
UNIVERSITY OF CALIFORNIA

Los Angeles

ESSAYS ON REPUTATION

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Economics

by

Marco Celentani

1993



c° Copyright by

Marco Celentani

1993



The dissertation of Marco Celentani is approved.

Joseph M. Ostroy

David Hirshleifer

David K. Levine, Committee Chair

University of California, Los Angeles

1993

ii



Contents

1 Overview 1

2 Reputation with Deterministic Stage Games 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 The Quality Game . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Reputation in Repeated Games with Two Long Run Players 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Establishing a Reputation Against a Patient Opponent . . . . . . 35

3.4 The Value of Reputation with an Arbitrarily Patient Opponent . 41

3.5 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Reputation with a Short Run Opponent . . . . . . . . . . 49

3.5.2 Games of Con°icting Interest . . . . . . . . . . . . . . . . 50

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Reputation in Dynamic Games 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

iii



4.2 Description of the Game . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Best Response and Aggregate Best Response . . . . . . . . 62

4.3 The Perturbed Game . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 The Case with No Strategic Externality . . . . . . . . . . . . . . . 66

4.5 Including Strategic Externalities . . . . . . . . . . . . . . . . . . . 69

4.6 Patient Small Players . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.1 The Failure of Reputation in the Durable Goods Monopoly 75

4.6.2 No Irreversible Actions . . . . . . . . . . . . . . . . . . . . 77

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8 Proofs: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.8.1 Proof of Lemma 8 . . . . . . . . . . . . . . . . . . . . . . 81

4.8.2 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . 83

4.8.3 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . 86

4.8.4 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . 89

5 References 92

iv



List of Figures

2.1 Quality Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Quality Game with unspeci¯ed payo® for the short run player . . 26

v



ACKNOWLEDGEMENTS

I wish to acknowledge the frequent and very stimulating conversations I had

with Joe Ostroy and Jean-Laurent Rosenthal throughout my academic life at

UCLA. Special thanks to Sushil Bikhchandani, Michele Boldrin, Bryan Ellickson,

Drew Fudenberg, Roger Farmer, Gary Hansen, David Hirshleifer, Axel Leijon-

hufvud, John Riley, Manuel Santos, and Bill Zame for useful questions, discus-

sions, and suggestions. I feel indebted to my fellow students at UCLA and in

particular to Alex David and Wolfgang Pesendorfer for the countless discussions

we had. Finally, I wish to thank my advisor, David Levine, for his endless en-

couragement and support and most of all for his intellectual stimulus, that I like

to think had a strong in°uence on my formation as an economist.

The ¯nancial support of University of California Graduate Fellowship, National

Science Foundation, Fondazione Einaudi, Torino, Italy, and Ferruzzi Finanziaria,

Italy, is gratefully acknowledged.

vi



VITA

4 June 1963 Born, Naples, Italy

1987 Laurea, Economics
University of Naples Federico II
Naples, Italy

1990 M.A., Economics
University of California, Los Angeles
Los Angeles, California

1989 - 1992 Teaching Assistant and Associate
Department of Economics
University of California, Los Angeles
Los Angeles, California

1992 - 1993 Assistant Professor
Department of Economics
Universidad Carlos III de Madrid
Madrid, Spain

PUBLICATIONS AND PRESENTATIONS

Celentani, M. (1990). \Spanning by Frequent Trading of Long-Lived Secu-
rities", Studi Economici, 42(3), pp. 59-82.

Celentani, M. (1991). \Reputation with Deterministic Stage Games", UCLA
Working Paper no. 636S.

Celentani, M. (1992). \Breaking Collusive Agreements in the Criminal Sec-
tor"

Celentani, M. (1993). \Regulating the Organized Crime Sector"

vii



ABSTRACT OF THE DISSERTATION

ESSAYS ON REPUTATION

by

Marco Celentani

Doctor of Philosophy in Economics

University of California, Los Angeles, 1993

Professor David K. Levine, Chair

The goal of the literature on reputation e®ects is to provide equilibrium char-

acterizations for games in which there is some uncertainty relative to the utility

function of a player. The purpose of this dissertation is to study the conditions

under which this kind of reputational argument can be applied to frameworks that

are interesting for their economic applications.

Chapter 2 considers a repeated game between a long run player and a sequence

of short run players who are alive for one period only and therefore do not care

about the future. When the stage game is allowed to be a sequential move one, if

a short run player does not expect the long run player to play in a certain way, he

might choose an action that does not reveal the strategy chosen by the long run

player. Chapter 2 introduces a perturbation on the type of the short run players

that guarantees that all informational nodes of the stage game are visited with

strictly positive probability on any equilibrium path. This assumption is shown

to be su±cient for the long run player to be able to establish a reputation for

repeatedly playing any particular stage game pure strategy

viii



Chapter 3 studies reputational arguments in repeated games between a patient

player (player 1) who tries to establish a reputation against a patient opponent

(player 2). In such a case it is possible that player 2's play might prevent player

1 from establishing an appropriate reputation. The assumption that the action

chosen by player 2 is not perfectly observed by player 1 is shown to have very

strong implications for equilibrium characterization, in particular in the case in

which player 2 is su±ciently patient. In this case it is shown that an arbitrarily

patient player 1 can guarantee himself an equilibrium average discounted payo®

which is at least equal to the highest payo® from a correlated strategy subject to

the constraint that player 2 gets at least his pure strategy minmax payo®.

Chapter 4 turns attention to dynamic games (i.e. to games in which current

payo® opportunities depend on the past history of the game through a state

variable, such as capital or debt) between a large player and a continuum of small

players. When the small players have a ¯xed discount factor while the large player

is arbitrarily patient, it is shown that in any Nash equilibrium the large player

is guaranteed at least the optimal commitment payo®. The case in which both

the large and the small players are arbitrarily patient is then analyzed and it

is shown that the large player will only be able to exploit his reputation if the

transition function is reversible, in the sense that players can move from one state

to another only if they can also return. An example shows how the failure of

this condition in the durable goods monopoly problems prevents player 1 from

successfully establishing a desirable reputation.
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Chapter 1

Overview

1



The literature on reputation e®ects studies the implications for equilibrium

behavior of a possibly small amount of uncertainty relative to the preferences of

one player. The general idea ¯rst introduced by Fudenberg and Levine (1989) is

that if a player's utility function is not known, he has the option of imitating the

play of a player with a utility function di®erent from his own in order to convince

his opponents that he will play in a certain way, or in other words, in order to

establish a reputation for a desirable behavior.

Most of the literature on reputation e®ects to date has concentrated on the

analysis of repeated simultaneous games between a long run player (a player who

lives forever and cares about the future) and a sequence of short run players

(who are alive for one period only), in which the long run player can establish a

reputation for a particular behavior.

The purpose of this dissertation is to study how this general argument can be

applied to frameworks which are interesting for their economic applications

Chapter 2 addresses the problems arising when stage game is not a simulta-

neous move game but a sequential one. In this case the long run player might be

prevented from building a reputation since, if the short run players do not expect

him to play in a certain way they might play an action that does not \reveal"

the long run player's strategy. A point in case is the Quality Game in which a

short run player has to decide whether to buy a product or not and the long run

player has to decide whether to produce a high quality or a low quality product,

but the quality of the product is revealed only if a purchase occurs. If the short

run players do not expect the long run player to produce a high quality product

they will not buy and the long run player has no way to establish a reputation for

producing high quality products.

In order to avoid this problem Chapter 2 introduces a perturbation also on
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the types of the short run players, so as to guarantee that on any equilibrium

path all informational nodes of the stage game are visited with strictly positive

probability. This allows the long run player to establish a reputation for the so

called Stackelberg strategy (the strategy that maximizes his payo® subject to his

opponent playing a best response) which guarantees him the Stackelberg payo®. It

is ¯nally argued that since the long run player can always establish a reputation

for such a strategy and therefore obtain the corresponding payo®, he has to get

at least this much in any equilibrium.

Even though Chapter 2 introduces a perturbation on the types of the short run

players, the crucial point is to make sure that all informational nodes of the stage

game are visited with strictly positive probability on any equilibrium path. In

this sense the main point of Chapter 2 is that introducing a perturbation on the

informational structure of a game can be bene¯cial to a long run player who might

want to establish a reputation.

This point is a general one and is pursued in Chapter 3 in which reputation

e®ects are studied in a repeated game between two patient (long run) players.

Trying to establish a reputation against a patient opponent, a player can run

into a problem similar to the one observed for a sequential move stage game. As

Schmidt (1993) pointed out, the nature of the problem is twofold: ¯rst of all, a

patient player cares not only about his opponent's current play but also about his

future one; second, a player might believe that if he does play a best response to

his opponent's expected play, then he will be punished thereafter.

Schmidt (1993) solved the problem considering a particular class of games,

games of con°icting interests with respect to player 1, in which player 2's best

response to player 1's static Stackelberg strategy gives player 2 his minmax payo®.

Chapter 3's goal is to provide an equilibrium characterization of a more general
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class of games. This is done pursuing the idea introduced in Chapter 2 of intro-

ducing a perturbation on the outcomes of player 2's actions. This perturbation

makes sure that all ¯nite length histories occur with strictly positive probability.

Under the assumption that there exist with strictly positive probability types of

player 1 that are committed to strategies that depend only on histories of ¯nite

length, player 1 is allowed to establish a reputation for any such strategy.

The implications of the above assumptions are shown to be very strong. First

of all Schmidt's (1993) result is shown to be a special case of this more general

model. Moreover the result is valid for all ¯nite stage games once the perturbation

on the outcome of player 2 is introduced. Finally and more importantly, the

equilibrium characterization for games which do not have con°icting interests is

stronger than the one proposed by Schmidt (1993), since the optimal strategy

to commit to is not a ¯xed action (the static Stackelberg strategy) but it is a

history (and in particular time) dependent strategy. It is shown that, if player 2

is su±ciently patient, then an arbitrarily patient player 1 can guarantee himself

the highest payo® from a correlated strategy subject only to the constraint that

player 2 gets more than his minmax payo®.

Two interesting applications of the general model discussed in Chapter 3 are

a repeated game between two patient players, in which player 2's trembles make

sure that the outcome of his action is not perfectly observed, or a repeated prin-

cipal agent model with the usual assumption of invariance of the support of the

distribution over outcomes as a function of the action chosen by the agent. In the

latter case, the implications of the model presented are shown to be very strong,

since the principal can establish a reputation for making payments which depend

not only on the current outcome but also on the past history of the game, thus

inducing the ¯rst best e®ort level on the agent's side, while appropriating all the
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net surplus.

Many economic problems have the feature that a state variable such as capital,

debt or money, provides a link between present actions and future payo® oppor-

tunities. As an example, games that describe the strategic interaction between a

government and households usually involve state variables. It is in this context

that the problem of time consistency of optimal government policy arises: since

ex-ante and ex-post optimal policies di®er, even a benevolent government may

not be able to achieve the optimal commitment outcome.

Chapter 4 turns attention to this kind of problems to consider a general class

of dynamic games with one large player and a large number of small players, i.e.

to games in which current payo® opportunities may depend on the history of the

game through a state variable.

As in the previous two Chapters, the large player has some private information

about his type, i.e. the small players are uncertain about the type of large player

they are facing. This uncertainty may be very small in the sense that the large

player is of one particular type with a probability close to one.

The goal of Chapter 4 is to study the conditions under which the usual repu-

tational arguments can be extended to a dynamic game, and the conditions under

which reputational arguments fail.

Since games with a large number (continuum) of small players will be con-

sidered, it will be assumed that the individual play of the small players is not

observed. In a purely repeated game this assumption would imply that each

small player behaves like a short-lived player, since his actions will a®ect neither

his future payo®s nor the public history of the game. In a dynamic game the

presence of state variables creates an intertemporal link and introduces a new

strategic dimension to the problem. Even though a small player cannot in°uence
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his opponent's future play, he can change the value of his individual state variable,

thereby a®ecting his own future payo® opportunities. Therefore a small player's

behavior will depend on the (expected) future actions of the large player

As is clear, the presence of state variables makes it more di±cult for the large

player to establish a reputation: small players have to become convinced that the

large player will follow a particular strategy not only in the current period but

also in the future. The more the small players' behavior is a®ected by play in the

distant future the harder it will be for the large player to gain from establishing

a reputation.

The ¯rst result of Chapter 4 applies to the case where the small players have

a ¯xed discount factor while the large player is arbitrarily patient. If there is a

commitment type that plays the strategy to which the large player would want to

commit then in any Nash equilibrium the large player is guaranteed at least the

optimal commitment payo®.

The case in which both the large and the small players are arbitrarily patient

is particularly relevant for policy games, in which, for example, the payo® function

of the government is equal to the payo® function of the median voter. Then, if

players are very patient, the small players' action may be a®ected by very distant

future outcomes.

In this case it is shown that the large player will only be able to exploit his

reputation if the transition function is reversible, in the sense that players can

move from one state to another only if they can also return.

This condition is satis¯ed in capital accumulation games, but is not satis¯ed,

for example, in the standard durable goods monopoly. Once a customer has pur-

chased the durable good, he has reached an irreversible state. An example shows

how in the durable goods monopoly reputational arguments fail to guarantee the
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large player his optimal commitment payo®.

7



Chapter 2

Reputation with Deterministic
Stage Games
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2.1 Introduction

Kreps and Wilson (1982) and Milgrom and Roberts (1982) have provided an

explanation of the chain store paradox, assuming that there is a \chance" that

the incumbent is a commitment type: this fact can be exploited by a \sane"

incumbent that can therefore build up a reputation for toughness.

Fudenberg and Levine (1989) build up on these results to provide a lower bound

on the Nash equilibrium payo®s of the long run player. However their main result

(Theorem 1) applies only to games in which the commitment strategy of the long

run player is revealed regardless of the strategies the short run players choose: this

is true in simultaneous move games, in sequential move games in which the long

run player moves ¯rst, and in some sequential move games in which the short run

player moves ¯rst: an example of this last class is the chain store game, in which

the strategy the short run players choose before the reputation is established is

exactly the one that reveals the strategy by which the long run player builds up

his reputation.

Fudenberg and Levine (1989) also provide a generalization of Theorem 1 (The-

orem 2) in which the Stackelberg payo® is rede¯ned to keep into account the fact

that the outcome of the stage game may not reveal the long run player's strategy;

the new bound is computed making use of the fact that the observed outcome

of the stage game in general restricts a subset of the strategy space to which the

strategy chosen by the long run player must belong.

Unfortunately, in some games this result does not provide a higher lower bound

than theminimumpayo® for the long run player. For example, consider the quality

game with extensive form as in Fig. 1. The short run playermoves ¯rst and decides

whether to buy a product or not; if he decides not to buy, the game ends and

both players get 0; if he decides to buy, the long run player decides whether to

9



produce a low quality product, thus making a larger pro¯t and causing the short

run player a loss, or a high quality product, in which case the pro¯t is smaller but

the short run player's payo® is positive.

When this stage game is repeated an in¯nite number of times, the lower bound

provided in Theorem 2 in Fudenberg and Levine (1989) is just 0: if the prior

probability that the long run player is committed to high quality is less than :5,

there is an equilibrium in which no short run player ever buys, no information is

revealed, and the long run player payo® is 0 (cfr. Fudenberg and Levine (1989),

pp. 772-773).

The purpose of this chapter is to provide a di®erent generalization of Theorem

1 in Fudenberg and Levine (1989), one that uses perturbations of the original game

with the property that every information set is reached with positive probability

in the stage game.

The idea is simply to assume that not only the type of the long run player

is uncertain, but also the types of the short run players are, and that for each

strategy there exists at least one type of short run player, that is selected with

strictly positive probability, that has that strategy as a strictly dominant strategy.

As is shown in Example 1, this might require a substantial increase in the

number of periods necessary to build up a reputation with respect to the sequential

move game, but may nevertheless provide a signi¯cantly higher lower bound on

the Nash equilibrium payo®s of the long run player.

As in Fudenberg and Levine (1989) we provide a lower bound on the Nash

equilibrium payo®s to the long run player by computing a lower bound on the

payo® to the so called Stackelberg strategy to be de¯ned. This strategy need not

be the optimal one for the long run player, but since it is always feasible, the

optimal strategy has to yield at least as high a payo®.

10



Our result holds for any stage game (simultaneous move1 or sequential move) in

which the realized actions of the long run player are observed, and the probability

distributions over types of long run and short run players have full support.

Fudenberg and Levine (1991) show that there is a lower bound on the Nash

equilibrium payo®s to the long run player also when the public outcome of the

stage game is a random variable that provides only stochastic information about

the strategy the long run player chose.

Our model is a special case of theirs in that in sequential move stage games

in which the short run player moves ¯rst the public outcome only reveals the

action of the long run player and not his strategy. Restricting to this special class

of games, however, lets us explicitly compute the lower bound, and thus narrow

down the set of equilibrium payo®s to the long run player.

The range of applications of our result is very wide. In the following we just

want to mention a few applications of the quality game.

International loan contracts are many times not enforceable or very costly to

enforce. They are therefore well described by the quality game: an international

lender decides whether to give credit to a foreign agent and the latter then decides

whether to repay the loan or renege on his debt. Even though repaying is sub-

optimal in the stage game, it is a way of establishing a reputation for repayment

that in turn guarantees prolonged access to international loan markets.

Illegal contracts are also not enforceable: nevertheless cocaine dealers or illegal

lottery organizers can decide to sell high quality cocaine or to pay the prizes in

order to establish a reputation for \honesty".

Importers usually get short term credit from their suppliers. In some less

1For simultaneous move stage games our result coincides with that of Fudenberg and Levine
(1989).
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developed countries, however, trading houses do not enforce these contracts, so

that the importer has an incentive to renege on it and, by backward induction,

foreign traders refuse him credit. Also in this case, however, the importer can

guarantee himself a higher discounted payo® in the repeated game by establishing

a reputation for repayment.

In Section 2.2 we describe the game and introduce the notation. The result

is derived in Section 2.3. Section 2.4 provides two examples of the quality game

that give substance to the results of the previous section. Section 2.5 provides a

discussion of the result.

2.2 The Model

A long run player (player 1) plays a ¯xed stage game against an in¯nite sequence

of short run players (player 2). The long run player chooses a strategy s1 from a

¯nite nonempty set S1 and the short run player chooses an action s2 from a ¯nite

nonempty set S2. The corresponding mixed strategy spaces are denoted by §1

and §2.

The public outcome of the stage game is given by a mapping y : S1£S2 ! Y ,

and is to be interpreted as the revealed actions of the long run and the short run

player. When the stage game is simultaneous move or sequential move with the

long run player moving ¯rst, the action reveals the long run player's strategy. But

when the stage game is sequential move and the short run player moves ¯rst the

long run player's revealed action does not reveal what he would have done, had

the short run player chosen a di®erent strategy.

The unperturbed stage game is described by the payo®s to the long run and

the short run players, a mapping u : Y ! R2; with an abuse of notation we let
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u(y(¾)) = (u1(y(¾1; ¾2)); u2(y(¾1; ¾2))) denote the expected payo® corresponding

to the mixed strategy pro¯le ¾. In the unperturbed repeated game the long run

player maximizes the normalized discounted value of expected payo®s

(1¡ ±)
1X

t=0

±tut1

Each period's short run player maximizes that period's payo®, ut2.

Both long run and short run players can condition their play on the past

history of the game. Let Ht = Y t denote the set of possible histories of the game;

then mixed strategies are mappings ¾t1 : Ht¡1 ! §1, and ¾t2 :Ht¡1 ! §2.

Let B : §1 ! §2 be the correspondence that maps mixed strategies by the

long run player in the stage game to the best responses of the short run player.

Then we de¯ne the Stackelberg payo® u¤1 as:

u¤1 = maxs12S1
min

¾22B(s1)
u1(s1; ¾2)

the Stackelberg leader strategy as the s¤1 that solves

max
s12S1

min
¾22B(s1)

u1(s1; ¾2)

and the Stackelberg follower strategy as the s¤2 that solves

min
¾22B(s¤1)

u1(s
¤
1; ¾2)

Intuitively, s¤2 is the strategy of the short run player that the long run player wants

to induce.

In the perturbed game the payo®s of the long run player, as well as those of

the short run player, are made dependent on their types which are assumed to be

private knowledge. For simplicity we assume that there are a countable number

13



of types both of long and short run players:

­1 = f!10; !11; : : :g;­2 = f!20; !21; : : :g

The payo®s are therefore a mapping ui : §1 £ §2 £ ­i ! R, and the mixed

strategies are mappings ¾ti : Ht¡1 £ ­i ! §i. We let !01 and !
0
2 be the rational

players; in other words we assume that their payo®s are as in the unperturbed

game: ui(¾1; ¾2; !
0
i ) = ui(¾1; ¾2), i = 1; 2.

The priors on the types are probability distributions ¹1 : ­1 ! [0; 1] and

¹2 : ­2 ! [0; 1] that are assumed to be common knowledge.

For all s1 2 S1 let !i(si) be a type of player i = 1; 2 that has strategy s1

as a dominant strategy in the repeated game. In the following we will make the

following assumptions about the types of long run and short run players:

Assumption 1 There exists a ¹¹1 > 0 such that ¹1(!1(s1)) > ¹¹1 for all s1 2 S1.

Assumption 2 There exists a ¹¹2 > 0 such that ¹2(!2(s2)) > ¹¹2 for all s2 2 S2.

In the following we will call a Stackelberg leader type a long run player that has s¤1

as a dominant strategy in the repeated game, and we denote by !¤1 the event that

the long run player is such type, and by ¹!¤1 the event that the long run player is

not such type. We will denote by !j2 the event that the short run player is the

type that has sj2 as a dominant strategy.
2.

Let H¤ be the set of histories such that the play of the long run player is

consistent with the description of the Stackelberg type for all t, and let h¤ denote

the event h 2 H¤. Finally, let ¼¤t be the random variable Pr(s
t
1 = s

¤
1jht¡1) and let

n(¼¤t · ¹¼) be the random variable denoting the number (possibly in¯nite) of the

random variables ¼¤t for which ¼
¤
t · ¹¼.

2Less strong assumptions about the types of short run players can be made; see Section 2.4.
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2.3 The Result

First we show that Pr(!¤1jht) is nondecreasing in t when ht is the truncation of a

history h 2 H ¤.

Lemma 1 For any in¯nite history h 2 H¤ such that the truncated histories ht

have positive probability, P r(!¤1jht) is nondecreasing in t.

Proof: We want to show that

Pr(!¤1jht) = Pr(!¤1jy(s¤1; s2); ht¡1)

=
Pr(!¤1jht¡1)Pr(y(s¤1; s2)j!¤1)

P r(!¤1jht¡1)P r(y(s¤1; s2)j!¤1) + (1 ¡ Pr(!¤1jht¡1))Pr(y(s¤1; s2)j¹!¤1)
¸ Pr(!¤1jht¡1) (2.1)

Inequality (2.1) is equivalent to

Pr(y(s¤1; s2)j!¤1)
Pr(!¤1jht¡1)Pr(y(s¤1; s2)j!¤1) + (1¡ Pr(!¤1jht¡1))Pr(y(s¤1; s2)j¹!¤1)

¸ 1 (2.2)

which is in turn equivalent to

Pr(y(s¤1; s2)j¹!¤1) · Pr(y(s¤1; s2)j!¤1): (2.3)

which is trivially satis¯ed since Pr(y(s¤1; s2)j!¤1) = 1. 2

The following Lemma computes an upper bound on the probability that the

probability that the long run player plays s¤1 is less than a ¯xed probability ¹¼

when the stage game is repeated a number of times, and is to be used to compute

the lower bound on the Nash equilibrium payo®s to the long run player. In the

following we will assume that the cardinality of S1 is N +1 and will denote by [.]

the operator integral part ([x] is the greatest integer less than or equal to x).

Lemma 2 Let 0 · ¹¼ < 1. Suppose that (¾t1; ¾
t
2) are such that P r(h

¤j!¤1) = 1. Let

K1 = [log ¹¹1= log(1¡ (1¡ ¹¼)=N)] + 1, and 8² > 0 let

K2(²) = [log(1¡ (1 ¡ ²)1=K1)=log(1¡ ¹¹2)] + 1:
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Then, 8² > 0, Pr(n(¼¤t · ¹¼) > K1 ¢K2(²)jh¤) · ².

Remark 1. The purpose of Lemma 2 is to provide an upper bound on the

probability that the probability that the long run player plays s¤1 is less than a

given ¹¼ 2 [0; 1) after the stage game has been played a given number of times,

and to make this upper bound dependent on ¹¹1, ¹¹2 (the lower bounds on ¹1 and

¹2) and ¹¼ only, and otherwise independent of (­1; ¹1) and (­2; ¹2). To do this

we argue that whenever ¼¤t = Pr(st1 = s¤1jht¡1) is low, if s¤1 is played, there is

a strictly positive probability that Pr(!¤1jht) increases by a nontrivial amount.

Since Pr(!¤1jht) has to be less than or equal to 1, this cannot happen too often,

so that the probability that ¼¤t is low in many periods has to be low.

Proof: By Bayes's law we have

P r(!¤1jht) = Pr(!¤1jy(s¤1; s2); ht¡1)

=
Pr(!¤1jht¡1)Pr(y(s¤1; s2)j!¤1)

P r(!¤1jht¡1)P r(y(s¤1; s2)j!¤1) + (1¡ P r(!¤1jht¡1))P r(y(s¤1; s2)j¹!¤1)
Substituting Pr(y(s¤1;s2)j!¤1) = 1 in the numerator of the previous fraction

and recognizing that the denominator is equal to Pr(y(s¤1; s2)jht¡1; s¤2) we have

Pr(!¤1jht) =
Pr(!¤1jht¡1)

Pr(y(s¤1; s2)jht¡1)
(2.4)

where Pr(!¤1jh1) = ¹1(!¤1) ¸ ¹¹1.

Pr(y(s¤1; s2)jht¡1) is the probability that y(s¤1; s2) is observed, which is equal to

the probability that s¤1 is being played plus the probability that other strategies

observationally equivalent to s¤1 for s2 are being played. De¯ne S
¤
1(s2) as the

set of strategies of the long run player di®erent from s¤1 that are observationally

equivalent to s¤1 when the short run player plays s2, i.e. S
¤
1 (s2) = fs1 6= s¤1 :

y(s1; s2) = y(s¤1; s2)g. With this notation (2.4) can be rewritten as

Pr(!¤1jht) =
Pr(!¤1jht¡1)

Pr(st1 = s
¤
1jht¡1) +

P
s12S¤1(s2) Pr(s

t
1 = s1jht¡1)

(2.5)
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Saying that Pr(st1 = s
¤
1jht¡1) > ¹¼ is equivalent to saying that

X

s12S¤1 (s2)
Pr(st1 = s1jht¡1) < 1¡ ¹¼: (2.6)

Given that the cardinality of S1 is N + 1, a su±cient condition for (2.6) to be

satis¯ed is Pr(st1 = s1jht¡1) < ~¼ for all s1 6= s¤1, where ~¼ = (1 ¡ ¹¼)=N .

Now suppose 9s1 6= s¤1 such that Pr(st1 = s1jht¡1) > ~¼. Since s1 6= s¤1, there

exists an s2 such that s1 is not observationally equivalent to s¤1, s1 62 S¤1 (s2) (in

other words, y(s1; s2) 6= y(s¤1; s2)). If the short run player plays such an s2 (an

event that, by Assumption 2, happens with probability at least ¹¹2), then by (2.5)

we have that

P r(!¤1jht) ¸ Pr(!¤1jht¡1)
1¡ ~¼

since the denominator of (2.5) is less than or equal to 1 ¡ ~¼. In the following we

will call such an s2 an information revealing strategy.

If the stage game is repeated K times and every time an information revealing

s2 is selected, then

Pr(!¤1jht) ¸ ¹¹1
(1 ¡ ~¼)K

:

However, since

Pr(!¤1jht) · 1 (2.7)

if

¹¹1
(1 ¡ ~¼)K > 1 (2.8)

inequality (2.7) is violated and a contradiction to the hypothesis that P r(st1 =

s1jht¡1) > ~¼, any s1 6= s¤1, is obtained. Taking the log of (2.8) and substituting

~¼ = 1¡ (1 ¡ ¹¼)=N the condition becomes

K >
log ¹¹1

log (1¡ (1 ¡ ¹¼)=N) :

De¯ning K1 = [log ¹
¤
1= log(1¡ (1¡ ¹¼)=N )]+ 1 provides the ¯rst part of the result.
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Finally, we want to ¯nd an upper bound on the number of times the stage

game is played and the probability that ¼¤t < ¹¼ is less than a given ² > 0, when

the long run player plays s¤1, i.e. we want to ¯nd the smallest integer K2(²) such

that

Pr(n(¼¤t · ¹¼) >K1 ¢K2(²)jh¤) · ²: (2.9)

The probability on the left hand side of inequality (2.9) is less than or equal to

the probability that information revealing s2 are played less than K1 times when

the stage game is repeated K1 ¢K2(²) times.

Suppose that the stage game is played K2(²) times; then the probability that

no information revealing s2 is played is

´ = (1¡ ¹¹2)
K2(²) (2.10)

and 1¡ ´ is the probability that at least one information revealing s2 is played.

If the stage game is played K1 ¢K2(²) times, i.e. if the experiment of playing

the stage game K2(²) times is repeated K1 times, the probability that at least K1

information revealing s2 are played is greater than (1¡´)K1. Therefore a su±cient

condition for the probability that less than K1 information revealing s2 are played

when the stage game is repeated K1 ¢K2(²) times to be less than ² is

(1 ¡ ´)K1 ¸ 1¡ ²

whence

´ · 1¡ (1 ¡ ²)1=K1: (2.11)

Substituting (2.10) in (2.11) and rearranging provides

K2(²) ¸ log(1¡ (1 ¡ ²)1=K1)

log(1¡ ¹¤2)
:

De¯ning K2(²) = [log(1 ¡ (1¡ ²)1=K1)=log(1 ¡ ¹¤2)] + 1 concludes the proof. 2
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Remark 2: The lower bound on ¹2, ¹¹2, is to be interpreted as a lower bound on

the probability that information revealing s2 are played. In simultaneous move

stage games and in simultaneous move stage games in which the long run player

moves ¯rst all s2 are information revealing because the strategy of the long run

player is observed. For this class of game our result coincides with the one of

Fudenberg and Levine (1989).

We are now ready to state the main result. Let V
¹ 1
(±; ¹¹1; ¹¹2; !

0
1) be the least

Nash equilibrium payo® to a long run player of type !01, with payo®s as in the

unperturbed game, when the discount factor is ±. Then

Theorem 1 Let Assumptions 1 and 2 be satis¯ed, and let 1¡ ~¹2 be the probability

that the short run player is the rational type. Then for all ² > 0, there exists a

K(¹¹1; ¹¹2; ²) = K¤ otherwise independent of (­1; ¹1) and (­2; ¹2) such that

V
¹ 1
(±; ¹¹1; ¹¹2; !

0
1) ¸ (1¡ ²)(1¡ ~¹2)±

K¤
u¤1 + (1¡ (1¡ ²)(1¡ ~¹2)±

K¤
)minu1: (2.12)

Proof: Suppose the long run player always plays the Stackelberg strategy. Since

the best response correspondence3 B(¾t1) is upper hemi-continuous, each element

of B(¾t1) is near to an element of B(s
¤
1) when ¼

¤
t is su±ciently near to one. Since

s2 is ¯nite, if ¾2 is near to an element of B(s
¤
1), then it must place probability close

to one on s¤2. Since the rational short run player has to be indi®erent between all

strategies that he is willing to assign positive probability, there is a probability

¹¼ < 1 such that B(st1) µ B(s¤1) whenever ¼
¤
t > ¹¼.

Set K¤ = K¤(²) =K¤(²; ¹¹1; ¹¹2; ¹¼) =K1 ¢K2(²). If the long run player always

plays s¤1, then from Lemma 2 it follows that the probability that there are more

3Recall that B(:) is the best response correspondence of the rational short run player.
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than K¤(²) occasions where the rational short run player plays outside of B(s¤1)

(corresponding to the events ¼¤t ¸ ¹¼) is less than ². In the worst case these events

occur at the beginning of the game where the payo®s are discounted the least.

Recalling that only a fraction 1 ¡ ~¹2 of short run players is rational provides the

right hand side of (2.12). Since the Stackelberg strategy is always feasible for the

long run player, the right hand side is a lower bound on any Nash equilibrium

payo®. 2

Remark 3: As said in Remark 2, in the case in which the stage game is simul-

taneous move or sequential move with the long run player moving ¯rst, ¹¹2 = 1

and the lower bound in Theorem 1 coincides with the lower bound in Theorem

1 in Fudenberg and Levine (1989). The same is true for sequential move stage

games in which the short run player moves ¯rst and in which the short run players

choose an information revealing s2 when ¼¤t · ¹¼, such as the chain store game.

2.4 The Quality Game

In the following we want to discuss an important application of our results, the

quality game. The analysis will turn out to be simpler than in the previous section

given the simple structure of the game. In particular S1 has only 2 elements,

therefore N = 1 and 1 ¡ (1¡ ¹¼)=N = ¹¼.

Example 1. Consider the version of the quality game whose extensive form is

described in Fig. 2. When a = 1, b = ¡1, and c = 0, as argued in the introduction,

provided that ¹1(!¤1) is not too high, the lower bound for the long run player Nash

equilibrium payo®s given by Theorem 2 in Fudenberg and Levine (1989) is just

minu1 = 0.

Now suppose that there are two types of short run player, the rational player,
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!02, with payo®s as given above, and a second one, !
¤
2, with payo®s such that he

always buys. Suppose that these payo®s are a = 1, b = 1=2, and c = 0. The

rational player !02 on the other hand buys only if ¼
¤
t ¸ ¹¼ = 1=2.

In this example we only have one long run player commitment type (!¤1) and

one short run player commitment type (!¤2). In the following we will therefore

replace ¹¹1 and ¹¹2 with ¹¤1 = ¹1(!
¤
1) and ¹

¤
2 = ¹2(!

¤
2). Finally, notice that since

type !¤2 always buys, we can disregard the term (1 ¡ ~¹2) in (2.12), since buying

is a best response to producing high quality.

Let ¹¤1 = :1. Then K1 = [log ¹¹1= log ¹¼] + 1 = 4:

Suppose ¹¹2 = :3, and let ± = :99. Then we have:

V
¹ 1
(±; ¹;1¹¹2; !

0
1) ¸ max

²
(1¡ ²) ¢ :99K1¢K2(²) = :60 > 0

which is obtained maximizing with respect to ² the right hand side of inequality

(2.12) in Theorem 1. The ² that maximizes that expression turns out to be :11,

which implies that K2(²) = 10.

As claimed above, the introduction of uncertainty on the side of the short

run players improves substantially the lower bound on the long run player Nash

equilibrium payo®s. ²

The purpose of the next example is to assess the sharpness of the lower bound

on Nash equilibrium payo®s V
¹ 1
that is computed using only ¹¤1 and ¹

¤
2. We will

show that, while the use of additional information relative to the distribution of

the short run player type does provide a better bound, the induced improvement

is far from dramatic.

Example 2. Suppose we introduce another type of short run player, !12, with

payo®s a = 1, b = ¡1=3, and c = 0, and whose prior is ¹(!12) = ¹12 = :2; short run

players of type !12 buy if ¼
¤
t = 1=4, thus increasing the probability that the long

21



run player's action be revealed. In this case, as suggested above, V
¹1
turns out to

be larger.

In such a case K¤ = K 0 + K 00 where K0 = K¤(²; ¹¤1; ¹
¤
2; ¼

0) = K1(¹¤1; ¼
0) ¢

K2(²; ¹¤2) and K
00 =K¤(²; P r(!¤1jhK0 ); ¹¤2+¹

1
2; ¹¼) =K1(Pr(!¤1jhK0); ¹¼) ¢K2(²; ¹¤2+

¹12). To see this assume that at least one type !
¤
2 short run player is selected when

the stage game is repeated K 0 times. Then we have that Pr(!¤1jhK0) ¸ ¹¤1=¼
0 =

:4, since ¼¤t · ¼0 = 1=4. In this case K00 · K¤(²; ¹¤1=¼
0; ¹¤2 + ¹

1
2; ¹¼). Since in

computing K00 we have assumed that an event had happened whose probability is

1¡ (1¡¹¤2)K
0
, the probability that ¼¤t ¸ ¹¼ = :5 is equal to (1¡ ²) ¢ (1¡ (1¡¹¤2)K

0
)

and therefore

V
¹ 1
(±; ¹¤1; ¹

¤
2; ¹

1
2; !

0
1) ¸ max

²
(1¡ ²) ¢ (1 ¡ (1¡ ¹¤2)K

0
):99K

0+K00
= :69:

In the previous examples we have made the assumption that a type of short

run player exists with strictly positive probability that had s¤2, an information

revealing strategy as a strictly dominant strategy, which implies that that type of

short run player will play s¤2 regardless of the long run player he believes to face.

Another assumption that is perfectly consistent with the structure of the model

is the following:

Assumption 3 A type of short run player exists with strictly positive probability

that plays s¤2 provided that the probability that the long run player is the Stackelberg

leader type is greater than or equal to ¹¤1, the prior probability that he is of that

type.

In the quality game studied above Assumption 3 means that

¹¤1a+ (1¡ ¹¤1)b ¸ c; (2.13)
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whereas Assumption 2 was equivalent to

a ¸ c ; b ¸ c: (2.14)

As is clear Assumption 2 is stronger than Assumption 3 in that (2.14) implies

(2.13) but not 0: (2.13) might hold also when a ¸ c but b < c. In the context of

the quality game this means that the short run player commitment types do not

prefer purchase to no purchase independently of the quality; it just means that

given their preferences they are more willing to take the risk of buying than the

rational short run player.

Consider again the game of Fig. 2, and suppose that type !¤2 has payo®s

a = 1, b = ¡1=9, c = 0. If we assume, as in Example 1, that ¹¤1 = :1, we then

have ¹¤1a + (1¡ ¹¤1)b = :1 ¢ 1 + :9 ¢ (¡1=9) = c = 0, Assumption 3 is satis¯ed and

our results follow.

A major di®erence between Assumptions 2 and 3 however exists. Suppose

that in the game of Fig. 2 the payo® to the long run player when he produces

low quality is 4 rather than 3/2. If we make Assumption 2, and ¹¤2 = :3 it turns

out that the Stackelberg leader strategy is to produce low quality, since in this

case his expected payo® is :3 ¢ 4 = 1:2. In other words if enough short run players

exist that always buy and the di®erence between the payo® to the long run player

when he produces low and high quality is large enough, it might be better for him

to exploit the short run commitment types rather than building a reputation for

honesty.

If we make Assumption 3, on the other hand, and we assume that b < c, the

same result does not hold: after the ¯rst time the long run player produces low

quality he is revealed to be the rational type (Pr(!¤1) = 0) and no other short run

player is guaranteed to ever buy in the future, not even the commitment types.

While we think that the two assumptions we have been discussing can be
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appropriate for di®erent games, we also believe that Assumption 2 is interesting

in that it highlights that reputation does not always work.

In the examples we have presented so far we have chosen a discount factor

that is not too large: if the reference period is one month, ± = :99 translates to

a yearly interest rate of 12:8%. We have chosen to do so to stress the fact that

the result doesn't hold only for very patient long run players. However in many

economic examples the relevant reference period can be shorter: if the relevant

period is for example one week, a weekly discount factor ± = :999 would translate

to a yearly interest rate of 5:3%, and in this case V
¹1
in Example 1 would be larger

than :93.

2.5 Discussion

Whenever the strategy of a player is not perfectly observed, that player might

be prevented from establishing a reputation for an appropriate behavior. This

chapter showed that by introducing types of short run players that are such that

all informational nodes of the stage games are reached with strictly positive prob-

ability in any equilibrium, a long run player can actually establish a reputation

for establishing any particular stage game pure strategy.

In a more general sense the point of this chapter was to show that the negative

result pointed at at the beginning of the section is not robust with respect to

perturbations of the information structure of the game.

An alternative more general framework is one in which it is assumed that the

action of the short run player is not perfectly observed4 and that the support of

the distribution over outcomes is invariant with respect to the action chosen by

the short run player.

4Suppose there is some noise or that the short run player trembles.
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This approach lends itself to more general applications and will be pursued

further in Chapter 3 to study reputational e®ects in in¯nitely repeated games

between to long run players.
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Figure 2.1: Quality Game
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Figure 2.2: Quality Game with unspeci¯ed payo® for the short run player
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Chapter 3

Reputation in Repeated Games
with Two Long Run Players
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3.1 Introduction

Since the work of Kreps and Wilson (1982) and Milgrom and Roberts (1982), the

existence of even a small amount of uncertainty relative to the payo® function of

a player has been used to provide predictions of the outcome of repeated strategic

interaction between two or more players.

The seminal work of Fudenberg and Levine (1989) considers the case of an in¯-

nitely repeated game between a long run player (a player with a positive discount

factor who maximizes the present value of his in¯nitely repeated game payo®)

and an in¯nite sequence of short run players who observe all previous play of

the game (or, equivalently of a single player with zero discount factor who, in

each period, maximizes his current payo®). In this setting, Fudenberg and Levine

(1989) ¯nd that if there is strictly positive probability that the long run player is

a commitment type who always plays a particular action regardless of the previous

play, and if the long run player imitates this type, then there is a ¯nite number

of periods in which the opponent may not play a best response to such action.

As a consequence, the long run player can obtain the so called Stackelberg

payo® in all but a ¯nite number of repetitions of the stage game, which in turn

implies that, if he is su±ciently patient, in any equilibrium his average payo®

cannot be lower than a payo® which is arbitrarily close to the Stackelberg payo®.

Chapter 2 extends the results of Fudenberg and Levine (1989) to the case

in which a long run and a short run player play repeatedly a sequential game.

An interesting example of this class of game is the so called \Quality Game" in

which the short run player has to decide whether to buy a product or not, and

the long run player has to decide whether to produce a high quality or a low

quality product, but the quality of the product is observed and made public only

if purchase occurs. In this case the problem is that, if short run players believe
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that the product will be a low quality one, then there is an equilibrium in which

they will not to and the long run player has no way of establishing a reputation

for producing high quality.

In Chapter 2 a perturbation on the types of the short run players was intro-

duced that made sure that all informational nodes of the stage game be visited

with strictly positive probability, and it was shown that the probability that the

number of periods in which the short run player may believe that the long run

player is unlikely to play the Stackelberg strategy exceeds a given ¯nite number

becomes arbitrarily small as this ¯nite number increases.

Schmidt (1993) considers the case of a repeated game between two players who

both have nonzero discount factors, and mostly deals with the case in which there

is uncertainty only relative to player 1's payo® function, so that only player 1

can establish a reputation. His main contribution is that Fudenberg and Levine's

(1989) result can be extended to the case of two long run players provided that

the stage game belongs to the class of games with con°icting interest with respect

to player 1. This means that the strategy of player 1 that maximizes player 1's

payo® subject to the constraint that player 2 play a short run best response is

also the strategy that minmaxes player 2.

The main problem in the case of two patient players whose actions are observed

is that guaranteeing that player 1 is likely to play a certain action today does not

imply that player 2 will play a best response to it, since he also cares about future

payo®s. This implies that he might believe that the probability that player 1 will

keep playing a given action if he currently plays a best response to this action

is arbitrarily low, and in particular he might believe that if he does play a best

response today, he will get a low payo® in the continuation game. In such a case,

since player 2 would never play a best response to the action player 1 is trying
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to establish a reputation for, the probability that the continuation play will be

unfavorable to him, if he plays a best response, may well stay arbitrarily high

since player 1's behavior in this contingency is never observed.

Con¯ning attention to games with con°icting interest with respect to player

1, however, implies that if player 2 does not play a best response to player 1's

Stackelberg strategy he gets less than his minmax payo®, while playing a best

response today he would get his minmax payo® today and no less than his minmax

in any continuation game.

As is clear, the main problem with the case of two long run players and per-

fect action observability, is that in¯nite strategies may not be observed if some

informational nodes are never reached along the equilibrium path. The purpose

of this Chapter is to apply an argument similar to Chapter 2 to make sure that all

informational nodes are visited, so that the probability that player 1 is repeatedly

playing a history dependent strategy will stay bounded away from 1 with arbitrar-

ily small probability. This will be accomplished assuming that while the action

of player 1 is perfectly observed, the action of player 2 is not: players commonly

observe only a noisy outcome of the choice of the action of player 2, and there is

a su±cient amount of noise so as to guarantee that all ¯xed length ¯nite histories

occur with strictly positive probability.

Making this assumption will be shown to be su±cient to guarantee that player

1 can successfully establish a reputation for an appropriate strategy in all ¯nite

stage games with perfect observability of player 1's action and imperfect observ-

ability of player 2's action. It will also be argued that introducing this kind of

perturbation on the observed outcome of player 2's play, not only allows to gener-

alize Schmidt's (1993) result, but also that a tighter equilibrium characterization

is possible. In fact, when we consider the case of two long run player in games
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which do not have con°icting interest with respect to player 1, the strategy player

1 would most like to commit to is not necessarily a ¯xed action but can also be a

history dependent strategy.

This intuition can be easily explained considering the classical prisoner's dilemma:

it has been argued that player 1 might want to commit to tit-for-tat rather than to

the static Stackelberg strategy which gives only the static Nash equilibrium payo®

(which in this case is equal to the minmax payo®). If the value of the discount

factor of player 2 is su±ciently high, however, player 1 might want to commit to

a strategy in which he occasionally plays Cheat and which calls for a su±ciently

strong punishment for player 2 if he fails to play Cooperate.

As in the rest of the literature on reputation on repeated games, the goal of

this Chapter is to characterize the set of Bayesian Nash equilibrium by ¯nding a

lower bound on player 1's Bayesian Nash equilibrium payo®.

In the remainder of the Chapter the assumption will be made that types that

are committed to any ¯nitely repeating pure strategy1 exist with strictly positive

probability.

Under this assumption it will be shown that for a ¯xed discount factor of

player 2, the equilibrium payo® to an arbitrarily patient player 1 can be no less

than an amount which is arbitrarily close to the best payo® he could obtain by

committing to any strategy subject to the condition that player 2 will play the

best response to that strategy player 1 likes the least2.

The intuition that player 1 can take better advantage of his opportunity to

establish a reputation will be shown to be true, in the sense that, if player 2

1A strategy is ¯nitely repeated if there is an integer T , such that the strategy at time t is
only determined by the history of the last T rounds.

2The assumption that player 2 plays the best response player 1 likes the least is made since
in order to ¯nd a lower bound on Bayesian Nash equilibrium payo® it is not possible to assume
player 2's cooperation.
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is su±ciently patient, then a su±ciently patient player 1 will be able to get an

average payo® which cannot be substantially less than the highest payo® from a

correlated strategy that gives player 2 more than his pure strategy minmax payo®.

Fudenberg and Levine (1991) deal with the case of a long run player playing

against a sequence of short run opponents a ¯xed stage game with imperfect action

observability also for player 1, and analyze the result when the long run player

is allowed to establish a reputation for a mixed strategy as well. In the present

Chapter we will concentrate on the case in which the action of player 1 is perfectly

observed since the only assumption which is necessary for the result is that there

is a su±cient amount of noise in the observation of the action of player 2, and the

more general result could be obtained at the expense of heavier notation.

Allowing a player to establish a reputation for a mixed strategy, in general

increases the payo® he could thus obtain. Since in the case in which player 2 is

su±ciently patient a su±ciently patient player 1 is guaranteed to obtain almost the

highest expected payo® he could obtain with a correlated strategy subject to player

2 getting more than his pure strategy minmax payo®, however, the introduction

of mixed strategies gives a higher bound on player 1's Bayesian Nash equilibrium

payo® only if the minmax payo® for player 2 is strictly less than his pure strategy

minmax payo®.

The rest of the Chapter is organized as follows. Section 3.2 introduces notation

and describes the in¯nitely repeated game. The general result is given in 3.3.

Section 3.4 provides the stronger equilibrium characterization of the case in which

player 2 is su±ciently patient. In Section 3.5 the relationship between the results

of the previous two Sections and existing literature (in particular Chapter 2 and

Schmidt (1993)) is discussed. Section 3.6 provides a discussion of the results as

well as directions of further research.
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3.2 The Model

Consider a repeated game between two players, player 1 and player 2. Let A1 and

A2 denote the ¯nite (pure) action sets of the two players in the stage game with

generic elements a1 and a2, and let ®i 2 Ai denote respectively mixed actions and

mixed action spaces for player i = 1; 2. Further let A = A1£A2, andA =A1£A2

denote the spaces of pure and mixed strategy pro¯les.

At the end of each period t = 1; 2; : : : the action chosen by player 1 is observed

by both players, while the action chosen by player 2 is not public knowledge:

players commonly observe only a stochastic outcome drawn from a ¯nite set,

y 2 Y . The probability distribution over outcomes depends on the action chosen

by player 2 and is denoted by ½(yja2) for a pure action a2; with an abuse of notation

we will denote by ½(yj®2) the probability distribution over outcomes y 2 Y for a

given mixed action ®2 which is de¯ned in the obvious way from the probability

distribution for pure actions.

Player 1 can be one of countably many types ! 2 ­. The types are drawn

from a common knowledge prior ¹ assigning positive probability to all points in

­. Player 1's type is private knowledge and is not known to player 2. In the

following we will focus on a particular type !0, which we refer to as the \rational

type".

Stage game payo®s are u1(a1; y) for type !0 player 1 and u2(a1; a2; y) for player

2. Player 1 has discount factor ±1 and player 2 has discount factor ±2; both player

2 and type !0 player 1 maximize the average discounted payo® in the in¯nitely

repeated game. It will also be assumed that both 1 and u2 are bounded below

from 0, and that u1 · ¹u1 and u2 · ¹u2.

Types of player 1 other than type !0 have preferences over probability distri-

butions over sequences of player 1 actions and public outcomes, but these are not
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necessarily representable in a time separable form.

We will denote by ht 2 Ht = (A1 £ Y )t¡1 the public history of the game up

to time t, and by h2t 2 H2
t = A

t¡1
2 the private history of player 2 up to time t.

H = H1 and H" = H2
1will denote in¯nite histories.

A type behavior strategy for player 1 is a mapping ¾1 : H1 ! A1
1 , ¾1 =

(¾11; : : : ; ¾1t; : : :) where ¾1t : Ht ! A1. A behavior strategy for player 2 is a

mapping ¾2 : H1£H2
1 ! A1

2 , ¾2 = (¾21; : : : ; ¾2t; : : :) where ¾2t : Ht£H2
t ! A2.

A behavior strategy for player 1 is a mapping ¾1 : ­ ! §11 , where §
1
1 denotes

the set of (in¯nite) type behavior strategies.

ABayesian Nash equilibrium is a behavior strategy for player 1, and a behavior

strategy for player 2, together with a set of probability beliefs over the set of

types of player 1, such that: (i) for each type of player 1 given player 2's behavior

strategy, no other type behavior strategy yields a distribution over time sequences

of own actions and public outcomes that is preferred to the one obtained under

his type behavior strategy; (ii) for player 2 given player 1's behavior strategy

and the probability beliefs, no other behavior strategy yields a distribution over

time sequences of own actions and public outcomes that is preferred to the one

obtained under his behavior strategy; (iii) probability beliefs are updated using

Bayes's rule whenever applicable.

With an abuse of notation we will denote by u1(¾1t(ht¡1); ¾2t(ht¡1; h2t¡1)) the

expected payo® to player i = 1;2 if players 1 and 2 are using respectively strategies

¾1 and ¾2 the public history of the game at time t is ht¡1 and the private history

of player 2 is h2t¡1.

We will call a type behavior strategy for player 1 repeating if there exists an

integer T such that play at time t = T + 1; : : : is entirely determined by the

history between t ¡ T and t ¡ 1. Notice that for any T < 1 there are countably
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many pure repeating strategies for player 1. A type of player 1 whose preferences

are such that playing the type behavior strategy ¾1 is strictly dominant is called

committed to that strategy, and we will denote the event that player 1 is such a

type by !(¾1).

3.3 Establishing a Reputation Against a Patient

Opponent

The purpose of this section is to study the general conditions under which repu-

tation for any particular behavior can be established by player 1 when player 2 is

patient. In the remainder of this section we will use the two following assumptions

Assumption 4 If ¾1 is pure repeating then ¹(!(¾1)) > 0.

Assumption 5 There exists a ° 2 (0; 1) such that ½(y j®2) > °, for all ®2 2 A2

and all y 2 Y .

Assumption 4 guarantees the existence of \irrational" types to assure that the

rational player 1 can hope to build a reputation for punishing player 2.

Assumption 5 is the truly substantive assumption: it says that the support of

the distribution over outcomes does not depend on the action chosen by player 2.

If the support of the distribution over outcomes depended on the action chosen

by player 2 then it would be easy to construct counterexamples to the theorems

below. The crucial point is that if player 2's play excludes certain outcomes

y 2 Y , then player 2 will not learn how player 1 would have responded to those

contingencies, and this can easily prevent player 1 from building a reputation for

particular responses to those contingencies.

Before analyzing reputation in our model, we calculate as a benchmark how

much the long-run player might hope to get by precommitting.
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De¯nition 1 For all ±2 < 1, ¾2 2 B²(¾1; ±2) if there is no other ~¾2 2 §12 such

that after some history ht

1X

k=t

±k¡t2 u2(¾1; ¾2) + ² <
1X

k=t

±k¡t2 u2(¾1; ~¾2):

We will say that ¾2 2 B(¾N1 ; ±2), ¾
N
1 2 §N1 , if ¾2 2 B²(¾1; ±2), for all ¾1 2

§11 whose N-truncation coincides with ¾N1 . Moreover, we will say that ¾
N
2 2

B(¾N1 ; ±2), if ¾
N
2 is the N-truncation of a ¾2 2 B²(¾N1 ; ±2).

De¯nition 2 Let ¹U1(¾1; ¾2) = Eflim infT!1
PT
t=1 u1(¾1; ¾2)g. Further let

¹U¤1 (²; ±2) = sup
s12§11

inf
¾22B²(s1;±2)

¹U1(s1; ¾2);

and let ¹U¤1 (±2) = ¹U¤1 (0; ±2)

¹U ¤1 (±2) denotes the maximal expected time average that player 1 can achieve by

committing to a pure strategy, when the discount factor of player 2 is ±2.

Our goal is to prove the following theorem:

Theorem 2 Suppose Assumptions 4 and 5 are satis¯ed. Then lim±1!1N1(±1; ±2) ¸
¹U ¤1 (±2).

We will prove this theorem via two Lemmas.

The purpose of the following Lemma is to show that there is a strategy such

that if player 2 plays an ² best response to a N-truncation of it, andN is su±ciently

large, then if player 1 is su±ciently patient, the average discounted payo® he will

get in the N-fold repeated game is almost the average discounted payo® he would

get in the in¯nitely repeated game, if player 2 played an ² best response to his

strategy.
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Lemma 3 For all ´ > 0 ² > 0, there exist N , a pure strategy for player 1 sN1 =

(sN11(ht); :::; s
N
1N(ht+N)), and a ±11 < 1, such that for all ±1 > ±11 if ¾

N
2 2 B²(sN1 ; ±2),

the average discounted payo® to type !0 player 1 in the N-fold repeated game is

at least ¹U¤1 (2²; ±2)¡ ´.

Proof: For all ² > 0, ´=4 > 0 there exists a pure strategy s1 2 §11 such that

inf
¾22B²(s1 ;±2)

¹U1(s1; ¾2) > ¹U¤1 (²; ±2)¡
´

4
: (3.1)

Let ¹T satisfy

1

T
E

"
inf

¾22B²(s1;±2)

TX

t=1

u1(s1t(ht¡1); ¾2t(ht¡1))

#
> ¹U¤(²; ±2)¡

´

2

for all T ¸ ¹T . Then choose N > ¹T and ¿ such that ¹u2±¿2=(1 ¡ ±2) < ²=2 and

¹u1¿=N < ´=2.

Let sN1 be the N-truncation of a s1 satisfying (3.1)
3. Now consider an N-fold

repetition of the stage game in which player 1 plays sN1 . If player 2 plays an ²

best response to sN1 , since ¿ is such that ¹u2±
¿
2=(1 ¡ ±2) < ²=2 , then in the ¯rst

N¡¿ periods of the N-fold repeated game he plays a 2² best response to s1. Since

¹u1¿=N < ´2 it follows that

inf
¾22B²

1¡ ±1
1¡ ±N1

NX

t=1

±t¡11 u1(s1t(ht¡1); ¾2t(ht¡1)) > ¹U¤1 (2²; ±2)¡
´2
2

¡¹u1
NX

t=1

j 1
N

¡±1
1¡ ±1
1¡ ±N1

j:

Since for all ´=4 there exists a ±11 < 1 such that ¹u1
PN
t=1 j 1N ¡ ±1 1¡±11¡±N1

j < ´=4, the

Lemma follows. 2

The purpose of the next Lemma is to show that if player 1 always plays a

given strategy and there exists with strictly positive probability a type of player

1 that is committed to that strategy, then for every integer ¿ , ¹¼ < 1, ² > 0, the

probability that the number of periods in which player 2 will expect player 1 to

3As is clear sN
1 is a pure repeating strategy.
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play like the commitment type in the following ¿ periods with probability less

than ¹¼ exceeds a given ¯nite number is less than ².

Let s¤1 be the in¯nite repetition of strategy s
N
1 constructed in the proof of

Lemma 3, and let H¤ be the set of histories consistent with player 1 playing s¤1.

Let ¼¤¿t = Pr(a1t0 = s¤1t0(ht0¡1); for all ht0 2 H ¤
t0 ; t

0 = t; : : : ; t + ¿ ¡ 1) and let

n(¼¤¿t · ¹¼) denote the random variable indicating the number of periods in which

¼¤¿t · ¹¼ in the in¯nitely repeated game. Finally, let !¤ = !(s¤1)) be a type that is

committed to s¤1 and let ¹!
¤ denote the event that the type of player 1 is not !¤

(¹!¤ = ­n!¤. Since s¤1 is pure repeating, !¤ 2 ­, and therefore ¹¤ = ¹(!¤) > 0.

Lemma 4 Let 0 · ¹¼ < 1. Suppose that Assumption 2 is satis¯ed and that

(¾1t; ¾2t) are such that Pr(h¤j!¤) = 1. Let K1 = ¿ (log¹¤= log ¹¼) and for all ² > 0

let K2(²) = log(1¡ (1¡ ²)1=K1 )= log(1 ¡ °t). Then for all ² > 0

Pr(n(¼¤¿t · ¹¼) > K1K2(²)¿jh¤) · ²:

Proof: By Bayes's law we have

Pr(!¤jht) = P r(!¤jht¡1; a1t; yt)

=
Pr(!¤jht¡1)P r(a1t; ytj!¤

Pr(!¤jht¡1)Pr(a1t; ytj!¤) + (1¡ P r(!¤jht¡1))P r(a1t; ytj¹!¤)

=
Pr(!¤jht¡1)Pr(a1tj!¤)

Pr(!¤jht¡1)Pr(a1tj!¤) + (1¡ Pr(!¤jht¡1))Pr(a1tj¹!¤)

=
Pr(!¤jht¡1)
P r(a1t)

(3.2)

Let ¹¼¤¿t = P r(a1t = s¤1t(ht¡1); a1t0 6= s¤1t0 (ht0¡1) for some ht0 2 H¤
t0; t

0 = t +

1; : : : ; t+ ¿ ¡ 1). Then (3.2) can be rewritten as

P r(!¤jht) =
Pr(!¤jht¡1)
¼¤¿t + ¹¼

¤¿
t

:
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Suppose that ¼¤¿t < ¹¼ for some t. This means that there is a history bhbt¡1, such

that Pr(a1bt¡1 = s
¤
1bt(

bhbt¡1) < ¹¼, bt = t + 1; : : : ; t + ¿ ¡ 1. Now suppose that this

history actually occurs4, and that P r(!¤jbhbt¡1) = P r(!¤jht), which means that

player 1's play until time bt¡ 1 led to no belief updating. From (3.2) we have

Pr(!¤jbhbt) =
Pr(!¤jbhbt¡1)

P r(a1bt¡1 = ¾
¤
1bt(

bhbt¡1))
:

If player 1 plays a1bt¡1 = ¾
¤
1bt(

bhbt¡1), then the probability that he is type !
¤ has to

go up by at least a factor of 1=¹¼, since Pr(a1bt¡1 = ¾¤
1bt(

bhbt¡1)) < ¹¼. Given that

P r(!¤jh0) = ¹¤, if history bhbt¡1 occurs, then Pr(!
¤jh¿) ¸ ¹¤=¹¼. If a sequence of ¿

stage games is repeated K times, ¼¤¿t < ¹¼ at the beginning of each sequence, and

the appropriate history bhbt¡1 occurs in each of the K repetitions of the sequence,

then

P r(!¤jhK¿) ¸ ¹¤

¹¼K
: (3.3)

However, since P r(!¤jht) · 1, if ¹¤=¹¼K > 1 inequality (3.3) is violated and a

contradiction to the hypothesis that ¼¤¿t < ¹¼ at the beginning of each of the K

repetitions of the ¿ -fold repeated game is obtained. Taking the log of (3.3) we

obtain the de¯nition of K1.

Suppose now that the stage game is repeated K1K2(²)¿ times. We want to ¯nd

the smallest number K2(²) such that

Pr(n(¼¤¿t · ¹¼) > K1K2(²)¿jh¤) · ²: (3.4)

is satis¯ed for a given ² > 0. Suppose that ¼¤¿t < ¹¼, and let bhbt¡1 be such that

P r(a1bt = s
¤
1bt(

bhbt¡1)) < ¹¼. Then by Assumption 5, a lower bound on the probability

that bhbt¡1 occurs is °
¿ . Therefore if the stage game is repeated K2(²)¿ times, the

probability that no appropriate history bhbt¡1 occurs is

Á = (1 ¡ °¿)K2(²) (3.5)

4Remember that by Assumption 5 all histories in H ¤ occur with strictly positive probability.
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and 1¡ Á is the probability that at least one appropriate history occurs.

If the stage game is repeated K1K2(²)¿ times, the probability that at least K1

appropriate histories occur is greater than (1 ¡ Á)K1. Therefore a su±cient con-

dition for the probability that less than K1 appropriate histories occur when the

stage game is repeated K1K2(²)¿ times to be less than ² is

1¡ (1 ¡ Á)K1 · ² (3.6)

from which

Á · 1¡ (1¡ ²)1=K1 (3.7)

Substituting (3.5) into (3.7) and rearranging provides

(1¡ °¿)K2(²) · 1¡ (1 ¡ ²)1=K1:

Taking logs gives

K2(²) ¸ log(1 ¡ (1¡ ²)1=K1)

log(1¡ °¿)
which concludes the proof. 2

We are now in the position to prove Theorem 2.

Theorem 2 Suppose Assumptions 4 and 5 are satis¯ed. Then

lim
±1!1

N1(±1; ±2) ¸ ¹U¤1 (±2):

Proof: From Lemma 3 for all ´ > 0, ² > 0, there exists an N and a pure repeating

strategy for player 1 sN1 such that if player 2 plays an ² best response to it, there

exists a ±11 < 1 such that for all ±1 > ±11 the average discounted payo® to player

1 in the N -fold repeated game is at least ¹U¤1 (2²; ±2)¡ ´. Since the ² best response

correspondence of player 2, B²(¾1; ±2), is upper hemi-continuous, there exists a

¹¼ < 1 such that if ¾N1 is such that ¼
¤N
t > ¹¼, then B²(¾N1 ; ±2) µ B2²(s¤N1 ; ±2).
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Let ¿ in Lemma 4 equal N . Then we know that for all ² > 0 and for all ¹¼ < 1 the

probability that the number of periods in which ¼¤Nt < ¹¼ is larger than K1K2(²)¿

is less than ².

Since K1K2(²)¿ is ¯nite for all ² > 0, for all ´ > 0 there exists a ±1 such that for

all ±1 > ±1 if player 1 always plays s
¤
1 then his in¯nitely repeated game average

discounted payo® is at least ¹U¤1 (²; ±2) ¡ ´. Since strategy s¤1 is always feasible for

the rational type in any Bayesian Nash equilibrium, the rational player 1 (type

!0) has to get at least what he would get by playing s¤1 and the theorem follows.

2

3.4 The Value of Reputation with an Arbitrarily

Patient Opponent

Let u2 denote the pure strategy minmax for player 2:

u2 = min
a12A1

max
a22A2

u2(a1; a2)

In addition to the assumptions we made in the previous section, in this section

we will also need the following assumption

Assumption 6 There exists an a 2 A such that u2(a) > u2.

Assumption 6 says that there is a pro¯le that is better for player 2 than the pure

strategy minmax. This is a mild non-degeneracy condition. If it were to fail,

the indi®erence of the player 2 might well make him immune to threats by the

long-run player.

Let b® 2 bA be a probability distribution on pure strategy pro¯les5. Then

de¯ne the set of enforceable pure action pro¯les E the set of correlated action

5This means that ® can also be a correlated strategy.
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pro¯les such that the payo® to player 2 is strictly larger than his minmax, u2:

E = fb® 2 bAju2(b®) > u2g

Given the de¯nition of E we will now de¯ne ¹U¤1 as follows:

¹U ¤
1 = sup

b®2E
u1(b®) (3.8)

Our goal is to show that when player 2 is su±ciently patient, an arbitrarily

patient player 1 can get the highest payo® subject to the constraint that player 2

is getting strictly more than his minmax level. In other words we want to prove

the following theorem:

Theorem 3 Suppose Assumptions 4-6 are satis¯ed. Then

lim
±2!1

lim
±1!1

N1(±1; ±2) ¸ ¹U ¤
1 :

We will prove this theorem via several Lemmas.

Let aN = (aN1 ; : : : ; a
N
N) 2 AN and let

bu1(aN ; ±i) =
1¡ ±N1
1¡ ±i

NX

t=1

±t¡11 ui(a
N
t )

denote the average discounted payo® to player i = 1; 2 in the N-fold repeated

game under action pro l̄e aN .

Lemma 5 For all ´1 > 0 there exist N , aN = (aN1 ; : : : ; a
N
N) 2 AN, ±11 < 1

±21 < 1 such that for all ±1 > ±11, ±2 > ±21, bu1(aN; ±1) > supb®2E u1(®) ¡ ´1 and

bu2(aN ; ±2) > u2:

Proof: By continuity of u1 and u2, for all ´1=3 > 0 we can ¯nd b®¤ such that

u1(b®¤) > sup
b®2E

u1(®) ¡ ´1
3
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and u2(b®¤) > u2. Again by continuity of u1 and u2 for all ´1=3 > 0 we can ¯nd

±11 < 1, ±21 < 1, a
N 2 AN such that for all ±1 > ±11, ±12 > ±21

bu1(aN ; ±1) > u1(®¤)¡
´1
3

and bu2(aN ; ±2) > u2 and the proof is complete. 2

Now consider an N-period pure strategy aN 2 AN and let

~u1(a
N) =

1

N

NX

t=1

(
X

y2Y
½(yjat2)u1(at1; y)):

denote the average payo® to player 1 from playing aN in the N-fold repeated

game.

Now let aN¹ 2 AN¹ be the ¹-fold repetition of aN and let U1(aN¹) denote a

random variable that assumes value

U1(a
N¹) =

1 ¡ ±1
1 ¡ ±N¹1

N¹X

t=1

±t¡11 u1(a
N¹
1t ; yt)

with probability
QN¹
t=1 ½(y = ytjaN¹2t ). The distribution of U1(aN¹) gives the distri-

bution of possible values of the average discounted payo® to player 1 when aN¹ is

being played in the N¹-fold repeated game.

Lemma 6 For every N , aN 2 AN, ´2 > 0 there exists a ±12 < 1 and a ¹ such

that for all ±1 > ±12

Pr(U1(a
N¹) < ~u1(a

N)¡ ´2) < ´2:

Proof: Let ~U1(aK) denote a random variable that assumes value

~U1(a
K) =

1

K

KX

t=1

u1(a
K
1t ; yt)
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with probability
QK
t=1 ½(y = ytjaK2t). Then from the weak law of large numbers,

for all ´2=3 > 0 there exists a ¹ such that

Pr(~U1(a
N¹) < ~u1(a

N)¡ ´2
2
) <

´2
3
:

Since for allN¹ lim±1!1U1(a
N¹) = ~U1(aN¹), for all ´2=3 > 0 there exists a ±12 < 1

such that for all ±1 > ±12

jU1(aN¹)¡ ~U1(a
N¹)j < ´2

3

and the proof is complete. 2

Corollary 1 For every ´1; ´2 > 0 there exist N , aN 2 AN , ¹, ±¤1, ±¤2 such that

(i) P r(U1(a
N¹) < ¹U ¤

1 ¡ ´1 ¡ ´2) < ´2 for all ±1 > ±¤1;

(ii) bu2(aN¹;±2) > u2 for all ±2 > ±
¤
2

Proof: Immediate from Lemmas 5 and 6.

Lemma 7 For all ´1; ´2; ´3 > 0 there exist N3, a strategy for player 1 s
N3
1 2 §N31 ,

a ±23 < 1, and an ² > 0 such that for all ±13 < ±2 < 1 there exists a ±13 < 1 such

that for all a ±1 > ±13 if ¾
N3
2 2 B²(sN31 ; ±2), the average discounted payo® to type

!0 player 1 in the N3-fold repeated game is at least ¹U ¤
1 ¡ ´1 ¡ ´2 ¡ ´3.

Proof: We want to show that for all ´1; ´2; ´3 > 0 there exists a pure repeating

strategy for player 1 in the N3-fold repeated game, s
N3
1 , and a discount factor for

player 2 ±23 such that if ±23 < ±2 < 1 and player 2 plays a ¾
N3
2 2 B²(sN31 ; ±2), then

the loss in the N3-fold repeated game to a su±ciently patient type !0 player 1

with respect to ¹U¤1 is no more than ´1 + ´2 + ´3.
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Let vK1 (ht) denote the average discounted payo® to player 1 in the last K

periods under history ht:

vK1 (ht) =
t¡1X

k=t¡K
±k¡t+K1 u1(hk):

For ¯xed ´1; ´2 > 0,K ¸ 1, J ¸ 1 de¯ne the random variable ¸t(ht¡1) as following:

² For t = 1; : : : ;K, ¸t(ht¡1) = t, for all ht¡1 2 Ht¡1;

² For t =K + 1;K + 2; : : :

¸t(ht¡1 =

8
>>>>>>>><
>>>>>>>>:

¸t¡1(ht¡2) + 1 if ¸t¡1(ht¡2) · 0; for all ht¡1 2 Ht¡1
or if 0 < ¸t¡1(ht¡2) < K and vK1 (ht¡1) ¸ ¹U ¤

1 ¡ ´1 ¡ ´2

1 if ¸t¡1(ht¡2) = K and vK1 (ht¡1) ¸ ¹U ¤
1 ¡ ´1 ¡ ´2

¡J + 1 if ¸t¡1(ht¡2) > 0 and vK1 (ht¡1) < ¹U ¤
1 ¡ ´1¡ ´2

From Corollary 1 we know that for every ´1; ´2 > 0 there exist N , aN , ¹ ±
¤
1 < 1

±¤2 < 1 such that for every ±1 > ±
¤
1

Pr(U1(a
N¹) < ¹U ¤

1 ¡ ´1 ¡ ´2) < ´2

and for every ±2 > ±
¤
2, bu2(aN¹; ±2) > u2. Let K = N¹ and let aK be an action

pro¯le that satis¯es Corollary 1for ¯xed ´1, ´2, and let a
N¹
1 = (aN¹11 ; : : : ; a

N¹
1N¹) be

player 1's component of this action pro l̄e.

Recall that a1 was de¯ned as an a1 2 A1 such that

max
a22A2

u2(a1; a2) = u2;

and consider the following strategy for player 1:

s¤1t(ht¡1;K; J) =

(
aK1 ţ(ht¡1) if ¸t(ht¡1) ¸ 1
a1 if ¸t(ht¡1) < 1
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Claim 1 Suppose that there exists a ±23 < 1 such that bu2(aN1 ; ±2) > u2 for ±23 <

±2 < 1, then for all ´4 > 0 there exist ¹, J, N3, ² > 0 such that if ~¾
N3
2 is such that

P r(vN¹(ht) < ¹U¤1 ¡ ´1 ¡ ´2) > ´4

for some history ht that can be reached with strictly positive probability, for some

t = N¹+ 1; : : : ; N3 ¡ JN¹, then ~¾N32 62 B²(s¤N31 (N¹; J)).

Pf: Let H¤
t (N¹; J) be the set of time t histories consistent with player 1 playing

s¤1(N¹; J) for some ¹, J . Suppose strategy ¾
N3
2 is such that for some history

ht 2 H¤
t (N¹; J) that can be reached with strictly positive probability and such

that ¸t(ht¡1) ¸ 1

Pr(vN¹1 (ht¡1) < ¹U¤1 ¡ ´1 ¡ ´2) > ´4:

Consider the following strategy for player 2, s¤2(N¹; J) = (s
¤
21(h0; N¹; J); s

¤
22(h1; N¹; J); : : :)

where

s¤2t(ht¡1;K; J) =

(
aN2¸t(ht¡1)¹ if ¸t(ht¡1) ¸ 1
a2 if ¸t(ht¡1) < 1

Since player 2 can always play this strategy, for a strategy to be an ² best response

to s¤1(N¹; J) it has to be the case that it gives more than the payo® of s
¤
2(N¹; J)

minus ².

For a ¯nite action pro l̄e aK 2 AK let

bbu2(aT1 ; ±2) =
TX

t=1

±t¡12 (max
a22A2

u2(a
N
1t; a2)) (3.9)

denote the highest discounted payo® player 2 can get if player 1 plays according

to aK. Consider the following inequality

bbu2(aN1 ; ±
2)
1¡ (±N¹2 (1¡ ´4))J
1¡ ±N¹2 (1¡ ´4)

+

u2
1 ¡ ±2

±N¹2 ´4

"
1¡ (±N¹2 (1 ¡ ´4))J
1¡ ±N¹2 (1¡ ´4)

¡ ±N¹(J¡1)2

1¡ (1¡ ´4)J
´4

#
+
±N¹J+12

1 ¡ ±2
¹u2 >
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> bu2(aN1 ; ±
2)
1 ¡ (±N¹2 (1¡ ´2))J
1 ¡ ±N¹2 (1¡ ´2)

+ (3.10)

+
u2

1 ¡ ±2
±N¹2 ´2

"
1¡ (±N¹2 (1¡ ´2))J
1 ¡ ±N¹2 (1¡ ´2)

¡ ±N¹(J¡1)2

1 ¡ (1¡ ´2)J
´2

#
¡ ²

Some uninteresting algebra shows that the left hand side of inequality (3.10) gives

an upper bound on the in¯nitely repeated game payo® to player 2 if player 1

plays a strategy whose JN¹ truncation is s¤JN¹1 (N¹; J) while player 2 plays a

strategy such that there is a history ht 2 H¤
t (N¹; J) for which Pr(v

N¹
1 (ht) <

¹U ¤
1 ¡ ´1 ¡ ´2) > ´4. Similarly the right hand side of (3.10) gives a lower bound on

the in¯nitely repeated game payo® to player 2 when players 1 and 2 play respec-

tively s¤JN¹1 (N¹; J) and s¤JN¹2 (N¹; J). Inequality (3.10) is therefore a necessary

condition for a strategy for player 2 such that for some history Pr(vN¹1 (ht) <

¹U ¤
1 ¡ ´1¡ ´2) > ´4 to be an ² best response to s¤JN¹1 .

Since by Lemma 6 for all N and aN 2 AN there exist ¹, ±12 < 1, ±22 < 1 such

that for all ±1 > ±12, ´2 > Pr(v
N¹
1 (ht) < ¹U ¤

1 ¡ ´1 ¡ ´2) is arbitrarily small and

for all ±2 > ±22 bu2(aN¹; ±2) > 22, we can choose a ¹ so as to make the right hand

side arbitrarily close to bu2(aN; ±2)(1¡ ±JN¹2 )=(1 ¡ ±2) ¡ ², which is in turn larger

than u2 ¡ ². This implies that there exists a ±23 < 1 such that there exists a J ,

² > 0 for which the previous inequality is violated. Letting N3 > JN¹ the Claim

follows. ²

From the previous Claim we conclude that for all ´4 > 0 there exists a ±23 < 1

such that if player 2's discount factor is larger than ±23 and player 2 plays an ²

best response to s¤N31 , Pr(vN¹1 (ht) < ¹U ¤
1 ¡ ´1 ¡ ´2) < ´4, for all ht 2 H¤

t (N¹; J).

This implies that there exists a ±13 < 1 such that for all ±1 > ±13 the discounted

payo® to player 1 will be at least ( ¹U¤1 ¡ ´1 ¡ ´2)(1 ¡ ´4) in all but the last J

repetitions of the N¹-fold repeated game. De¯ning ´3 = ¹U ¤
1´4 and choosing N3

su±ciently large the Lemma follows. 2
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We are now in the position to prove Theorem 3.

Theorem 3 Suppose Assumptions 4-6 are satis¯ed. Then

lim
±2!1

lim
±1!1

N1(±1; ±2) ¸ ¹U ¤
1 :

Proof: From Lemma 7 for all ´1; ´2; ´3 > 0 there exists an N3 ±23 < 1 and a

pure repeating strategy for player 1 s¤N31 such that for ±23 < ±2 < 1, if player 2

plays an ² best response to s¤N31 , there exists a ±13 < 1 such that for all ±1 > ±13

the average discounted payo® to player 1 in the N3-fold repeated game is at least

¹U ¤
1 ¡ ´1¡ ´2 ¡ ´3. Since the ² best response correspondence of player 2 B²(¾1) is

upper hemi-continuous, for a ¯xed ±23 < ±2 < 1 there exists a ¹¼ < 1 such that if

¾N31 is such that ¼¤N3t > ¹pi, then B²(¾
N3
1 ; ±2) µ B2²(s

¤N3
1 ; ±2).

For all ´ > 0 let N3 be such that there exists an ² > 0 such that if player 2 plays a

2² best response to s¤N31 , then there exists a ±14 such that for all ±1 > ±14 player 1

gets at least ¹U ¤
1 ¡´. Let ¿ in Lemma 4 equal N3. Then we know that for all ² > 0

and for all ¹¼ < 1 the probability that the number of periods in which ¼¤N3t < ¹¼ is

larger than K1K2(²)¿ is less than ².

Since K1K2(²)¿ is ¯nite for all ² > 0, for all ´ > 0 there exists a ±1 such that for

all ±1 > ±1 if player 1 always plays s
¤
1 then his in¯nitely repeated game average

discounted payo® is at least ¹U¤1 ¡ ´. Since strategy s¤1 is always feasible in any

Bayesian Nash equilibrium, player 1 has to get at least what he would get by

playing s¤1 and the theorem follows. 2

Theorem 3 says that if player 2 is su±ciently patient, then an arbitrarily

patient player 1 will get an equilibrium average payo® which is at least what he

could get from any correlated strategy that gives player 2 strictly more than his

pure strategy minmax payo®, since for an arbitrarily patient player a sequence of

pure strategy pro¯les is equivalent to a correlated strategy.
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This implies that allowing player 1 to establish a reputation for mixed strate-

gies would give a higher bound on player 1's equilibrium payo® only if player 2's

minmax payo® is strictly lower than his pure strategy minmax payo®. Therefore,

in the cases in which minmax and pure strategy minmax payo® for player 2 co-

incide, the bound in Theorem 3 provides a tight characterization of equilibrium

payo®s.

3.5 Special Cases

The purpose of this section is to discuss the relationship of the general result of

Section 3.3 with the existing literature. Our goal will be to show that the results

of Chapter 2 and of Schmidt (1993) can be derived as special cases of this more

general model.

3.5.1 Reputation with a Short Run Opponent

As was discussed in the Introduction, Chapter 2 considers the case of a long run

player who can establish a reputation for a particular behavior against a sequence

of short run opponents who all observe the previous play of the game. The main

goal of Chapter 2 was to show that introducing a perturbation on the types of the

short run opponents that made sure that all informational nodes of a stage game

would occur with strictly positive probability, the long run player could establish

a reputation for playing the (short run) Stackelberg strategy, which in turn allows

to use reputational arguments to characterize the set of Nash equilibrium payo®s

by imposing a lower bound on the long run player's Nash equilibrium payo®.

Even though Chapter 2 was phrased in terms of perturbations on the types of

the short run opponents, the result is actually driven by the fact that all nodes

of the stage game are visited with strictly positive probability. In this sense,
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the result can be rephrased as giving a lower bound on the long run player's

payo® when Assumption 5 holds, i.e. when the play of the short run player is not

observed, and when the support of the probability distributions over outcomes do

not depend on the action chosen by the short run player.

When player 2's discount factor is equal to zero, the ² best response corre-

spondence B²(¾1; ±2) coincides with the short run ² best response correspondence,

which implies that ¹U ¤1 is equal to the static Stackelberg payo® and Lemma 3 be-

comes trivial since it states that if player 1 plays the Stackelberg strategy and

player 2 plays a short run best response to it, then player 1's payo® cannot be

lower than the Stackelberg payo®.

If player 2 has zero discount factor, he will not care about the future, and

therefore all that we need to show is that the probability that the number of

periods in which player 2 expects player 1 to play at the current stage only the

Stackelberg action with probability less than an arbitrary ¹¼ < 1 exceeds a given

number, becomes arbitrarily small as the given number increases.

In other words, given that the number of periods each short run player is

interested in is only 1, we need to state Lemma 4 for ¿ = 1. It is immediate to

see that the statement of Lemma 4 in Section 3.3 is equivalent to Lemma 2 in

Chapter 2, since when ¿ = 1 the de¯nitions of K1 and K2(²) are the same and

therefore so are K1K2(²)¿ in Section 3.3 and K1K2(²) in Chapter 2.

3.5.2 Games of Con°icting Interest

Schmidt (1991) studied reputational arguments in the characterization of equilib-

rium when player 2 is a patient player and the stage game is a game of con°icting

interest. A game of con°icting interest with respect to player 1, was de¯ned as

a game in which the (short run) Stackelberg action of player 1 is also an action
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that minmaxes player 2.

Schmidt's (1993) argument is that if player 2 is a patient player, then the fact

that he becomes convinced that player 1 will play the Stackelberg action at the

current stage does not imply that he will play a short run best response to it,

since he might believe that in the continuation of the game he will be minmaxed

if he does play a short run best response to it. In other words, player 2 might

never play a best response to the Stackelberg strategy and his estimate of the

probability of being minmaxed if he does play a best response can stay bounded

away from zero.

This argument was then shown to fail in games of con°icting interest with

respect to player 1, since never playing a best response to the Stackelberg strategy

gives player 2 a payo® which is lower than the minmax payo®.

As in the previous subsection, assuming that the stage game has con°icting

interest with respect to player 1, implies that ¹U¤1 (±2) is equal to the (short run)

Stackelberg payo®, so that the limit result of Section 3.3 coincides with the limit

of Schmidt's (1993) result as ±1 ! 1.

Finally, if player 2 is su±ciently patient, Theorem 3 provides a stronger result

than the one in Schmidt (1993) since the result holds in a wider class of games

than the games of con°icting interest with respect to player 16, and, in particular,

given that ¹U ¤
1 is greater than or equal to the static Stackelberg payo®.

3.6 Conclusion

In a repeated game between two patient players a player whose type is not common

knowledge has been shown to be able to exploit the possibility of establishing

a reputation for a (possibly) history dependent pure strategy if a type that is

6Apart from the perturbation on the outcome, games of con°icting interest are a strict subset
of games satisfying Assumption 6.
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committed to such strategy exists with strictly positive probability, and if there

is even a small amount of noise in the observation of the other player that is such

that all ¯nite length histories can occur with strictly positive probability.

The results presented in this Chapter show that the implications of reputa-

tional arguments change dramatically when the actions of the player whose type

is common knowledge are only imperfectly observed. In fact the introduction of a

small amount of imperfect observability has been shown to be su±cient to extend

previous results for games with two long run players (Schmidt, 1993) to a wider

class of games, as well as to explicitly provide an even tighter characterization

of Bayesian Nash equilibrium for an arbitrarily patient player playing against a

su±ciently patient opponent.

Interesting applications of the results presented include the case in which ac-

tions are observed but players tremble, as well as a repeated principal agent prob-

lem in which the principal (player 1) cannot observe the action (e®ort) chosen by

the agent (player 2). In the latter case, the possibility for the principal of estab-

lishing a reputation for making payments which are made contingent not only on

the observed value of output, but also on the past history of the game, leads to

the conclusion that if both the principal and the agent are su±ciently patient,

then the principal will be able to get an average payo® which is equal to the net

value of the output under the e±cient e®ort level.

The framework presented here can be straightforwardly generalized to deal

with the case in which also player 1's action is imperfectly observed, using the

result on statistical inference introduced for this case by Fudenberg and Levine

(1991). More importantly, the framework of Fudenberg and Levine (1991) can be

used to introduce the possibility of establishing a reputation for a mixed strategy

since this can increase player 1's Bayesian Nash equilibrium payo® lower bound
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if player 1 can more successfully punish player 2 by using a mixed strategy than

by using a pure strategy. In such cases, if the two players are su±ciently patient,

introducing the possibility of establishing a reputation for a mixed strategy would

actually provide a tight bound on player 1's equilibrium payo®s.
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Chapter 4

Reputation in Dynamic Games
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4.1 Introduction

Many economic problems have the feature that a state variable such as capital,

debt or money, provides a link between present actions and future payo® oppor-

tunities. As an example, games that describe the strategic interaction between a

government and households usually involve state variables. It is in this context

that the problem of time consistency of optimal government policy arises: since

ex-ante and ex-post optimal policies di®er, even a benevolent government may

not be able to achieve the optimal commitment outcome.

Recent work has turned attention to this kind of games. Dutta (1991) provides

a Folk theorem for stochastic games. Chari and Kehoe (1990) and Stokey (1992)

study the time inconsistency problem introduced by Kydland and Prescott (1977,

1980) and Fischer (1980) and characterize the set of equilibria in problems of

optimal policy design when the government cannot commit. Both Chari and

Kehoe (1990) and Stokey (1992) show that, if there is su±ciently little discounting,

a desirable outcome (the Ramsey outcome in a capital taxation model, Ramsey

(1927)), can arise in equilibrium. However, in their model the Ramsey outcome

is only one of many equilibria.1

We consider a general class of dynamic games with one large player and a large

number of small players. A deterministic transition law describes the evolution

of the state variable. The large player has some private information about his

type, i.e. the small players are uncertain about the type of large player they are

facing. This uncertainty may be very small in the sense that the large player is

of one particular type with a probability close to one. The goal of this Chapter is

to ¯nd conditions under which a patient large player can exploit the uncertainty

1It is sometimes argued that in this case the government may be able to select its pre-
ferred equilibrium. However, Dekel and Farell (1990) show that these selection arguments are
inconsistent.
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of his opponents and enforce an outcome that is essentially equivalent to publicly

committing to an optimal strategy.

The introduction of uncertainty relative to the type of a player and the conse-

quent possibility of acquiring a reputation for an appropriate behavior has received

considerable attention in the literature. Starting with the work of Kreps and Wil-

son (1982) and Milgrom and Roberts (1982) the studies of reputation e®ects have

focused exclusively on repeated games.

Fudenberg and Levine (1989) study a class of repeated games in which a long

lived player faces a sequence of short lived opponents, each of whom plays only

once but observes the entire history of the game. If there is a positive probability

that the long lived player is a type who always plays the strategy to which the

normal player would like to commit, then reputation e®ects lead to a sharp pre-

diction for all Nash equilibria of the game: the large player will receive a payo®

that is at least as large as what he would receive if he could publicly commit to

his preferred strategy.

This result is robust in the sense that it does not rely on a re¯nement of Nash

equilibrium and that it is una®ected by further perturbations of the information

structure of the game, i.e. by the introduction of additional commitment types2.

The present Chapter uses reputational arguments and provides conditions un-

der which results analogous to the ones obtained by Fudenberg and Levine (1989)

apply to dynamic games and also provides conditions under which reputational

arguments may fail.

Since we consider games with a a large number (continuum) of small players,

we will assume that the individual play of the small players is not observed. In a

purely repeated game this assumption would imply that each small player behaves

2For extensions of Fudenberg and Levine (1989) see Fudenberg and Levine (1992), Schmidt
(1993) and Cripps and Thomas (1992).
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like a short-lived player, since his actions will a®ect neither his future payo®s nor

the public history of the game. In a dynamic game the presence of state variables

creates an intertemporal link and introduces a new strategic dimension to the

problem. Even though a small player cannot in°uence his opponent's future play,

he can change the value of his individual state variable, thereby a®ecting his own

future payo® opportunities. Therefore a small player's behavior will depend on

the (expected) future actions of the large player 3.

For example, in a capital taxation model in order to choose a high investment

level today, the households in the economy need to become convinced that the

government will set low capital tax rates not only today but also in the future.

As is clear, the presence of state variables makes it more di±cult for the large

player to establish a reputation: small players have to become convinced that the

large player will follow a particular strategy not only in the current period but

also in the future. The more the small players' behavior is a®ected by play in the

distant future the harder it will be for the large player to gain from establishing

a reputation.

Our ¯rst result (Theorem 4) applies to the case where the small players have

a ¯xed discount factor while the large player is arbitrarily patient. If there is a

commitment type that plays the strategy to which the large player would want to

commit then in any Nash equilibrium the large player is guaranteed at least the

optimal commitment payo®4.

To obtain a result that holds for a wide range of interesting economic appli-

cations we allow the payo®s to the small players to depend on the aggregate play

of the small players and the aggregate state variable, as well as on their own play

3See also Schmidt (1993), for a similar e®ect in games with two long run players.
4By the optimal commitment payo®, we mean the maximal time average that the large player

could guarantee himself by publicly precommitting if the game started in the worst possible state
from the large player's point of view.
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and the play of the large player. In the terminology to be introduced, we allow

for strategic externalities among small players. This has the surprising implica-

tion that, for a ¯xed discount factor, arbitrarily distant play of the large player

may a®ect current behavior of the small players (see Example 2). If the optimal

commitment strategy can be approximated by an eventually periodic sequence,

i.e. a sequence that converges to some cycle of bounded length in ¯nitely many

periods, then also in this case reputation e®ects allow a precise characterization

of equilibria. Assuming that the discount factor of the small players stays ¯xed

while the large player gets arbitrarily patient, the large player will receive at least

the optimal commitment payo® in all Nash equilibria (Theorem 5).

Finally, we consider the case where both the large and the small players are

arbitrarily patient. This case is particularly relevant for policy games, in which,

for example, the payo® function of the government is equal to the payo® function

of the median voter. Then, if players are very patient, the small players' action

may be a®ected by very distant future outcomes.

In this case it is shown (Theorem 6) that the large player will only be able

to exploit his reputation if the following reversibility condition on the transition

function is satis¯ed. A transition function is reversible if players can move from

one state to another only if they can also return. This condition is satis¯ed in

capital accumulation games, but is not satis¯ed, for example, in the standard

durable goods monopoly 5. Once a customer has purchased the durable good,

he has reached an irreversible state. Example 3 shows how in the durable goods

monopoly reputational arguments fail to guarantee the large player his optimal

commitment payo®.

5See for example Coase (1972), Ausubel and Deneckere (1989), Stokey (1981), Fudenberg,
Levine and Tirole (1985), Gul, Sonnenschein and Wilson (1986).
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An interesting application of the case in which large and small players have

the same discount factor is the classical time inconsistency problem in an in-

tertemporal capital taxation model (Kydland and Prescott, 1977). Fischer (1980)

describes a situation in which a benevolent government has to ¯nance a public

good by levying taxes on capital and labor. If the government could commit to

a certain strategy, it could achieve the Ramsey outcome (Ramsey, 1927), i.e. the

sequence of combinations of capital and labor tax rates that minimize distortions.

Once capital has been accumulated, however, it is optimal for the government

to raise as much revenue as possible from capital taxation that is ex-post non

distortionary. If private investors expect the government to renege on its promise

to set low capital tax rates, they will accumulate a suboptimal level of capital.

The result of the present Chapter is that if the prior probability of a particular

commitment type is strictly positive, then in any Nash equilibrium the government

will achieve a payo® close to the payo® corresponding to credible commitment to

an optimal tax rate.

The structure of the Chapter is as follows. In section 4.2 we describe the

complete information game. Section 4.3 introduces the perturbed game, i.e. the

possibility of the large player to be one of many \types". Section 4.4 provides the

¯rst result for the case where the discount factor of the small players stays ¯xed

while the large player is very patient. Section 4.5 gives the result for the case

in which there are strategic externalities. Section 4.6 deals with the case where

large and small players share a common discount factor and Section 4.7 provides

conclusions. Proofs are presented in Section 4.8.
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4.2 Description of the Game

The class of games we consider has two types of players: one large player denoted

by b, and a continuum of identical small players i 2 [0; 1] = I. The ¯nite sets Y

and X denote the actions of the large player and the small players respectively;

y 2 Y , x 2 X. Furthermore we let § denote the set of mixed actions of the large

player.

Each small player has an individual state variable, z 2 Z, where Z is the state

space that is assumed to be ¯nite and identical for all small players. Let ¤ denote

the set of probability measure on Z, ¸ 2 ¤, and M denote the set of probability

measures on Z £ X, ¹ 2 M; ¹(z; x) is to be interpreted as the measure of small

players with initial value of the state variable equal to z that choose action x.

Finally let ¹Z 2 ¤ denote the marginal of ¹ on Z and ¹X the marginal of ¹ on X

(¹X belongs to the set of probability measures on X ).

The game is played in the following way: At the beginning of each period

t = 1; 2; : : : the public history (to be described below) is observed by all players

and each small player observes his own private history. Conditional on these

observations, every small player takes an action xi 2 X and the large player

simultaneously takes a (possibly mixed) action ¾ 2 §, where § denotes the set of

probability distributions on Y .

After these actions have been selected, payo®s occur and all players observe the

realization of the action of the large player yt and the distribution ¹t of actions of

the small players. Note that this is a joint distribution over actions and states, i.e.

after each period every player knows which proportion of players in state z played

action x, for every z 2 Z. Clearly this joint distribution has to be consistent with

the state in the beginning of the period ¸t 2 ¤, i.e. ¹Zt = ¸t.

The law of motion for the individual state is described by the following func-
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tion:

f : Y £X £ Z ! Z

i.e. zit+1 = f(yt; x
i
t; z

i
t). In other words we assume that the value of the individual

state variable at date t+ 1 does not depend on the aggregate distribution of the

state variable or on the aggregate action played by the small players.

The aggregate law of motion is described by:

F : Y £M ! ¤

where

F (yt; ¹t)(z) =
X

f(x;z0)jf (yt;x;z0)=zg
¹t(x; z

0)

Note that F is continuous.

Let the distance between ¹t and ¹0t be de¯ned as

j¹t ¡¹0tj=
X

Z£X
j¹t(x; z) ¡ ¹0t(x; z)j

and let

j¸ ¡ ¸0j =
X

Z

j¸(z) ¡ ¸0(z)j:

A public history of the game at time t is the sequence of realizations of yt0 ; t0 =

1; : : : ; t ¡ 1, ¹t0 ; t0 = 1; : : : ; t ¡ 1 and the aggregate state in period t, ¸t. Since

we will want to use a recursive de¯nition of histories we also include ¸¿ ¿ =

1; : : : ; t¡ 1 in the history at time t6. The set of histories in period t is denoted by

Ht = (Y £M £ ¤)t¡1 £ ¤, with ht 2 Ht; h1 = ¸1 and ht = (ht¡1; yt¡1; ¹t¡1; ¸t)

for t > 1; H =H1. For the history from t
0 to t, t0 · t we write htnht0 2 Ht¡t0 .

For a given sequence of play (y; ¹) = ((y1; y2; : : :); (¹1; ¹2; : : :)) the payo® to

the large player is:

V b(¯; y; ¹) = (1¡ ¯)
1X

t=1

¯t¡1vb(yt; ¹t)

6Notice that given the transition law ¸t is determined by ¹1; y1; : : : ; ¹t¡1; yt¡1.
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Similarly for a given sequence (y; ¹; x; z) = ((yt; ¹t; xt; zt)1t=1) the payo® to a small

player is:

V (±; y; ¹; x; z) = (1 ¡ ±)
1X

t=1

±t¡1v(yt; ¹t; xt;zt)

Since the small players' payo®s depend on the individual state variable this for-

mulation includes the case in which there is a ¯nite number of di®erent types of

small players.

Assumption 7 vb and v are continuous on M . Moreover 0 · v; vb · ¹v.

A pure strategy for the large player is a mapping yt : Ht ! Y ; a mixed

(behavioral) strategy is a mapping ¾t : Ht ! §. Similarly a strategy for a small

player is a mapping7 xt : Ht£Z ! X. An aggregate strategy for the small players

is a mapping ¹t : Ht ! M that satis¯es the following consistency requirement:

For ht = (ht¡1;¹t¡1; yt¡1; ¸t), we have [¹t(ht)]
Z = ¸t. In other words, for every

history the marginal distribution of ¹t(ht) over states has to coincide with the

current state ¸t. Finally, ¾ = (¾1; : : : ;¾t; : : :), x = (x1; : : : ;xt; : : :), and ¹ =

(¹1; : : : ;¹t; : : :).

In an abuse of notation we will often write V (±;¾;¹;x;ht; zt) as the expected

payo® to a small player from playing x, starting at state zt after history ht.

Similarly V b(¯;¾;¹;ht) is the expected payo® to the large player after history ht.

4.2.1 Best Response and Aggregate Best Response

For a given strategy of the large player and a given aggregate strategy for the

small players (which no individual small player can in°uence) we de¯ne an ² best

response as follows:

7Given that private histories are unobservable, we assume that small players do not condition
their play on their private history.
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De¯nition 3 (² Best Responses) The strategy x = (xt)1t=1, is an ² best re-

sponse for player i to (¾;¹) if for all ht 2 Ht; t = 1; : : :, such that ht is a

public history that is reached with strictly positive probability and for all z 2 Z,

V (±;¾;¹;x;ht; z) ¸ V (±;¾;¹;x0;ht; z) ¡ ², for all x0. Let B²(¾;¹;¸; z) denote

the set of best responses given ¾, ¹, and initial state ¸, z.

Let B²t(¾;¹;ht; z) be the ² best response in period t only, i.e. :

B²t(¾;¹;ht; z) = fx 2 X j x(ht; z) = x; for some x 2 B²(¾;¹; z)g

Note that for ² = 0 we have the conventional best response.

De¯nition 4 (Aggregate ² Best Response) The aggregate strategy ¹ = (¹t)
1
t=1,

is an aggregate ² best response to ¾ for initial state ¸, if for all ht that are reached

with strictly positive probability there is a ¹ with j¹ ¡ ¹t(ht)j < ² such that x 2

B²t(¹;¾;ht; z), for all (x; z) 2 supp¹. Let E ²(¾; ¸) denote the set of aggregate ²

best responses to ¾ for initial state ¸.

Therefore an aggregate ² best response to a strategy ¾ of the large player is an

aggregate strategy ¹ such that almost all individual strategies in its support are

an ² best response to ¹ and ¾ for all reached histories.

Finally let E²t(¾; ht) be de¯ned as the aggregate ² best response in period t

only, given a history ht:

E²t(¾; ht) = f¹ 2M j¹(ht) = ¹ for some ¹ 2 E²(¾)g

When t = 1, h1 = f¸g, therefore we will write E²1(¾; ¸) instead of E ²1(¾; h1).

For ² = 0 we get the usual best response and aggregate best response. Let

B;Bt; E;Et; denote the best response and aggregate best response for ² = 0.

Note that according to De¯nition 2, all small players may be able to gain ²

every period if an aggregate ² best response is played. Thus for an aggregate ²
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best response to be close to an aggregate best response ² has to be small relative

to the discount factor ± since ²=(1 ¡ ±) measures the maximum utility loss for a

typical small player over the course of the game. While for a ¯xed discount factor

an ² can be chosen such that ²=(1¡±) is very small, when we will consider the case

where the discount factor of the small players is arbitrarily close to one (Section

4.6), we will need to use a stronger notion of aggregate ² best response.

4.3 The Perturbed Game

Now we consider a slight variation of the game de¯ned above. Suppose that the

small players are not completely sure about the large player's payo® function and

in particular that they believe that with positive probability the large player's

payo® function is di®erent from the one described in the previous section. Let ­

be the space of potential types with generic element !. Then the large player's

payo® function will also depend on his type, V b(¯;y;¹;!; ht). Let !0 denote the

event that the type of the large layer is such that his payo® function is like in the

unperturbed game, i.e. V b(¯;y;¹;!0; ht) = V b(¯;y;¹; ht). In the following we

will call type !0 the rational or normal player.

Types other than !0 may have a possibly history dependent payo® function

that makes a given pure strategy dominant in the in¯nite game. Such players will

be called commitment players and for the sake of simplicity will be identi¯ed by

the strategy they play rather than by their payo® function.

The existence of these commitment types captures uncertainty of the small

players about the type of large player they are facing. The idea is that although

the small players are almost certain they face the rational type, they cannot

exclude the possibility that the large player perceives the game in a di®erent way

and hence will behave \irrationally". To account for the possibility that the large
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player can be of di®erent types we have to modify the de¯nition of a strategy

for the large player. A mixed (behavioral) strategy for the large player is now a

mapping ¾t : Ht £ ­ ! §.

Since the small players cannot observe the type of the large players, the de-

¯nition of a strategy for the small players remains unchanged. We assume that

the prior distribution of types is common knowledge. By ¾n¾ 0(!) we denote the

strategy that is obtained by substituting ¾ 0(!) for ¾(!) in ¾.

De¯nition 5 A Nash equilibrium for initial state ¸ is a (¾;¹) with ¹Z1 = ¸, such

that ¹ 2 E(¾; ¸), and for all ! 2 ­, V b(¯;¾;¹;!; ¸) ¸ V b(¯;¾n¾ 0(!);¹;!; ¸)

for all ¾0(!).

First we want to investigate the consequences of imitating a particular com-

mitment type on the beliefs of the small players. In Lemma 8 we show that if

the large player chooses to imitate a pure strategy of a particular commitment

type, then in all but ¯nitely many periods the small players will actually believe

that with high probability the aggregate play will be consistent with this strategy

being played in the next ¿ periods. Both the formulation and the proof of Lemma

8 are an extension of a result in Fudenberg and Levine (1989).

Let y¤ denote the pure strategy played by a particular commitment type !¤.

Let h¤ be the event that yt = y¤t (ht) for all ht that are reached following (y
¤;¹)

starting from a given h0 = ¸0. Furthermore let p(!¤) = p¤ denote the prior

probability that ! = !¤. Let ¼¤¿t be the probability that in the next ¿ peri-

ods the actions of the large player are consistent with y¤, i.e. the probability

that in periods t; t+ 1; : : : ; t+ ¿ ¡ 1 aggregate play is consistent with y¤ being

played given the aggregate strategy ¹, i.e. ¼¤¿t = P r[yt = y¤t (ht); : : : ; yt+¿¡1 =

y¤t+¿¡1(ht+¿¡1)jht¡1;¹]. Finally, let n(¼¤¿t · ¹¼) be the random variable denoting

the number of periods in which ¼¤¿t · ¹¼.
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Lemma 8 Let 0 < ¹¼ < 1 and suppose that p¤ > 0, and that (¾;¹) are such that

P r(h¤j!¤) = 1. Then

P r

Ã
n(¼¤¿t · ¹¼) > ¿

logp¤

log ¹¼
jh¤

!
= 0:

Remark: Note that since certain states may not be reached along a given history

h¤, the small players will not get convinced that the large player actually uses the

same strategy as the commitment type. However, since no individual small player

can a®ect the aggregate state, the play in public histories that are not reached is

irrelevant for any small player's decision problem.

4.4 The Case with No Strategic Externality

In this section we consider the simpler case in which the payo® of every small

player is independent of the aggregate play of the small players.

Assumption 8 (No Strategic Externality) v is independent of ¹.

The following equation de¯nes ¹V b to be the limit of time averages of the large

player's payo®. Since time averages need not converge we will take the limit

in¯mum. Let

¹V b(y;¹;¸) = liminf
T!1

1

T

TX

t=1

vb(yt; ¹t)

where (yt; ¹t) is the history induced by y and ¹ and ¸.

De¯ne a strategy y such that yt(ht) = yt for all ht a simple strategy. A simple

strategy is a strategy that does not depend on history but only on calendar time.

With an abuse of notation in the following we will sometime identify a simple

strategy with the in¯nite sequence of actions it prescribes, y = y.
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Let ¹V b(²; ¸) be the best time average the large player could guarantee to himself

by committing to a given simple strategy subject to the small players playing an

aggregate ² best response. Then

¹V b(²; ¸) = sup
y2Y1

inf
¹2E²(y;¸)

¹V b(y; ¹;¸):

Let ¹V b(²) = inf¸ ¹V b(²; ¸) and let ¹V b = lim²!0 ¹V b(²).

Now we de¯ne a collection of types (the Stackelberg types) which can be

used by the rational large player to establish a reputation. Let y(²; ´; ¸) =

(y1(²; ´; ¸); : : : ; yt(²; ´; ¸); : : :) be a simple strategy that satis¯es

inf
¹2E²(y(²;´;¸); )̧

¹V b(y(²; ´; ¸);¹; ¸) ¸ ¹V b(²; ¸)¡ ´:

Hence y(²; ´; ¸) is an \almost" optimal sequence if the criterion is the limit of time

averages.

The type !(²; ´; T) is de¯ned by the following strategy:

² In the ¯rst T periods this type follows y(²; ´; ¸1).

² In case the small players reacted with an ² best response in period 1, this

type continues with y(²; ´; ¸1) in period T + 1. If the small players did not

choose an action close to a best response in period 1, this commitment type

switches to y(²; ´; ¸T+1).

² The same pattern is repeated for all periods: The commitment type will

continue following the sequence y(²; ´; ¸) if either it has been played for

fewer than T periods or if T periods ago \almost" a best response was

played. Otherwise a new sequence y(²; ´; ¸0) will be started, where ¸0 is the

current value of the state variable.
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More precisely, let µt 2 N t = 1; 2; : : : be de¯ned as follows:

µt =

8
><
>:

1 if t = 1
µt¡1 + 1 if µt¡1 < T or if ¹t¡T 2 E ²t¡T (y(²; ´; ¸t¡µt¡1); h¿¡T )
1 otherwise

Now let the type !(´; ²; T ) be de¯ned by following strategy:

yt(ht) = yµt(²; ´; ¸t¡µt)

Note that the T-period lag in adjusting the optimal policy in the de¯nition

of the commitment types is crucial to avoid the time-inconsistency problem. A

commitment type who chooses the optimal policy for the current state in every

period is of little use to the large player since he wants to commit to ex-ante rather

than ex-post optimal policies.

Assumption 9 For all (²; ´) there is an ²0 < ²; ´0 < ´ such that !(²0; ´0; T) 2 ­

has strictly positive prior probability for all ¯nite T .

Assumption 9 says that there is a large variety of the described Stackelberg types.

In particular, for arbitrarily small (²; ´) we can ¯nd a commitment type with

positive prior for any ¯nite \lag parameter" T .

In Theorem 4 we make two important assumptions that will be relaxed later.

First we assume that v is independent of ¹, i.e. there is no \strategic externality"

in the play of the small players. Second we assume that the small players' discount

factor stays ¯xed while the large player's discount factor approaches 1. Theorem 4

states that if the type space includes a particular collection of commitment types

then as the discount factor of the large player goes to 1 in any Nash equilibrium

he gets at least ¹V b.

Theorem 4 Suppose that Assumptions 7, 8 and 9 hold. Then in any Nash equi-

librium (¾;¹) for initial state ¸, lim¯!1V b(¯;¾;¹; ¸) ¸ ¹V b.
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The intuition behind Theorem 4 is the following: Suppose that the large player

imitates a commitment type !(²; ´; T). Then Lemma 8 implies that after a ¯nite

number of periods the small players will actually believe that the large player

will continue to play like the commitment type in the next T̂ periods with very

high probability. Since the small players discount future payo®s there is a T̂ large

enough such that if the commitment strategy is followed with large probability in

the next T̂ periods then the small players will actually play a best response to the

commitment strategy. Since we can ¯nd commitment types with positive prior

probability for arbitrarily large lag parameter T , we can choose T in such a way

that T > T̂ . In this case an aggregate ² best response to the commitment strategy

implies an aggregate best response to an optimal sequence y(²; ´; ¸). The Theorem

then follows from the fact that this argument can be repeated for arbitrarily small

(²; ´).

4.5 Including Strategic Externalities

In many economic problems the utility of individuals depends on their individual

choice as well as on the aggregate behavior of the other individuals, for example

through prices in a market game or through the aggregate level of capital in

a capital accumulation problem with externalities. In this section we discuss

reputational arguments in the general case in which the payo®s to individual

small players may also depend on the aggregate play of the small players.

Allowing for this possibility complicates the analysis for the following reason:

Even though small players discount future payo®s at a ¯xed rate ± < 1, it is not

true that the aggregate ² best response today does not change when the large

player's action in the very distant future changes.

The large player can only exploit his reputation successfully if the small players
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choose an aggregate ² best response to the commitment strategy whenever the

large player imitates this strategy long enough. This implies that we need to ¯nd

a (uniform) bound T such that if the small players believe that the commitment

strategy is played for the next T periods, then they will actually play an aggregate

² best response to it. When v is independent of ¹ discounting implies that we can

¯nd such a T uniformly over all strategies. If v depends on ¹, this property fails.

The following example illustrates this point.

Example 2 Consider an economy in which there is a continuum of private agents

(small players) and a government (large player). Suppose that private agents can

choose between becoming specialized or staying autarkic. Then the strategy space

for each private agent is X = f0; 1g where x = 0 symbolizes autarky and x = 1

specialization. Any agent can either be in an experienced state, z = 1, or in an

inexperienced state, z = 0. Experience is obtained after having specialized for one

period. If an experienced agent fails to specialize, then he loses his experience.

Hence the individual state variable transition can be summarized by: f(x; z) = x,

x = 0; 1.

Only experienced agents who specialize are productive. However, their payo®

from specialization depends on how many other agents decide to specialize in the

current period (irrespective of whether these agents are experienced or not). Let

¹X(1) be the fraction of agents who specialize in the current period, then the value

of the output produced by an agent who plays x and is in state z is: ¹X(1)zx¡ cx

where c is the cost of specialization.

The government has two policies: It can either do nothing (y = 0) or it can

reward all the experienced specializing agents by giving them a subsidy of 1 for

each unit they produce (y = 1). With this set-up the payo® function of a private
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agent will be

v(¹; y; x; z) = (¹X(1) + y)zx ¡ cx:

The government is benevolent but giving a subsidy is costly. Let ¹(1; 1) denote

the proportion of experienced private agents (private agents in state z = 1) who

decide to specialize (x = 1). Then the government's payo® function can be written

as

vb(y; ¹) = ¹(1; 1)(1 + (1 ¡ k)y)¡ c¹X(1)

where k > 1 is the unit cost of raising funds to pay the subsidies.

The following table summarizes the payo®s to the private agents. The column

entries are combinations of actions and individual values of the state variable of

the small player (z; x); the row entries denote actions of the large player.

(0; 0) (0; 1) (1; 0) (1; 1)
y = 0 0 ¡c 0 ¹Xt (1)¡ c
y = 1 0 ¡c 0 ¹Xt (1) + 1¡ c

Let c < ± < 1. Under policy y = 0 the private agents will specialize (x = 1)

only if enough other small players specialize. Under policy y = 1 there is a reward

for experienced agents who specialize.

The government would like to play policy y = 0 in every period and would

like all small players to specialize (choose action 1). However this is not the only

aggregate best response to y = (0; 0; : : : ; 0; : : :). Any sequence of the form:

¹Xt (1) =

(
1 if t · ¿
0 if t > ¿

for ¿ ¸ 0 is an aggregate best response. In particular ¹Xt (1) = 0 for all t is the

worst aggregate best response.

Now suppose the government plays y = (0; : : : ; 0; 1; 0; : : : ; 0; 1; : : :), where the

sequence of consecutive 0's is arbitrarily large. Whenever the government gives
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a subsidy (y = 1 is played) in period ¿ every small player wants to specialize

(x¿ = 1) and be experienced (z¿ = 1). But this implies that in period ¿ ¡ 1 every

small player has to specialize (x¿¡1 = 1), otherwise he would not be experienced

in the following period. This in turn implies that also in period ¿ ¡ 1 every small

player can bene¯t from specialization (x¿¡1 = 1) as long as he is experienced

(z¿¡1 = 1). But to be experienced in period ¿ ¡ 1 (z¿¡1 = 1) he has to specialize

in ¿ ¡ 2 (x¿¡2 = 1) and so on.

Thus every small player will choose xt = 1 for t · ¿, which implies that the

unique equilibrium is ¹Xt = 1, for all t. In order to guarantee that the private

agents will actually specialize (x = 1) the large player has to give a subsidy (switch

to policy y = 1) every once in a while. ²

Theorem 4 relied on the fact that we could ¯nd a uniform bound T such

that the large player's actions more than T periods from now did not a®ect the

small players' current behavior. The previous example shows that in the case

with strategic externalities such a uniform bound does not exist8. This creates a

problem for a large player who tries to exploit his reputations: the small players

may have to be convinced that the large player follows a given strategy for very

many future periods.

As an illustration, consider again Example 2. Suppose that the large player

wants to establish a reputation for playing the sequence y = (A;B;A;A;B;A;A;A;B; : : :).

Clearly ¹Xt (1) = 1 is the unique aggregate ² best response to y. However, to en-

sure that this best response is played in period t, ¼y;Ttt , with Tt ! 1 has to be

su±ciently large. If Tt goes to in¯nity very fast then the large player may actually

never be able to establish a su±ciently \far-reaching" reputation so that the small

8In other words: the aggregate ² best response fails to be lower hemi continuous in the
product topology.
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players will play ¹Xt (1) = 1.

To circumvent this problem we will assume that by committing to an \eventu-

ally periodic" sequence the large player can do almost as well as by committing to

an arbitrary sequence. This allows us to restrict the Stackelberg type to a set of

strategies for which we can ¯nd a uniform bound on the number of future periods

that matter for the current behavior of the small players.

Recall that a pure strategy y for b is called simple, if y ´ y, for some y 2 Y1;

i.e. no matter what history is reached in period t, player b chooses yt in period

t. De¯ne a simple strategy L periodic if for some l; k · L, L < 1, we have

yt+l = yt for all t ¸ k. Let Y (L) denote the set of L periodic simple strategies.

The following assumption says that by committing to an L periodic sequence, the

large player can guarantee himself almost the same payo® as by committing to an

arbitrary sequence.

Assumption 10 For all ´ > 0; ² > 0, there is an L such that for all y; ¸ there is

a y0 2 Y (L) such that inf¹2E²(y0 ;¸) ¹V b(y0;¹; ¸) ¸ inf¹2E²(y;¸) ¹V b(y;¹; ¸) ¡ ´:

Note that Assumption 10 is satis¯ed in Example 2.

Commitment types (Stackelberg types) are constructed analogous to the ones

in Section 4.4. The only di®erence is that we restrict the Stackelberg type to the

use of L periodic sequences. Let y(²; ´; ¸) 2 Y (L) satisfy

inf
¹2E²(y(²;´; )̧; )̧

¹V b(y(²; ´; ¸);¹; ¸) ¸ ¹V b(²; ¸)¡ ´

Assumption 10 guarantees the existence of such a sequence. As before we de¯ne

µt 2 N t = 1; 2; : : : as follows:

µt =

8
><
>:

1 if t = 1
µt¡1 + 1 if µt¡1 < T or if ¹t¡T 2 E ²t¡T (y(²; ´; ¸t¡µt¡1); h¿¡T )
1 otherwise
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Type !(²; ´; T) is committed to the strategy:

yt(ht) = yµt(²; ´; ¸t¡µt)

The interpretation of this strategy is the same as the one that was provided for

the case with no strategic externality.

Theorem 5 Suppose that Assumptions 7,9, and 10 hold. In any Nash equilibrium

(¾;¹) for initial state ¸, lim¯!1V b(¯;¾;¹; ¸) ¸ ¹V b.

Theorem 5 generalizes Theorem 4 to include the possibility of the small player's

payo® to depend on the aggregate play of the small players. If Assumption 10

holds, then Theorem 5 says that as the discount factor of the large player goes to

1 in any equilibrium he gets at least the time average of payo®s corresponding to

an optimal commitment.

4.6 Patient Small Players

In Theorem 4 we assumed that the discount factor of the small players stays ¯xed

while the large player becomes arbitrarily patient. In applications like policy

games the utility function of the large player frequently re°ects the utility func-

tion of the small players (e.g. the large player's preferences are identical to the

utility function of the \median voter"). Thus it is important to identify classes of

games where reputation allows the large player to achieve essentially his commit-

ment payo® when both the large and the small players become arbitrarily patient

simultaneously.

The di±culty in establishing a reputation with patient small players lies in the

fact that small players may become increasingly reluctant to take an action that

leads to an irreversible state as they get more patient. Thus to convince a very
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patient small player to take this action the large player may have to establish

a reputation for following the commitment strategy for very many periods and

hence it may take \too long" to establish a reputation that induces the small

players to enter an irreversible state.

4.6.1 The Failure of Reputation in the Durable Goods

Monopoly

The following simple example of a monopolist selling a durable good to a popu-

lation of buyers illustrates the failure of reputational arguments with irreversible

states.

Example 3 Suppose there are two types of buyers H and L. The reservation

price of type H, rH , for the durable good is 5, the reservation price of type L,

rL, is 2. There is mass 1/2 of both types of buyers. Each period the buyer takes

either action 0 (he does not buy) or action 1 (he buys). Similarly the state of

a buyer is either 0 (no purchase has occurred in the past) or 1 (a purchase has

occured in some previous period). Thus the transition function is de¯ned as:

f(xt; zt) =

(
0 if xt = 0 and zt = 0
1 otherwise

The monopolist sets a price pt every period, where pt 2 f0; 1=n; : : : ; (5n¡1)=ng;n ¸

6. If buyer i 2 fH;Lg purchases the durable good in period t then his payo® is

±t(ri ¡ pt). More precisely, buyer i's payo® function is

vi(pt; xt; zt) =

8
><
>:

ri ¡ pt if zt = 0 and xt = 1
¡pt if zt = 1 and xt = 1
0 otherwise

For any sequence of prices p and aggregate actions ¹ the payo® to the large player

is9

V b(p; ¹) =
1X

t=1

±t¡1 ¢ pt ¢ ¹t(1; 0)

9We do not include ¹t(1; 1) (the proportion of buyers that have already bought the durable
good in the past that do so again) because no buyer will purchase twice in equilibrium.
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Suppose there are three types of monopolists: one normal type characterized by

the payo® function above, type !¤ who sets pt = (5n¡ 1)=n for all t and type !̂

who follows the strategy:

pt =

(
(5n¡ 1)=n if t · T
(2n¡ 1)=n otherwise

where log(1=2)= log(±) < T < log(2=(3n + 1)))= log ±. Both commitment types

have prior probability ² > 0.

The strategy of playing pt = (2n¡ 1)=n (for the normal type) constitutes a

sequential equilibrium for large ±. To see this ¯rst note that pt = (2n ¡ 1)=n

constitutes a subgame perfect Nash equilibrium in the game where there is only

the normal type if ± is su±ciently large. Thus it remains to show that the normal

type does not have an incentive to imitate type !¤. Suppose b deviates and o®ers

pt = (5n¡ 1)=n. Since

²

2 ¢ ² ¢ ±T ¢ (5¡ (2n¡ 1)=n) > 1=n

type H will not buy until period T + 110. However

±T
1

2
¢ 5n¡ 1

n
+ ±T+1

1

2
¢ 2n¡ 1

n
<
7n¡ 1
4n

<
2n¡ 1
n

for n ¸ 6, where the ¯rst element of the chain of inequalities is an upper bound

on the payo® to b from deviating and the last is the payo® from setting p1 =

(2n¡ 1)=n. This implies that deviation from p1 = (2n¡ 1)=n does not pay. Thus

in this game the large player is unable to exploit reputational e®ects to achieve

the simple monopoly payo® (5n¡ 1)=2n.2

10The left hand side of the inequality is a lower bound on the expected payo® from waiting
until T + 1 and then buying at pT +1 = (2n ¡ 1)=n, and the right hand side is the payo® from
buying at (5n ¡ 1)=n at t = 1.
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4.6.2 No Irreversible Actions

The following Assumption says that no action that the small players can take has

irreversible consequences.

Assumption 11 (Reversibility of Accumulation Paths) Suppose there is a se-

quence

(y1; : : : ; yN), (x1; : : : ; xN) such that for z1 = z and zn = f(yn; xn; zn¡1) we have

zN = z0. Then for any other sequence (ŷ1; ŷ2; : : :) there is a sequence (x̂1; ::; x̂N0)

such that for z1 = z0 and zn = f(ŷn; x̂n; zn¡1) we have zN0 = z.

Using Assumption 11 we can partition the states Z into subsets Zj such that

the small players can only move between states in the same subset Zj and fur-

thermore there is an N such that for any pair (z; z0) belonging to the same Zj a

small player can move from z to z0 in fewer than N periods (independent of y).

Note that the de¯nition of aggregate ² best response (De¯nition 4) contains

strategies in which every small player \loses" ² units of utility as compared to a

best response every period. Since ± is ¯xed in Theorem 4, we can make ²=(1¡ ±)

arbitrarily small. (Note that ²=(1 ¡ ±) denotes the overall \loss" of utility of a

typical small player as compared to a best 1). Here we want to let ± ! 1 and

therefore we need a stronger notion of aggregate ² best response.

Denote by yT = (y1; : : : ; yT ) a T period sequence of actions for the large player

and similarly ¹T = (¹1; : : : ; ¹T ); xT = (x1; : : : ; xT ); zT = (z1; : : : ; zT ). Finally let

GT (yT ) = f(xT ; zT ) : zTt+1 = f (yTt ; xTt ; zTt )g denote the set of sequences (xT ; zT)

of length T that are feasible under yT . Now de¯ne a truncated aggregate ² best

response in the following way:

De¯nition 6 (Truncated Aggregate ² Best Responses) ¹T is a T -truncated ag-

gregate ² best response to yT for initial state ¸ if ¹TZt+1 = F (y
T
t ; ¹

T
t ); t = 1; : : : ; T ¡1

77



and for all (xT ; zT) 2 supp¹T \GT (yT )

1

T

TX

t=1

v(yTt ; x
T
t ; z

T
t ) ¸ 1

T

TX

t=1

v(yTt ; x
0T
t ; z

0T
t )¡ ²

for all (x0T ; z0T ) 2 G(yT ) with z0T1 = zT1 . Let E
T;²(yT ; ¸) denote the set of T -

truncated aggregate ² best responses to yT for initial state ¸.

This de¯nition of a truncated aggregate ² best response says that over the course

of T periods the average payo® could not be increased by more than ² by any

other sequence of actions. Note that this de¯nition requires ² optimality (in a

time average sense) over T periods and irrespective of the continuation of play

and hence is a much stronger notion of aggregate ² best response than the one

used in Theorems 4 and 5.

Next we de¯ne the limit of the commitment payo®s of a sequence of truncated

games. Consider a truncated game in which the large player commits to an optimal

sequence and the small players choose a truncated aggregate ² best response. V̂ b

denotes the limit of payo®s for the large player when the game is truncated farther

and farther away in the future. Again, since time averages need not converge, we

take the limit in¯mum. Let

V̂ b(²; ¸) = lim inf
T!1

fmax
yT

min
¹T2ET;²(yT ; )̧

1

T

TX

t=1

vb(yTt ; ¹
T
t )g

and

V̂ b(²) = inf
¸
V b(²; ¸):

V̂ b = lim²!0 V̂ (²).

Again we de¯ne a collection of commitment types who will allow the large

player to establish a reputation. Let yT (²; ¸) be a T period sequence that solves

max
yT

min
¹T2ET;²(yT ;¸)

1

T

TX

t=1

vb(yTt ; ¹
T
t )
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We de¯ne the type !(²; T), to play the strategy

y(²; T) = (yT1 (²; ¸1); : : : ; y
T
T (²; ¸1); y

T
1 (²; ¸T+1); : : : ; y

T
T (²; ¸T+1); : : :)

The commitment type !(²; T ) plays the optimal sequence in the T -period trun-

cated game given the initial state at the beginning of the truncated game.

Assumption 12 For all ² > 0 there is an ²0 < ² such that !(²0; T) 2 ­ has

strictly positive prior probability for every ¯nite T .

Theorem 6 says that if both players are very patient and if the transition function

is reversible then in any Nash equilibrium the large player will receive at least a

payo® that is close to the maximal time average in the T -period truncated game

for arbitrarily large T .

Theorem 6 Suppose Assumptions 7, 8, 11, and 12 hold and all players have a

common discount factor ±. Then in any Nash equilibrium (¾;¹) for initial state

¸, lim±!1 V
b(±;¾;¹; ¸) ¸ V̂ b.

The idea behind the proof of Theorem 6 is that we split up the in¯nite game into

¯nite \superstage games" of length T . Note that the e®ect of a current decision

of a small player on the payo®s in future \superstage" games can be \undone"

in N periods or less by the reversibility assumption. If N is small as compared

to T then the small players will behave almost like short lived players in every

superstage game, i.e. they will behave essentially as if they were alive only for

one superstage game. Therefore the large player can exploit his reputation if he

convinces the small players that he will follow the commitment strategy in the

current superstage game. Thus it is su±cient for the large player to establish a

reputation for a bounded number of future periods and Lemma 1 shows that this

can be accomplished in ¯nitely many periods.
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4.7 Conclusions

Whenever current play a®ects future payo® opportunities, agents' current deci-

sions depend not only on present but also on future expected behavior of their

opponents.

To describe this situation an in¯nite dynamic game between a large player

and a continuum of small players has been studied and it has been shown that

the use of reputational arguments allows to characterize the set of equilibria by

providing a lower bound on the equilibrium payo®s to the large player. This has

been accomplished by noticing that, if there is uncertainty relative to the type of

the large player, the large player can actually establish a reputation for behaving

in a certain way in a ¯nite horizon.

An example has been presented to show that when individual small players'

payo®s also depend on the aggregate play of the small players, it is possible that

arbitrarily distant play of the large player a®ects current aggregate behavior of

the small players. Interestingly it turns out that even in cases like this reputa-

tional arguments do have a bite: it is argued that the large player can establish a

reputation for playing repeatedly an appropriate ¯nite sequence of actions which

in turn allows him to get at least his commitment payo®.

Provided that the small players' actions do not have irreversible consequences,

reputational arguments have been shown to work independently of the rate of

patience of the small players. Even when the large player and the small players

have the same discount factor (like in the case of a benevolent government), the

fact that the large player can establish a reputation for playing a strategy that

depends on the aggregate state variable only after a su±ciently long adjustment

lag provides a lower bound on the large player's equilibrium payo®s.

A simple example of a durable goods monopoly problem has been presented
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to illustrate the role of the assumption that the small players' actions do not have

irreversible consequences: when some action pro¯le leads to an absorbing state

(purchase of the durable good in this case), then, if the small players are arbitrarily

patient, the possibility of establishing a reputation may fail to improve the large

player's payo® since no ¯nite adjustment lag in the strategy of the large player

would convince an arbitrarily patient small player to play a best response to the

optimal commitment strategy. Only in a case like this is it possible that payo®s

that are not close to the large player's optimal commitment payo® be equilibrium

payo®s of the perturbed game.

4.8 Proofs:

4.8.1 Proof of Lemma 8

Lemma 8 Let 0 < ¹¼ < 1 and suppose that p¤ > 0, and that (¾;¹) are such that

P r(h¤j!¤) = 1. Then

P r

"
n(¼¤¿t · ¹¼) > ¿

log p¤

log ¹¼
jh¤

#
= 0

Proof: Let ¹!¤ denote the event that ! 6= !¤. Then by Bayes's law we have

P r(!¤jht+1) = Pr(!¤jy¤t (ht); ht)

=
Pr(!¤jht)Pr(y¤t (ht)j!¤)

Pr(!¤jht)Pr(y¤t (ht)j!¤) + (1 ¡ Pr(!¤jht))Pr(y¤t (ht)j¹!¤)
(4.1)

Notice that Pr(y¤t (ht)j!¤) = 1 and that the denominator of (4.1) is equal to

P r(y¤t(ht)). Therefore (4.1) can be rewritten as

Pr(!¤jht+1) =
Pr(!¤jht)
P r(y¤t(ht))

: (4.2)

Notice that for any ¿, Pr(yt = y¤t (ht)) = Pr(yt0 = y¤t0(ht0); t
0 = t; : : : ; t +

¿ ¡ 1) + Pr(y¤t (ht); yt0 6= y¤t0(ht0); for some t
0 = t + 1; : : : ; t + ¿ ¡ 1). Recall
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¼¤¿t = Pr(yt0 = y¤t0(ht0 ); t
0 = t; : : : ; t+ ¿ ¡ 1), and let ¹¼¤¿t = Pr(yt = y¤t (ht); yt0 6=

y¤t0(ht0 ); for some t
0 = t+1; : : : ; t+¿ ¡ 1), i.e. ¹¼¤¿t is the probability that the large

player's play is in accordance with y¤ at time t, but di®er at some point in the

next ¿ ¡ 1 periods. Then, for any ¯xed ¿ (4.2) can be rewritten as

P r(!¤jht+1) =
Pr(!¤jht)
¼¤¿t + ¹¼

¤¿
t

:

Suppose that ¼¤¿t · ¹¼ for all t0 = t; : : : ; t+ ¿ ¡ 1. Then if the large player plays

like the commitment type for t0 = t; : : : ; t + ¿ ¡ 1 (i.e. yt0 = y¤t0 (ht0)), then the

probability that he is type !¤ has to go up by a factor of at least 1=¹¼ (because if

yt0 = y¤t0(ht0 ) all t
0 = t; : : : ; t+ ¿ ¡ 1, then at some t0 = t; : : : ; t+ ¿ ¡ 1 ¹¼¤¿t will be

updated to zero. Given that Pr(!¤jh1) = p¤, after ¿ periods

P r(!¤jh¿+1) ¸ p¤=¹¼:

If ¼¤¿t · ¹¼ for ¿K periods during which yt = y¤(ht), all t, then

Pr(!¤jhK¢¿+1) ¸ p¤=¹¼K:

However, since

Pr(!¤jht) · 1 (4.3)

if

p¤=¹¼K > 1 (4.4)

inequality (4.3) is violated and a contradiction to the hypothesis that ¼¤¿t · ¹¼ for

all t0 = t; : : : ; t+K ¢ ¿ ¡ 1 is obtained.

Taking the log of (4.4) the condition becomes

K > log p¤= log ¹¼

and the proof is complete. 2
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4.8.2 Proof of Theorem 4

Theorem 4 Suppose that Assumptions 7, 8 and 9 hold. Then in any Nash

equilibrium (¾;¹) for initial state ¸, lim¯!1 V b(¯;¾;¹; ¸) ¸ ¹V b.

The strategy of the proof will be to show that if the large player imitates the

Stackelberg type !(´; ²; T) for appropriately chosen T , then eventually the small

players will play a best response to the Stackelberg strategy.

In the following we present a Lemma that shows that if the small players

believe that the large player follows a given sequence of actions for a su±cient

number of periods with a su±ciently large probability, then the small players will

play an aggregate ² best response to this sequence of actions.

For a pure strategy y, let ¼yTt be the probability that y is played in each of

the next T periods, i.e. in the periods t; t+1; t+ 2; : : : ; t+ T ¡ 1.

Lemma 9 Suppose Assumptions 7 and 8 hold. For every ² > 0 and T > (log ²
2
¡

log ¹v)= log ±, there is an ® such that for every simple strategy y, if ¼yTt > 1¡ ®,

then in equilibrium ¹t 2 E²t(y; ¸) for all ¸ and all t.

Proof: In the case with no strategic externality to prove that ¹t 2 E ²t(y; ¸) it

su±ces to show that for all (x; z) 2 supp¹t, x 2 B²t(y; z) (the aggregate action ¹

has been dropped as an argument of B(:) since by Assumption 8 v is independent

of ¹).

Choose a T such that

±T ¹v < ´

or, taking logs,

T >
log ´¡ log ¹v

log ±
:

Let xt 2 B²t(y; z) and x
0
t 62 B²t(y; z). Let Vt be the expected payo® along the

equilibrium path if xt is chosen in period t and the player behaves optimally
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otherwise and let V 0t be the expected payo® along the equilibrium path if x0t is

chosen and the player behaves optimally otherwise. Then

Vt ¡ V 0t ¸ (1 ¡ ®)²¡ ®¹v¡ ´ (4.5)

Note that this inequality holds independent of the particular choice of xt and x0t.

To show that an ² best response to y is played in equilibrium we need to show

that there is an ® such that Vt¡V 0t > 0. From (4.5) a su±cient condition for that

to happen is:

(1¡ ®)²¡ ®¹v¡ ´ > 0 (4.6)

For ´ < ²=2 there is an ® such that (4.6) is satis¯ed and the Lemma follows. 2

Lemma 9 shows that if the small players believe that the large player will

play a given sequence of actions for a su±ciently long period of time with a 0

high probability, then they will play an aggregate ² best response to it. Lemma 8

on the other hand showed that if the large player played a certain strategy long

enough then the small players would become convinced that he will continue to

play that strategy for the following T periods with an arbitrarily high probability.

The following Lemma applies Lemma 8 and Lemma 9 to the Stackelberg strat-

egy described above to show that in all but a ¯nite number of periods the small

players will play an aggregate ² best response to an optimal sequence if the large

player imitates a Stackelberg type.

Let T ¤ > (log ²2 ¡ log ¹v)= log ± and let y¤ denote the strategy played by com-

mitment type !(²; ´; T ¤). Let H¤ be the set of histories consistent with y¤ being

played by b. Further let

H ¤
t (²; ´; ¸) = fh 2 H¤

t jy = y(²; ´; ¸); ¹ 2 E ²(y(²; ´; ¸)); ¸1 = ¸g

be the histories for which the sequence y(²; ´; ¸) and an aggregate ² best response

to this sequence have been played.
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Lemma 10 Suppose h 2 H ¤. Then there is a number N , independent of h, such

that the number of periods for which ¹t 62 E ²k(y(²; ´; ¸); hk), for all hk 2 H ¤
k (²; ´; ¸),

for all k · t and for all ¸ is bounded by N with probability 1.

Proof: For the proof of this Lemma we keep (²; ´) ¯xed and therefore we will drop

(²; ´) as arguments in y(:) and H¤(:). Suppose that for all k · t, ¹t 62 E ²k(y(¸); hk),

hk 2 H¤
k (¸). Then there is a t

0 2 (t ¡ T +1; : : : ; t) such that ¼¤Tt0 < (1¡ ®) since

otherwise htnht0 2 H¤
t¡t0(¸t0 ) for some 0 · t0 · t and hence the large player will

continue to play y(¸t0 ) for the next T periods with probability greater than 1¡®

and therefore Lemma 9 implies that ¹t 2 E ²k(y(¸); hk).

But ¼¤Tt < (1 ¡ ®) at most T log p¤

log(1¡®¤) times with probability 1 (Lemma 8).

Thus N · T 2 log p¤

log(1¡®¤) with probability 1. 2

The following Lemma says that by imitating the commitment type constructed

in the section 4.4 the large player can get a payo® at least ¹V (²) ¡ ´. Since ² and

´ are arbitrary Lemma 11 proves Theorem 4.

Lemma 11 Suppose Assumptions 7 and 8 hold. Further suppose that !¤(²; ´) has

prior probability p¤ > 0 then in any Nash equilibrium (¾;¹) for initial state ¸,

lim¯!1 V
b(¯;¾;¹; ¸) ¸ ¹V b(²)¡ ´:

Proof: Consider the strategy for b of always following y¤ (corresponding to !¤ =

!(²; ´; T )). Then ¹t 62 E²k(y(²; ´; ¸); hk) for fewer than N periods by Lemma 3.

For a given ¸ let

vt(¸) = inf
¹2E²(y( )̧)

(1 ¡¯)
tX

k=1

¯k¡1v(yk(²; ´; ¸); ¹k);

for ¹Z1 = ¸ and let v
t = inf¸ v

t(¸). Then a lower bound for b's Nash equilibrium

payo® can be described as:

vt1 +0 + ¯t1+1vt2 + : : :+ ¯t1+:::+tN¡1+N¡1vtN +0 + ¯t1+:::+tN+Nv1 ¸
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¸ v t + 0+ ¯t+1v t(¸) + + : : :+ ¯(N¡1)t+N¡1vt +0 + ¯Nt+Nv1

for some t where 0 · t · 1. Then

V b(¯;¾;¹; ¸) ¸ vt(1 + ¯t+1 + ¯2(t+1) + : : :+ ¯(N¡1)(t+1)) + ¯N(t+1)v1

¸ vt+1(1 + ¯t+1 + ¯2(t+1)+ : : :+ ¯(N¡1)(t+1)) + ¯N(t+1)v1

¡¯t+1(1¡ ¯)¹v(1 + ¯t+1 + ¯2(t+1) + ¯(N¡1)(t+1))

= vt+1
1¡ ¯N(t+1)
1¡ ¯t+1 + ¯N(t+1)v1¡ ¯t+1(1¡ ¯)¹v 1¡ ¯N(t+1)

1 ¡ ¯t+1(4.7)

Let

v̂t =
vt

(1¡ ¯t) =
Pt
k=1 ¯

k¡1vtkPt
k=1 ¯

k¡1

Then (4.7) becomes

V b(¯;¾;¹; ¸) ¸ v̂t+1(1¡ ¯N(t+1)) + ¯N(t+1)v1 ¡ ¯t+1¹v1 ¡ ¯N(t+1)
1¡ ¯t+1 (1¡ ¯)(4.8)

Now we want to let ¯ ! 1. Notice that the t that appears in (4.8) is a function

of ¯. If t(¯) stays bounded by some T < 1 as ¯ ! 1, then the ¯rst and the last

term (4.8) tend to zero and the result follows since

lim
¯!1

¯N(t+1)v1 ¸ ¹V b(²) ¡ ´:

If t(¯) does not stay bounded as ¯ ! 1, i.e. t(¯)! 1, then we have for some

0 · µ · 1:

lim
¯!1

V b(¯;¾;¹; ¸) ¸ (1¡ µ) lim inf
¯!1

v̂t(¯)+1 + µ lim
¯!1

v1 ¸ ¹V b(²) ¡ ´

since both liminf¯!1 v̂ t(¯)+1 and lim¯!1 v1 are greater than or equal to V (²)¡ ´.

2

4.8.3 Proof of Theorem 5

Theorem 5 Suppose that Assumptions 7,9, and 10 hold. In any Nash equilibrium

(¾;¹) for initial state ¸, lim¯!1V
b(¯;¾;¹; ¸) ¸ ¹V .
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First we will need a preliminary Lemma.

Lemma 0 For all ² > 0, there is a pair (´; ³) such that if ¹1 2 E³1(¾; ¸) and

j¹1 ¡ ¹01j < ´, then ¹01 2 E²1(¾; ¸).

Proof: ¹1 2 E³1(¾; ¸) means that there exists a ¹ 2 E³ (¾) : ¹1(h1) = ¹1, where

h1 = ¸. Moreover for each realization of y 2 Y 1, ¹ implies a ¹ 2 M1. Clearly

we can construct a ¹0 such that for each realization of y 2 Y1 we get a ¹0 2M1

with j¹0 ¡ ¹j1 < ´. By the de¯nition of aggregate ² best response there exists a

¹001 with j¹001 ¡ ¹1(h1)j< ³ such that:

x 2 B³1 (¹;¾;h1; z);8(x; z) 2 supp¹001:

However, since j¹01 ¡ ¹1j = j¹01 ¡ ¹1(h1)j < ´ we have j¹01 ¡ ¹001j < ´ + ³. By

continuity of v, for all ² > 0 there exist ³ and ´ such that

x 2 B²1(¹0;¾;ht; z);8(x; z) 2 supp¹001

which means that ¹01 2 E²1(¾; ¸). 2

The next Lemma is a weaker version of Lemma 9 for the case where v depends

on ¹. Recall that for a pure strategy y, ¼yTt denotes the probability that y is

played in each of the next T periods, i.e. in the periods t; t+ 1; t +2; : : : ; t+ T .

Lemma 12 Given ² > 0, for every L there is a (T; ®) such that for ¼yTt > 1¡ ®

then in equilibrium for all y 2 Y (L), ¹t 2 E²t(y; ht) where (T; ®) is independent

of t; ht.

Proof: Note that since Y (L) contains a ¯nite number of elements and since

(yt; yt+1; : : :) 2 Y (L) if y 2 Y (L) it is su±cient to show that for every pure

strategy y we ¯nd a (T; ®) such that if ¼yT1 > 1¡ ®, then ¹1 2 E ²1(y; ¸), for all ¸.

Let §T (y; ®) = f¾jy1; : : : ; yT is played with probability 1 ¡ ®g. If ¼T;y1 > 1 ¡ ®

then in equilibrium ¹ 2 E(¾; ¸) for some ¾ 2 §T (y; ®).
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Let (¾T ) be a sequence such that ¾T 2 §T(y; ®T); ®T ! 0 as T ! 1. Let

(¹¤T ; ¸T ) be a sequence such that ¹¤T 2 E(¾T ; ¸T) and let ¹¤ = ¹(h¤) where h¤

is the history where ¾t = yt for all t.

Claim: If ¹¤; ¸ is a limit point of (¹¤T ); ¸T , then ¹¤ 2 E(y; ¸).

Pf: Suppose ¹¤ 62 E(y; ¸). Then there is a ¿ and a set D ½ Z £ X with

P
(z;x)2D ¹

¤(z; x) > ° > 0 and for all (z; x) 2 D

x 62 B¿(y; ¹¤;h¿ ; z)

Thus if (z; x) 2 D then for all x with x(h¿) = x there exists an x0 such that:

V¿(y; ¹
¤;x; z; h¿) · V¿(y; ¹

¤;x0; z; h¿)¡ ´:

Choose T such that

±T ¹v · ´=2

Since ¹¤Tt0 ! ¹¤t0 uniformly for t
0 · ¿ + T and since ®T ! 0 as ¾T ! y, by

continuity of v in ¹ and in ® at ® = 0, it follows that for large T and for (z; x) 2 D

there is an x0 such that

V¿(¾
T ; ¹¤T ;x; z; h¿) · V¿(¾T ; ¹¤T ;x0; z; h¿)¡ ´=4: (4.9)

However, for large T , j¹¤T¿ ¡ ¹¤¿j < °=2 and hence (4.9) contradicts the fact that

¹¤T 2 E(¾T ; ¸T). ²

Next we want to show that as T ! 1 the distance between the ¯rst element

of an aggregate best response to ¾T , ¹T1 2 E1(¾T ; ¸), and the set of ¯rst elements

of the aggregate ³ best response to y, E³1(y; ¸), tends to zero. More precisely,

we want to show that for all (³; ´) there exists a T ¤ such that for all T > T ¤ for

MT (¸) = f¹j¹ 2 E1(¾T ; ¸) for some ¾T 2 §(y; ®T )g

sup
¸

sup
¹T1 2MT (¸)

inf
¹2E³1(y; )̧

j¹T1 ¡ ¹j · ´:
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This is satis¯ed if

limsup
T!1

sup
¸

sup
¹T12MT (¸)

inf
¹2E³1 (y;¸)

j¹T1 ¡ ¹j = 0:

From above we know that ¹¤; ¸ a limit point of a sequence ¹T ; ¸T with ¹T 2

E(¾T; ¸T ) has to belong to E(y; ¸) µ E³ (y; ¸) which implies that the limit above

is zero.

This implies (by Lemma 0) that by choosing ´ and ³ appropriately, ¹T1 2

E ²1(y; ¸) for T > T
¤, for all ¸. 2

Proof of Theorem 5: Let !(´; ²) = !(²; ´; T ¤) denote the commitment type

that plays the Stackelberg strategy described above, where T ¤ satis¯es Lemma 5

uniformly for all y 2 Y (L) and L is chosen su±ciently large so that there is a

y(²; ´; ¸) 2 Y (L) for all ¸. Now we can apply Lemma 10. Given that Lemma 10

holds so does Lemma 11. Note that ´; ² can be chosen arbitrarily by Assumption

9. Thus Lemma 11 proves Theorem 2. 2

4.8.4 Proof of Theorem 6

Theorem 6 Suppose Assumptions 7, 8, 11, and 12 hold and all players have a

common discount factor ±. Then in any Nash equilibrium (¾;¹) for initial state

¸, lim±!1 V b(±;¾;¹; ¸) ¸ V̂ b.

Proof: Step 1: Let T be such that for all ¸

min
¹T2ET;²(yT (²; )̧; )̧

1

T

TX

t=1

vb(yTt (²; ¸); ¹t) ¸ V̂ b(¸; ²)¡ ´:

Note that for all ²; ´ > 0 there is a T < 1 such that yT (²; ¸) satis¯es the above

inequality for all ¸. This is the case since

jV̂ b(²; ¸) ¡ V̂ b(²; ¸0)j < ¹v ¢ j¸¡ ¸0j

since v is independent of ¹11.

11The constant ¹v is the upper bound on the payo®s of the small and the large players (As-
sumption 7).
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Step 2: Claim Let y be a given pure strategy. Independent of y, for any ² > 0

there are ® > 0 and ¹± < 1 and a T < 1, such that if the probability that y is

followed in the ¯rst T periods is greater than 1¡ ®, then for all 1 ¸ ± ¸ ¹± in any

Nash equilibrium (¹1; : : : ; ¹T ) 2 ET;²(y; ¸1).

Pf: Let

BT;²(y; z) = f(xt; zt)Tt=1 2 GT (yT )jz1 = z and for all (x0t; z0t) 2 GT(yT ) with z01 = z
1

T

TX

t=1

v(yTt ; xt; zt) ¸ 1

T

TX

t=1

v(yTt ; x
0
t; z

0
t) ¡ ²g

Let

v¤T (z) =
1

T
max
fxtg

TX

t=1

v(yt; xt; zt)

with z1 = z.

There are 3 reasons why a small player may not want to play an element in

BT;²(y; z). First, y will only be followed with probability 1¡ ®; second, playing

a best response may cause the player to reach a state in period T which is not

the optimal state for the play thereafter and third, the player discounts future

payo®s, instead of using the time-average criterion.

Let
PT
t=1 ±

t¡1vt be the expected payo® of the small player along the equilibrium

path in the next T periods and let zT+1 be the state in which player i is in period

T + 1 along the equilibrium path. For (xT ; zT ) 62 BT;²(y; z) we have:
TX

t=1

±t¡1vt · (1 ¡ ®)(v¤T(z) ¡ ²) + ®¹v+ ¹v ¢
TX

t=1

¯̄
¯̄
¯
1

T
¡ ±t¡1 1¡ ±

1¡ ±T
¯̄
¯̄
¯

On the other hand, the player can use the following sequence: for the ¯rst T ¡N

periods play a sequence that maximizes the average payo® in the ¯rst T periods

against y, in the last N periods, adjust the state so that in period T +1 the state

zT+1 is reached. This gives a lower bound on the payo®:

TX

t=1

±t¡1vt ¸ (1 ¡ ®)v¤T ¡ ¹v ¢
TX

t=1

¯̄
¯̄
¯
1

T
¡ ±t¡1 1 ¡ ±

1¡ ±T
¯̄
¯̄
¯ ¡ ¹v

N

T
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Now note that if T is large and ® is close to zero and ± is close to one then

the prescribed strategy is an element in B²;T (y; z). Furthermore it gives a larger

payo® than any strategy that is not an element of B²;T (yT ) since

(1 ¡ ®)² > 2¹v ¢
TX

t=1

¯̄
¯̄
¯
1

T
¡ ±t¡1 1 ¡ ±

1¡ ±T
¯̄
¯̄
¯ + ¹v

N

T
+ ®¹v

But this implies that for all (zt; xt)Tt=1 2 supp(¹1; : : : ; ¹T) such that zt+1 =

f (yt; zt; xt) we have (zt; xt)
T
t=1 2 B²;T (y; z1), which proves the claim. ²

Step 3: Let ¹ denote the sequence of (¹t) induced by the history when player

b imitates the type !(²; T) and let ¼¤Tt be the probability that y(²; T) is played

in the periods t; t + 1; : : : ; t + T ¡ 1. For every ® > 0, ¼¤TkT+1 < 1 ¡ ® for fewer

than N(®; T ) di®erent k (Lemma 8). Thus for all but N(®; T) di®erent k we have

(¹kT+1; : : : ; ¹kT+T ) 2 E²;T (yT (²; ¸kT+1); ¸kT+1). But this implies that for all but

N periods of length T the undiscounted payo® of b is larger than V̂ b(²)¡ ´. Since

²; ´ can be chosen arbitrarily small (Assumption 12), the Theorem follows. 2
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