistic type

does as well)



34

(5) (
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The normal type must be indifferent between accepting or rejecting the $7.00

demand (in which case the spiteful player rejects, and the altruistic player accepts).  Since

the demand is known to be made by the spiteful player, this forces

(6) 3
1

7 00+ +
+

=a aλ
λ

Notice that this implies that a weighted average of a a0 ,  is equal to -3/7; since a a0 >  this

implies that a0 3 7 2 3> − > −/ / , which implies the inequality above, that the normal

player accepts the $6.00 demand.

From Proposition 1, we may ignore demands of less than $5.00.  However, we

need to consider demands of more than $8.00.15 Since in our proposed equilibrium, only

spiteful types will demand as much as $7.00, so we consider the most favorable case for

equilibrium, that in which beliefs are that any demand greater than $7.00 is made by a

spiteful type.   Because the spiteful type has the most reason to make large demands,

these beliefs are consistent with quite strong refinements such as the intuitive criterion

(Cho and Kreps [1987])).  Given these beliefs, it is clear that since normal types are

indifferent between accepting and rejecting the $7.00 demand that only the altruistic type

will accept larger demands.  Since it is most favorable for making large demands, let us

suppose that the altruistic type is sufficiently altruistic as to accept all demands.  In this

case if any type is to make a demand above $7.00 the spiteful type will wish to do so, and

will wish to demand a full $10.00.  The demand is accepted with probability 28%

corresponding to the fraction of altruistic types, so the expected utility is $2.80.  On the

other hand, a demand of $7.00 is accepted with probability 65%, and gives a spiteful type

a utility of

                                                
15 There were actually 4.6% of the offers for $8.00 or more (almost all for $8.00), but we have elected to
treat this as approximately zero.
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(7)  (
(. . )

). .7
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1
3 65 2 800+ + +

+
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n

Proposition 4: In sequential equilibrium − ≤ ≤ −. .301 0950a , − < < −1 0 73a . ,

0584 0 222. .≥ ≥λ .

Proof: We begin by showing that the bounds − ≤ ≤ −. .301 0950a , − < < −1 2 3a / ,

0584 0 222. .≥ ≥λ  hold, then strengthen the bound on a  as indicated below.

Note that the lower bound on λ  follows from the bounds on a0  and a , and

equation (6) which may be solved for λ  as a function of the other two variables.   The

upper bound on λ  follows from substituting (6) into (3) and observing that a ≥ −1.

Note that equation (6) says that a convex combination of a a, 0  is equal to -3/7.

This implies immediately a a≤ − ≤3 7 0/ .  Solving (6) for λ  and substituting into the

condition (3) that the spiteful type reject the $6 demand, we find

4
6 3 7 6 3 7

00 0

0

+ + − +
−

≤a a a a

a a

( / ) ( / )

Through straightforward algebraic manipulation, it can be shown that it is possible to

satisfy this equation together with a a≤ − ≤3 7 0/  only if a < −2 3/ .  Observing that if this

condition can be satisfied at all, it can be satisfied when a = −1 then yields the upper

bound a0 095≤ −. .

Finally, substitute the solution of (6) for λ  into (5), the condition that the normal

type prefers to demand $6 rather than $7.  Inspection of the resulting condition shows that

if it can be satisfied at all, it can be satisfied when a = 1.  Making use of the condition

that a < −2 3/  yields the lower bound − ≤.301 0a .

Finally we can strengthen the bound on a  by substituting (6) into (3) to find

a ≤ − −
−

2 9 7

3 1

( / )

( )

λ
λ
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Since the right-hand side is decreasing in λ , the largest value of a  is obtained when λ

takes on its smallest value of 0 22.  yielding a ≤ −0 73. .

n

Proposition 5: If λ = 0 45. , a = −0 9. , a0 0 22= − . , a = 0 29. 16 and the corresponding

probabilities of the spiteful, normal and altruistic groups are 0 20 052 0 28. , . , .  then there are

two pooling equilibrium outcomes that are sequential: one in which all demands are

$7.00 and one in which all demands are $8.00.  In both cases, the sequential equilibrium

offers are accepted by normal and altruistic types, and rejected by the spiteful types.

Proof:  Observe from our previous calculations that normal and altruistic players will

accept a $7.00 demand or less even from a spiteful type; both will strictly prefer to accept

a $6.00 demand.  Moreover, a spiteful type, regardless of beliefs about his opponent,

faced with acceptance of both normal and altruistic types, will always prefer to demand

$6.00 rather than get $5.00 for sure.  This means that any pooling equilibrium must

involve all players demanding at least $6.00.  Next, the population average altruism

coefficient is $ .a = −0 21, so that both the normal and spiteful type will reject pooled

demands of $9.00 and $10.00, and the spiteful type will reject all demands of more than

$5.00.  This enables us to rule out a pooling equilibrium at $6.00, since the altruistic type

will prefer $5.00 for certain to $6.00 with 80% chance.  We can similarly rule out pooling

equilibria of $9.00 and $10.00, since the altruistic type will prefer $5.00 for certain to

even $10.00 received with only a 28% probability.  So this further narrows the range of

pooling equilibria to $7.00 and $8.00 demands, which are accepted by the normal and

altruistic type, and rejected by the spiteful type.  These are equilibrium with off-

equilibrium path play in which all types (including the altruistic type) reject $10.00 offers

                                                
16 The value of a  is the estimate from the Centipede experiment discussed below, and is in the range
consistent with the separating equilibrium observed in ultimatum.
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on the grounds that only spiteful types make them.  In this case even the spiteful type

prefers to have an $7.00 offer accepted 80% of the time by an altruistic or normal type, to

having a $9.00 offer accepted 28% of the time by the altruistic type.  Similarly, the

altruistic type prefers $7.00 80% of the time against $5.00 for certain.  Consequently both

of these are equilibria.  Notice that like the separating equilibrium, these pooling

equilibria satisfy plausible refinements based on monotonicity: higher demands are

thought to be made by less altruistic types.

n
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