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ABSTRACT OF THE DISSERTATION

Three Essays on Repeated Games

by

Pedro Dal Bó

Doctor of Philosophy in Economics

University of California, Los Angeles, 2002

Professor David K. Levine, Chair

This thesis consists of three chapters. The …rst chapter analyzes the outcomes that

can be supported in a society through reward and punishment schemes that operate

through community enforcement (social norms). I consider a society of in…nitely

long-lived and very patient agents that are randomly matched in pairs every period

to play a given game. I …nd that any mutually bene…cial outcome can be supported

by a self-enforcing social norm under both perfect information and a simple local

information system. These Folk Theorem results explain not only how social norms

can provide incentives to forestall opportunistic behavior and support cooperation in

a community but also how they can support outcomes characterized by inequality.

The second chapter studies tacit collusion under interest rate ‡uctuations. In

contrast to the existing literature on repeated games that assumes a …xed discount

factor, I study an environment in which it is more realistic to assume a ‡uctuating

discount factor. In a repeated oligopoly, as the interest rate changes, so too does the

degree to which …rms discount the future. I characterize the optimal tacit collusion
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equilibrium when the discount factor changes over time, under both price and quantity

competition, and I show that collusive prices and pro…ts depend not only on the

level of the discount factor but also on its volatility. These results have important

implications not only for the study of cooperation in repeated games but also for

empirical studies of collusive pricing and the role that collusive pricing may play in

economic cycles.

The third chapter presents experimental evidence on in…nitely repeated games.

While there is an extensive literature on the theory of in…nitely repeated games, em-

pirical evidence on how “the shadow of the future” a¤ects behavior is scarce and

inconclusive. I simulate in…nitely repeated prisoner’s dilemma games in the lab by

having a random continuation rule. The experimental design represents an improve-

ment over the existing literature by including sessions with …nite repeated games as

controls and a large number of players per session (which allows for learning with-

out contagious e¤ects). I …nd strong evidence that the shadow of the future reduces

opportunistic behavior closely following the theoretical predictions.
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1 Social Norms, Cooperation and Inequality

1.1 Introduction

In a stable society, codes of conduct or social norms guide interaction among people.

A social norm functions as an implicit rule of behavior that guides the actions of

society members under di¤erent circumstances. In this sense, social norms organize

interaction among the members of a society, thereby reducing the level of uncertainty.

An important feature of social norms is their ability to curtail opportunistic be-

havior through the establishment of reward and punishment schemes that operate

through social reaction. In this way social norms can support high levels of cooper-

ation among the members of a society. Greif [25] presents an example of this found

among the Maghribi traders in the Mediterranean during the 11th century. With very

little support from formal institutions to enforce contracts governing overseas trading,

the Maghribi traders followed a simple social norm: no Maghribi trader would trade

with another Maghribi trader who had cheated a Maghribi trader before. In this

way the Maghribi punished deviations and reduced the incentives to cheat, hence,

supporting e¢cient levels of commerce that could not have been achieved if they had

relied upon personal retaliation alone.

But social norms not only can lead to e¢cient outcomes, they can also lead to

ine¢cient outcomes or outcomes with inequality. Akerlof [4] presents several exam-

ples of social norms that lead to ine¢cient and unequal outcomes. Among those he

considers the traditional Indian caste system, in which a mutually bene…cial trans-

action -like marriage- between two members of di¤erent castes may be forestalled by

the expected reaction of third parties.
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This paper analyzes the outcomes (e¢cient or ine¢cient, equal or unequal) that

can be supported by social norms. I consider a simple society consisting of a …xed

number of in…nitely long-lived members. Every period these members are randomly

matched in pairs to play a given game. The only restriction on these matches is that

the probability of each match is …xed and independent of time and past behavior. I

assume that the members are sel…sh in the sense that they do not care about others or

the social norm per se. Hence, no members follow the social norm because they derive

any direct utility from doing so. In this paper, social norms are followed because no

member can ever pro…t from deviating from it on his or her own. In other words, I

study social norms that are a subgame perfect equilibrium or a sequential equilibrium,

depending on the information requirements.

I consider two societies under di¤erent information requirements: one character-

ized by perfect information and another with a more restrictive information process.

For the former, I consider the case in which it is possible for every member to ob-

serve each other’s behavior. In this situation of perfect information, I prove that

if the agents are su¢ciently patient, any feasible and individually rational outcome

can be supported by a social norm that is a subgame perfect equilibrium. Therefore,

a society can achieve in equilibrium any feasible and individually rational outcome

through community enforcement, that is, with a social norm that speci…es rewards

and punishments.

To understand the relevance of this result it is important to note the di¤erence

between community enforcement and personal enforcement. Under personal enforce-

ment, a cheater will only face retaliation by the victim. On the contrary, under

community enforcement all the members of the society react to a deviation. Hence,

community enforcement can o¤er a punishment that is more swift and severe than

personal enforcement can. This implies that any outcome that can be supported by

2



personal enforcement can also be supported by community enforcement. But most

interestingly, there are outcomes that can not be supported by personal enforcement

that can be supported by community enforcement. In fact, there are highly unequal

outcomes that can only be supported by community enforcement, as the next example

shows.

Consider a society with four members that are matched every period to play the

following prisoner’s dilemma game:

c d

c 2 , 2 -2 , 4

d 4 , -2 0 , 0
Assume that each pair has the same probability of being matched and consider

the following social norm: Player 1, who is called “king”, always plays d, players 2, 3

and 4, who are called “serfs”, play c if no one has deviated and play d if someone has

ever deviated. Under this social norm, the king receives a payo¤ of 4 every period

while the serfs receive an average payo¤ of 2
3

in equilibrium. It is easy to verify that

this social norm is a subgame perfect equilibrium for discount factors greater than

3
4 .

1 It is interesting to note that with personal enforcement the king would only be

able to obtain payo¤s lower than 3.2 Therefore, community enforcement allows the

1The King has clearly no incentives to deviate. Seeing that the serfs do not have incentives to

deviate requires some calculations. If no one has deviated, a serf facing the King would get an

expected payo¤ of ¡2(1 ¡ ±) + ± 2
3

for following the social norm, where ± is the discount factor, and

he would get 0 for deviating. Hence, if no one has deviated, the serfs will not deviate when playing

against the King if ± > 3
4 . Similar calculations show that for those discount factors a serf would

not deviate when playing against another serf. Therefore, serfs have no incentives to deviate if no

one has deviated before. If someone has deviated, they do not have incentives to deviate since the

prescribed actions correspond to the stage game Nash equilibrium. Therefore, if ± > 3
4
, no player

has an incentive to deviate and, then, the social norm is a subgame perfect equilibrium .
2Under personal enforcement, a payo¤ higher than 3 for the King would result in a negative

expected payo¤ for the serf in the matches with the King. Under personal enforcement the serf

3



king to obtain a higher payo¤ than what he could obtain under personal enforcement.

The reason for this is that under community enforcement each serf knows that if he

deviates when playing with the king, no other serf will cooperate with him. Hence,

serfs accept the negative payo¤ they receive every time they are matched with the

king because this enables them to reap the bene…ts of full cooperation among the

serfs. With personal enforcement the king can not use this threat and therefore he

can not achieve the high level of payo¤s he receives under community enforcement.

In the social norm used in the previous example all the players are punished for

the deviation of one of the members. While societies may use this kind of punishment

schemes to reduce opportunistic behavior, schemes that only punish deviators seem

to be more realistic. Using social norms that only punish deviators, I show that any

feasible and individually rational outcome can still be supported in a subgame perfect

equilibrium under some restrictions on the stage game.

But the requirement of perfect information is unrealistic when the size of the

society is large. Therefore, I also study environments with less demanding information

requirements. As an alternative to perfect information I consider the existence of a

local information processing system, following the seminal papers of Kandori [34] and

Okuno-Fujiwara and Postlewaite [41]. In this case, in addition to knowledge gained

from their own experience, players have access to information from a system that

assigns status levels to players depending on their past behavior.

These status levels enable the social norm to establish punishments and rewards.

For example, in the case of the king and the serfs presented before there can be two

status levels: “good” and “bad” serfs. If failing to cooperate with the king results

in becoming a bad serf and nobody cooperates with a bad serf, a good serf may be

willing to cooperate with the king, even when the latter never cooperates.

would not accept that, since he can secure for himself a minimum of zero by playing d.
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With local information systems added to social norms, I prove that, if players are

su¢ciently patient, any feasible and individually rational outcome can be supported

by a social norm that is a sequential equilibrium. Therefore, even under very limited

information, a society can achieve in equilibrium any feasible and individually rational

outcome with a social norm that speci…es rewards and punishments based on the

information provided by a local information system. I also show a similar result, under

some restrictions on the stage game, for social norms that only punish deviators.

These Folk Theorem results explain not only how social norms can provide incen-

tives to forestall opportunistic behavior and support cooperation in a community but

also how they can support outcomes characterized by inequality.

The following section presents the relevant literature, comparing previous …ndings

with my own. Section 3 presents the model. Section 4 presents the perfect informa-

tion Folk Theorem results and Section 5 presents the local information system Folk

Theorem results. Section 6 concludes.

1.2 Relevant literature

Game theorists have long recognized that repeated playing and the possibility of

future retaliation modi…es current behavior, for example see Luce and Rai¤a [39]. In

the case in which the same set of players play the same game repeatedly, other studies

have found the conditions under which any feasible and individually rational outcome

can be supported in equilibrium3. However, in many interesting cases the same players

do not meet repeatedly but rather switch partners over time. For example see the

cases of the already mentioned medieval trade coalitions studied in Greif [25]. While

3See Aumann and Shapley [6] for the case without discounting, Fudenberg and Maskin [23] for

the case of discounting with perfect information and Fudenberg, Levine and Maskin [22] for the case

of discounting with imperfect public information.
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the changing of partners might seem to make cooperation impossible by reducing the

possibility of personal retaliation, that is not necessarily the case. As Kandori [34]

and Okuno-Fujiwara and Postlewaite [41] show, social norms can create incentives

for players to punish deviators even if the deviation occurred against another player,

since failing to punish can be itself punishable.

Both papers consider a society divided in two groups and every period the players

in one group are randomly matched with the players in the other group. In addition,

the authors restrict players in the same group to have the same equilibrium payo¤4.

Kandori [34] shows that with perfect information any feasible and individually ratio-

nal payo¤ pair can be supported as a subgame perfect equilibrium. Therefore, any

outcome that can be reached in the long-term relationship of two agents can also

be reached by long-term relationship of two groups. In the case of two groups it is

possible to construct credible group retaliations that mimic the ones needed for the

Folk Theorem with only two players. This paper studies the set of equilibrium payo¤s

when we abandon those restrictions and we only require the matching procedure to

be independent of history and time. In Section 3 I show that under perfect infor-

mation, community enforcement can support not only those outcomes that can be

supported by personal enforcement, but it can support other outcomes as well (as

the king example in the introduction). In fact, I show that under perfect information

any feasible and individually rational outcome can be supported by a social norm if

the players are patient enough.

Since the requirement of perfect information is unrealistic when the size of the

society is large, Kandori [34] and Okuno-Fujiwara and Postlewaite [41] study the

4This characterization of the game has the appealing graphical property that we can represent

an equilibrium outcome of the game in <2. Since all the members of a group receive the same payo¤

in equilibrium and there are only two groups, equilibrium payo¤s can be written as the pair (v1, v2),

where v1 and v2 denote the utility received by each player in group 1 and 2, respectively.
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existence of Folk theorem results with a local information processing system. Okuno-

Fujiwara and Postlewaite [41] prove a Folk Theorem for a weak (non-perfect) equi-

librium concept (Norm equilibrium) and Kandori [34] proves a Folk Theorem for

sequential equilibrium under certain assumptions of the stage game. While Kandori

[34] shows that infrequent transactions and limited information can still be overcome

to achieve a Folk Theorem, he does so in the restrictive environment of two groups

in which all the members of a group receive the same payo¤ in equilibrium. Without

these restrictions, Section 4 explains not only how social norms can support coop-

eration in a community but also how they can support outcomes characterized by

inequality5.

The idea that social norms may support inequality is not new in the literature.

Akerlof [4] presents several examples of social norms that support unequal (and in-

e¢cient) payo¤s in (non-perfect) equilibrium. Axelrod [7] also presents examples

in which social norms support inequalities. While those examples show that social

norms can support inequality in equilibrium, the punishments speci…ed in them are

not credible because the equilibria studied are not perfect. In contrast, the equilibria

presented in this paper are perfect. In addition my results are general to any stage

game and not limited to particular examples.

1.3 The Matching Game

The society consists of N players, where N is an even number. In each stage, each of

the players is matched with another player to play the stage game ¡. I assume that

the matching of players is independent of past actions or time: the probability that

player i is matched with player j is ®ij, 0 � ®ij � 1, for every period and history.

5 In addition, the proof of Theorem 4 shows how theorem 2 in Kandori [34] could be proved

without restrictions on the stage game.
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This de…nition allows for partitions of players as in Kandori [34] and Okuno-Fujiwara

and Postlewaite [41].

The stage game ¡ is a symmetric game played by two players, with actions a 2

A, for both players and payo¤s g : A2 ! <2, with the property that grow(a0; a) =

gcol(a; a
0), from the symmetry of the game. Given that the stage game is symmetric

and that the row or column positions are not important I simplify notation writing

g(a; a0) = grow(a; a0) = gcol(a0; a). Therefore g(a; a0) denotes the payo¤ for the player

that is playing a when the other is playing a0.

To minimax the other player the prescribed strategy ism = argmin
a2A

µ
max
a02A

g(a0; a)

¶
.

I normalize the payo¤s to have the minimax payo¤s, not g(m;m), equal to zero.6 If

both players play m, each obtains a payo¤ of gm = g(m;m). Since m may not

be the best response to m, it is the case that gm � 0. The maximum payo¤ that

can be obtained in the stage game is g = max
a;a02A

g(a; a0) and the minimum payo¤ is

g = min
a;a02A

g(a; a0). I assume that players can condition their actions on public ran-

domization devices, that is, they can play correlated strategies. De…ne 4(A2) as the

set of possible correlated strategies in the stage game. Abusing notations I denote an

element of that set for player i and j as (aij; aji) 2 4(A2).

Now I proceed to de…ne the set of feasible payo¤s of the random matching game.

I de…ne …rst the “play” of the stage game: the play of the stage game describes what

pro…le of actions would be played by each possible matching of players in each period,

that is play : pair£f0; 1; 2::::g ! 4(A2).7 The play indicates what should be played

by each possible pair in each period, for example atij denotes what i should play when

matched with j in period t. Therefore, the expected stage payo¤ for i in period t is

6 I assume for convenience that m is not a mixed action.

7 If there are N players the number of possible pairs is

0
@ N

2

1
A = N !

2¤(N¡2)! .

8



P
j 6=i
®ijg(a

t
ij; a

t
ji). If

¡
atij

¢
is the “play” for every period and ± is the discount factor,

the average expected payo¤ of player i is vi = (1¡ ±)
1P
t=0

±t
P
j 6=i
®ijg(atij; a

t
ji). Each play

de…nes an expected payo¤ for every player v = (v1; v2; :::; vN). Therefore the set of

feasible payo¤s are de…ned by the payo¤s that result from every possible play, denote

this set as V ½ <N .8

1.4 Perfect Information

In this section I consider societies in which it is possible for every member to observe

each other’s behavior. In this situation of perfect information, I show that if the agents

are su¢ciently patient, any feasible and individually rational outcome (v 2 V : v À 0)

can be supported by a social norm that is a subgame perfect equilibrium.

Theorem 1 (Folk theorem with perfect information) With perfect information any

feasible and individually rational payo¤ (v 2 V : v À 0) can be supported by a

subgame perfect equilibrium for ± large enough.

Proof. Consider the following social norm to support v: if no one has deviated

in the last T periods follow the “play” that yields v, if someone has deviated in the

last T periods, play m.

First I check that no player has incentives to deviate if no one deviated in the last

T periods. For player i the expected utility of conforming with the equilibrium is at

least (1 ¡ ±)g + ±vi while he would get at most (1 ¡ ±)g + ±vpi by deviating, where

vpi = (1 ¡ ±T )gm + ±
Tvi. Choose T so that, no matter the value of ±, ±T is always

8Note that the set of feasible payo¤s V is di¤erent from the set that arises in a two-player repeated

game or in a repeated random matching game with two groups with all the members of each group

receiving the same payo¤ as in Kandori [34] and Okuno-Fujiwara and Postlewaite [41]. In fact, the

set V has a di¤erent dimension in general.
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equal to some …xed number d 2 (0; 1). Then, given that vi > 0 ¸ gm, it is true that

vi > v
p
i independently of ±. Therefore for ± large enough it is true that (1¡±)g+±vi >

(1¡ ±)g + ±vpi .

Now I consider the incentives to deviate if someone has deviated in the last T

periods. In this case the incentives to deviate are the greatest when the future reward

for facing the present punishment is as far in the future as possible, that is when all

the players have to face T periods of punishment. If player i plays m, as the strategy

prescribes, he receives a payo¤ of vpi = (1¡ ±T )gm + ±Tvi. If he deviates he receives

at most ±vpi . Choosing ±T = d large enough for vpi to be positive (it is here that vi

strictly greater than zero is required), the player has no incentive to deviate during

the punishment stage for ± < 1.

Note that there is no contradiction in the requirements made on ± and T in the

two parts of the proof, as it is only required that ±T = d and ± are large enough.

The social norm used in the proof is a subgame perfect equilibrium given that

regardless of the history of the game no player has incentives to deviate. In particular

note that during the punishment stage no player has incentives to deviate since doing

so only restarts the punishment stage. Therefore all the members of the society

have incentives to enforce the social norm when someone deviates and, then, the

punishments are credible.

While it may seem that Theorem 1 is a consequence of Fudenberg and Maskin

[23] result for games with N players, this is not the case. While their results apply to

games in which N players play the same stage game in all periods, in this case players

may change partners every period. In addition, Theorem 1 can not be derived from

their results by de…ning “meta-actions,” that is functions from possible matches to

actions for each player, given that Fudemberg and Maskin [23] assumes observable

actions. However, by de…ning those “meta-actions” it can be shown that Theorem 1
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is a consequence of Fudenberg, Levine and Maskin [22] folk theorem under imperfect

public information. Nevertheless, the proof presented here has two advantages: one,

its simplicity, and two, the fact that the implicit lower bound on the discount factor

to support an individually rational and feasible outcome does not depend on the size

of the population as may be the case in Fudenberg, Levine and Maskin [22].

Note that during the punishment stage in the proof of Theorem 1 all the players

receive the same low payo¤ (gm) regardless of who has deviated. In this social norm,

then, all the players are punished for the deviation of one of the members. While

societies may use this kind of punishment schemes to reduce opportunistic behavior,

punishment schemes that only punish deviators seem to be more appealing.

De…nition 2 A social norm displays personal punishment9 if the prescribed actions

for two players who have not deviated in the past do not depend on the past actions

of the rest of the players.

In this way, under personal punishment, only the deviators can be punished. Of

course punishing may impose a cost to the player facing the deviator even under

personal punishment

But personal punishment introduces new problems to the design of social norms

that support a folk theorem. In fact, the social norm used in the proof of Theorem

1 may not be an equilibrium. Given the possible inequality of payo¤s with personal

punishment some players may have an expected payo¤ lower than gm during the

punishment stage, and therefore may have incentives not to punish, breaking in that

way the credibility of the social norm10.
9Personal punishment should not be confused with personal enforcement. Personal enforcement

means that cheaters are only punished by the player that was cheated, while personal punishment

means that only cheaters are punished.
10For example consider the case of the kingdom presented in the introduction but with personal

punishment instead: only the players that have deviated are punished. Imagine now that two of the
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Fortunately under some conditions it is possible to support any feasible and indi-

vidually rational payo¤ with social norms with personal punishment.

Assumption 1: 9 r 2 A such that g(m; r) > gm ¸ g(r;m) = g.

Under this assumption there is an action r that allows a deviator to “ask for

forgiveness” by taking the lowest possible payo¤ in the game g, and giving the punisher

a payo¤ higher than gm while playing m. As such, it is possible to create punishment

schemes in which the punisher earns a higher payo¤ than the deviator and in which

the deviator by refusing to take the punishment can at most obtain a payo¤ of zero.

This allows me to construct a social norm that ensures that players have incentives

to follow it even when some of the other players have deviated11. This assumption is

satis…ed, for example, by the prisoner’s dilemma game, in which m stands for d and

r stands for c.

Theorem 3 (Folk theorem with perfect information and personal punishment) Un-

der perfect information, Assumption 1 and personal punishment, any feasible and

individually rational payo¤ (v 2 V : v À 0) can be supported by a subgame perfect

equilibrium for ± large enough.

Proof. Consider the following social norm that yields v in equilibrium: if player

i meets player j and neither has been the last player to deviate in the last T periods,

they play (aij; aji) (which yields v in equilibrium); the last player to have deviated in

serfs have deviated and have to be punished for ¿ periods. In this case the third serf will earn zero

each time he meets with one of the other serfs and ¡2 each time that he meets with the king. Then,

he would get an expected payo¤ of ¡2
3 each period during the punishment stage. By deviating he

can get a zero payo¤ during T periods and, then, he may be willing to deviate just to avoid the

negative payo¤ he earns if he does not deviate.
11Without Assumption 1, Theorem 2 is still true under alternative conditions like uniform random

matching games and N large.
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the last T periods (simultaneous deviations are ignored) plays r and his match plays

m.

First, I check that no player has incentives to deviate if no one has deviated in the

last T periods. For player i the expected utility of conforming with the equilibrium is

at least (1¡ ±)g + ±vi while he would get at most (1¡ ±)g + ±vpi by deviating, where

vpi = (1 ¡ ±T )g (r;m) + ±Tvi. Choose T to have ±T = d 2 (0; 1). Then, given that

vi > 0 ¸ g (r;m), it is true that vi > vpi independently of ±. Therefore for ± large

enough it is true that (1¡ ±)g + ±vi > (1¡ ±)g + ±vpi .

Second, I consider the case in which player i has been the last player to deviate

in the last T periods. In this case the incentives to deviate for i are the greatest

when the future reward for taking the present punishment is as far in the future as

possible, that is when he has to face T periods of punishment. If player i plays r,

as the strategy prescribes, he receives a payo¤ of vpi = (1¡ ±T )g (r;m) + ±Tvi. If he

deviates he receives ±vpi at most. Choosing ±T = d large enough for vpi to be positive,

the player has no incentive to deviate during the punishment stage since ± < 1.

Third, I consider the case in which player j has been the last player to deviate in

the last T periods. In this case the incentives for i to deviate depend on the payo¤ for

i when meeting j when the latter has not deviated, say gij. If gij > g(m; r) it can be

easily shown that the incentives for i to deviate are higher when j has to be punished

for T periods. In this case, the expected utility of conforming with the equilibrium for

i is at least (1¡±)g+±v0i, where v0i = (1¡±T¡1)
¡
®ijg(m; r) + (1¡ ®ij)g

¢
+±T¡1vi, while

he would get at most (1¡ ±)g+ ±vpi by deviating, where vpi = (1¡ ±T )g (r;m) + ±Tvi.

Choose T to have ±T = d 2 (0; 1). Then, given that vi > 0 ¸ g (r;m) = g and

g(m; r) ¸ g (r;m), it is easy to see that v0i > vpi independently of ±. Therefore for

± large enough it is true that (1 ¡ ±)g + ±v0i > (1 ¡ ±)g + ±vpi . If on the contrary,

gij � g(m; r), the incentives for i to deviate are higher when j has not deviated. But
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we have already proven in the …rst part of the proof that in that case i does not want

to deviate.

Note that there is no contradiction in the requirements made on ± and T in the

di¤erent parts of the proof, as it is only required that ±T = d and ± are large enough.

As I mentioned before, with personal punishment a player, say player 1, may earn

a very low payo¤ during the punishment stage (it may be the case that the player

being punished, say player 2, is the only player that gives player 1 a positive payo¤

on the equilibrium path). Assumption 1 allows me to construct a social norm that

makes sure that by deviating during the punishment stage, player 1 can only reduce

his payo¤ even more and, then, has no incentives to deviate and the punishment is

credible.

The social norms used in the proofs of the former theorems, in which players

punish deviators since failing to do so is itself punished, resemble, in some ways,

the enforcement of castes in India. When describing marriage customs in India,

Akerlof [4] says: “The caste rules dictate not only the code of behavior, but also the

punishment for infractions: violators will be outcasted; furthermore, those who fail

to treat outcastes as dictated by caste code will themselves be outcasted.”

While perfect information may be plausible in a small community it will certainly

be implausible in a large one: it would be di¢cult for each player to know what every

other player has done in the past if the number of players is very large. Therefore,

Theorem 1 and 3 would not apply to the study of social norms and their impact on

cooperation and inequality in large communities. In the next section I study the out-

comes that can be supported by social norms under lower information requirements.
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1.5 Local information

Even though in particular cases it is possible to forestall opportunistic behavior with-

out the players having more information than their own experience, as the “contagious

equilibrium” in Kandori [34], in more general cases extra information is necessary to

provide the needed structure of punishments. In this section I assume that, in addition

to their own experience, players have access to a local information processing system

that gives players some information regarding their opponent’s past behavior. Fol-

lowing Okuno-Fujiwara and Postlewaite [41], the local information processing system

has the following structure: 1) in period t agent i has a “status” or “‡ag” zi(t) 2 Zi,

where Zi is a …nite set (without loss of generality I can assume that Zi ½ N+); 2) if

players i and j are matched in period t and play ai(t) and aj(t), the update of status

follows a transition mapping (zi(t + 1); zj(t + 1)) = ¿ ij (ai(t); aj(t); zi(t); zj(t)); 3) if

at time t player i is matched with player j, the former only knows his own history

and (zi(t); zj(t)).

Based on the local information processing system, a social norm prescribes the

behavior for each player as a function of his past history, his status and the status of

the matched player. I show that any feasible and individually rational outcome can

be supported by a social norm in equilibrium.

Theorem 4 (Folk theorem with local information): With local information any fea-

sible and individually rational payo¤ (v 2 V : v À 0) can be supported by a sequential

equilibrium for ± large enough.

Proof. Consider the following social norm that yields v in equilibrium: if player

i meets player j, and both are “nice” (zi = zj = 0), they play (aij; aji) (which yields

v in equilibrium); if any of the two is “guilty” (zi 6= 0 or zj 6= 0) they both play m.

The local information system, which assigns the “nice” and “guilty” labels, works as
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follows: if a nice player conforms he keeps the z = 0 ‡ag; if a nice player meets a guilty

player with z = ¿ , he gets the ¿ ¡ 1 ‡ag next period; if a player deviates, he and his

match get a ‡ag z = T ; if a guilty player conforms, he has the ‡ag reduced one unit.

Hence, zi = 0 denotes that i has not deviated, has not seen a deviation in the last

T periods and has not met someone (that met someone that met someone....) that

deviated in the last T periods. Instead, zi > 0 denotes that i has deviated in the last

T periods or is aware that someone has deviated in the last T periods. Summarizing,

the social norm is:

si(t) =

8
><
>:
aij if zi(t) = zj(t) = 0

m if zi(t) or zj(t) 6= 0
and

zi(t+ 1) =

8
>>>><
>>>>:

T if ai(t) 6= si(t) or aj(t) 6= sj(t)

¿ ¡ 1 if maxfzi(t); zj(t)g = ¿ and ai;j(t) = si;j(t)

0 if zi;j(t) = 0 and ai;j(t) = si;j(t)

To prove that this social norm is a sequential equilibrium I show that no player

has incentives to deviate in any possible information set if he believes the rest of

the players will follow the social norm. I assume that outside the equilibrium path

players believe that there are no more “guilty” players than those they have evidence

there are. That is, if player i has been matched with player j with zj = ¿ > 0, and

no other guilty player, he believes that there are no more players with “guilty” ‡ags

than those that played with j in the last T + 1 ¡ ¿ periods (that is, all the players

that have been matched with j when j obtained a “guilty” ‡ag or after). It is easy

to see that this beliefs are consistent (as de…ned in Kreps and Wilson [37]): if the

probabilities of trembles are converging to zero the probability that other deviations

happened (besides the ones observed by the player) also converges to zero.

Next I check that in every information node no player has incentives to deviate.

First consider the case in which player i has the zi = 0 ‡ag (he has not deviated and
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he has not seen a deviation or a “guilty” ‡ag in the last T periods. Then he believes

that all players have “nice” ‡ags. In this situation the player i expects to earn at

least (1 ¡ ±)g + ±vi by conforming, and at most (1 ¡ ±)g + ±vpi by deviating, where

vpi = (1¡ ±T )gm+ ±Tvi. Choose T to have ±T = d 2 (0; 1). Then, given that vi > gm,

it is true that vi > v
p
i independently of ±. Therefore for ± large enough it is true that

(1¡ ±)g + ±vi > (1¡ ±)g + ±vpi .

Second consider the case in which player i has the zi = ¿ ‡ag. This could be

because either i has deviated in the past or because he has been matched with someone

with a guilty ‡ag. Then, player i believes that in ¿ periods all players will be nice

and he will earn vi every period. The incentives for i to deviate and try to avoid the

punishment are larger the farther away the end of the punishment phase is, that is

when ¿ = T . In this case i obtains (1¡ ±T )gm+ ±Tvi = vpi by conforming, and ±vpi by

deviating. Given vi > 0, I can choose ±T = d large enough for vpi to be positive and,

then, he has no incentive to deviate during the punishment stage since ± < 1.

Third consider the case of a player i with zi = 0 who is matched with a player

j with zj = ¿ . The analysis of this case coincides with the case above and i has no

incentives to deviate.

Note that there is no contradiction in the requirements made on ± and T in the

di¤erent parts of the proof, as it is only required that ±T = d and ± are large enough.

Note that any player that deviates, sees a deviation or knows that a deviation

occurred will be punished as the deviator until the end of the punishment stage. In

this way, when a player knows that there has been a deviation his incentives to enforce

the social norm do not depend on who has deviated. Whoever has deviated, once

out-of-the-path beliefs are speci…ed, it is easy to check that every player will enforce

the punishment. The lack of personal punishment in this social norm allows me to
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prove the folk theorem without restrictions on the stage game. A similar social norm

could be used to proof Theorem 2 of Kandori [34] without the restriction imposed in

that paper on the stage game.

But the social norm in the proof of Theorem 4 may be criticized, precisely, because

not only the deviator is punished. The next result shows that with local information

and Assumption 1 any feasible and strictly individually rational outcome can be

supported in a sequential equilibrium with personal punishment.

Theorem 5 (Folk theorem with local information and personal punishment) Under

local information, Assumption 1 and personal punishment any feasible and individu-

ally rational payo¤ (v 2 V : v À 0) can be supported by a sequential equilibrium for

± large enough.

Proof. In Appendix.

The local information systems needed in the previous two proofs in this section are

“simple”, in the sense that the number of ‡ags needed is …nite and does not increase

with time or the number of deviations. Since the punishment stage consists of T

periods an information mechanism with at least T +1 ‡ags per player is needed: one

for each period of punishment and one for when the player is not in the punishment

stage.

While the number of ‡ags needed in Theorem 4 and 5 is …nite, it can be very

large. A way to drastically reduce the number of needed ‡ags is to allow for a

random transition rule of ‡ags. In that case we can have two types of ‡ags per

player: guilty and nice, and,every period, all the guilty players that have conformed

with the punishment are forgiven with probability p 2 (0; 1) and they become nice. In

this way, p can be use to establish the severity of punishment, as T was doing before,

with the need of only two ‡ags per player. Random forgiveness eliminates the need of
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counting the number of periods of punishment. As the next proposition shows, under

Assumption 1 and personal punishment, any payo¤ vector that is strictly individually

rational and feasible can be supported by a sequential equilibrium with only two ‡ags

(nice and guilty) if a random transition rule is allowed.

Proposition 6 (Folk theorem with local information, personal punishment and ran-

dom transition rule) Under local information processing, Assumption 1, personal

punishment and random transition rule, any feasible and individually rational pay-

o¤ (v 2 V : v À 0) can be supported by a sequential equilibrium for ± large enough.

Proof. In Appendix.

The equilibria described in this paper present some characteristics that are worth

mentioning. First, in the equilibria in this section, the best response of any player in

any situation depends only on his own and his match’s ‡ags. Any other information

that players may have is irrelevant for making decisions: the best response is to follow

the social norm, which tells players what to do under every combination of ‡ags. In

this way, the ‡ags are su¢cient statistics for the players decision making since they

summarize all the relevant information.12

Second, the long run behavior of the community is not a¤ected by any …nite

sequence of deviations. Contrary to some proofs of the Folk Theorem for N players13,

if there have been deviations the prescribed actions revert to the original ones after

T periods of punishment in the equilibria of this paper. Hence, the actions on the

equilibrium path are globally stable: regardless of how many deviations have been up

today, in the future the play of the game will return to the equilibrium play. This

property is of special importance when studying societies with a large number of

members. If a single deviation may take the community out of the equilibrium path

12This property of equilibria is called “straightforward” in Kandori [34].
13See Theorem 2 in Fudenberg and Maskin [23] or Theorem 1 in Abreu, Dutta and Smith [2].
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for ever, it would be di¢cult to observe the equilibrium behavior in a large community

in which each member has a small probability of making mistakes.

Third, the equilibria described in this paper are robust to small perturbations of

the payo¤s matrix of the stage game (of course this perturbations can not violate

Assumption 1 in the cases in which this assumption is needed). Given that in the

proofs of this paper all the inequalities are strict, if a social norm is an equilibrium

under a given payo¤ matrix, it will also be an equilibrium with a payo¤ matrix that

is arbitrarily close to the original one. Therefore, the equilibria presented here do not

depend on a precise characterization of the players payo¤s.

1.6 Conclusions

This paper analyzes the outcomes that can be supported by social norms in a society

of in…nitely long-lived and very patient agents that are randomly matched in pairs

every period to play a given game. Unlike previous work that considered a society

divided in two groups and all the members of each group receiving the same payo¤,

I only restrict this matching procedure to be independent of history and time. I

…nd that any feasible and individually rational outcome can be supported by a self-

enforcing social norm under both perfect information and a simple local information

system. I also …nd that the same result holds, under some restrictions on the stage

game, if the social norms can only punish deviators.

To show the richness of the equilibria analyzed in this paper I present here several

outcomes that can be supported in equilibrium by social norms in a simple community.

I consider a community of ten members that are matched uniformly to play the

following prisoner’s dilemma:
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c d

c 2 , 2 -1 , 4

d 4 , -1 0 , 0
I present …rst a society in which social norms support an equal and e¢cient out-

come.

Optimal egalitarian society: In equilibrium all the players play c and receive

a payo¤ of 2. This outcome is feasible and individually rational and, hence, can be

supported by a self-enforcing social norm under either perfect information or local

information. Therefore, a social norm, with its promise of punishment to deviators

(and the consequent inequality under personal punishment) can support an egalitarian

outcome that pareto dominates the ine¢cient egalitarian equilibrium of the one shot

game.

But the results in this paper explain not only how social norms can provide in-

centives to curtail opportunistic behavior and support cooperation in a community,

but also how they can support outcomes characterized by inequality as the next two

examples illustrate.

Kingdom: As in the example in the Introduction, consider a society in which

in equilibrium one player, the “king”, always plays d and the rest of the players,

the “serfs”, play c. In equilibrium the king receives a payo¤ of 4 and each of the

serfs receive 5
3 . This outcome is feasible and, since both payo¤s are positive, it is also

individually rational and, then, can be supported by a self-enforcing social norm under

either perfect information or local information. The king gets the maximum payo¤ of

the game since each serf prefers to be exploited by the king instead of rebelling and

su¤ering the future punishment.

Caste (or Class) society: Consider a society divided in three castes: one player

belongs to the high caste and in equilibrium he always plays d; three players belong
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to the middle caste and they play c when matched with a member of the same of

higher cast and d otherwise; and the remaining six players belong to the lower cast

and they always play c in equilibrium. Then, the high caste member receives 4, the

middle cast members receive 3 and the low caste members receive 2
3
. This outcome

is feasible and individually rational and, then, can be supported by a self-enforcing

social norm under either perfect information or local information.

These examples show that social norms can support unequal outcomes even when

all the members of the community are basically equal. While in these examples

the division of members among the di¤erent groups is arbitrary, in reality it may

correspond to di¤erences in race, religion or gender. In this way, the results in this

paper show how self-enforcing social norms may perpetuate discrimination among

members of society even when all of them are intrinsically equal. These results show

that discrimination and inequality can exist even when there are no di¤erences in

human capital or productivity and no taste for discrimination.
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2 Tacit Collusion under Interest Rate Fluctuations

2.1 Introduction

It is well known that oligopolies can use the threat of future price wars to sustain

prices above competitive levels if …rms care enough about the future (Friedman [19]).

The extent to which …rms care about the future depends primarily on the interest rate

if the …rms’ objective is to maximize the present value of pro…ts. The …rms’ discount

factor may also depend on other (secondary) forces such as the probability that the

product may become obsolete. Given that the interest rate and other variables that

a¤ect the discount factor are constantly changing, it is important to study tacit

collusion under discount factor ‡uctuations.

I characterize collusive prices and pro…ts when the discount factor changes over

time, under both price and quantity competition, and I show that collusive prices

and pro…ts increase with both present and future levels of the discount factor, but

decrease with its volatility. These results have important implications not only for

the study of collusion but also for repeated game theory in general.

Repeated game theory has until now largely considered the discount factor as

a …xed preference parameter14. Oligopoly games are one example among many of

an environment in which it is natural to assume that the discount factor changes

over time. Another example would be exogenous changes in the probability that a

partnership might end. Thus, the volatility of the discount factor may be an important

determinant of cooperation for many kinds of repeated games, not just oligopoly.

With respect to the study of collusion, previous literature has looked at the e¤ect

of demand ‡uctuations on prices, but not discount factor ‡uctuations. In a seminal

14The exception is Baye and Jansen [9] that provides folk theorem results for repeated games with

stochastic discount factors.
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paper, Rotemberg and Saloner [46] show that collusive prices may be countercyclical.

In this paper, I not only introduce the role of volatility to the repeated game theory

literature but I also show that under discount factor ‡uctuations the results are

less ambiguous and more robust than under demand ‡uctuations. This paper also

presents several new comparative static results that can be used in empirical studies

of collusive pricing. In addition, this paper underscores the role of interest rates and

imperfect competition in aggregate ‡uctuations. Any change in policy, technology or

preferences that a¤ects the real interest rate (either in level or volatility) may have

an impact on aggregate production through changes in collusive behavior.

The environments I study and the speci…c results I …nd are as follows. I consider

…rst the case in which the discount factor, identical for all …rms, is randomly and

independently drawn every period. I characterize the maximum symmetric tacit

collusion prices and pro…ts that can be supported in an environment in which …rms

are identical and they compete repeatedly on either price or quantity. The three main

results derived from this characterization, with the third one the most interesting, are

as follows.

First, the higher the discount factor in a given period, the higher the collusive

prices and pro…ts that can be supported in equilibrium in that period. The intuition

behind this is straightforward: the higher the discount factor, the stronger the threat

of future price wars and the higher prices and pro…ts can be without …rms deviating.

Second, the greater the probability of high discount factors, the higher the col-

lusive prices and pro…ts that can be supported in equilibrium. Again the intuition

is straightforward. From the …rst result we know that the higher the realization of

the discount factor, the higher collusive prices and pro…ts will be. Hence, a shift in

the distribution function to higher discount factors would result in an increase in the

expected value of collusive pro…ts and an increase in the threat of future punishment,
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allowing higher equilibrium prices and pro…ts.

Third and more interestingly, I show that the higher the volatility of the discount

factor, the lower the collusive prices and pro…ts that can be supported in equilibrium.

The reason for this is twofold. First, given that the combination of the incentive

compatibility and feasibility constraint results in a concave collusive pro…t function

(as a function of the discount factor), an increase in volatility leads to a decrease in

expected pro…ts. Second, this decrease in expected pro…ts reduces the size of future

punishment and hence results in a decrease in equilibrium pro…ts and prices. This

volatility e¤ect is not secondary to the …rst two level e¤ects. I show that it plays an

important role in determining collusive prices and pro…ts.

It is important to note that allowing for the more realistic case of positively

correlated discount factors will not a¤ect the main results per se, given that both

a high discount factor today and in the future make it easy to support collusion.

Two other results of this paper are worth noting. First, I show that under quan-

tity competition the optimal symmetric punishment has a simple stick-and-carrot

characterization (the punishment takes only one period and is as big as possible in

equilibrium), extending the results of Abreu [1] from the …xed discount factor case.

Second, I show that under price competition an increase in the number of …rms

reduces collusive prices and pro…ts. The reason is that the greater the number of

…rms the greater the share of the market that can be captured by a deviation, and,

hence, the lower equilibrium pro…ts and prices must be to avoid deviations. In the

case of quantity competition, more work is needed to assess the validity of this result,

since not only do the incentives to deviate change with the number of …rms, but so

may the threat of future punishment.15

15To my knowledge, the e¤ect of the number of …rms on tacit collusive prices under quantity

competition remains to be solved also for the case of …xed discount factors.
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The rest of the paper is organized as follows. In Section 2, I relate this paper to

the previous literature. In Sections 3 and 4, I study optimal tacit collusion under

price and quantity competition, respectively. In Section 5, I analyze some extensions

to the basic model. In Section 6, I conclude.

2.2 Related literature

The related literature falls into six categories: 1) studies of the e¤ects of demand

‡uctuations on optimal tacit collusion, 2) customer markets and oligopolistic pric-

ing, 3) empirical studies of collusive pricing, 4) studies of the role of oligopolies in

macroeconomic ‡uctuations, 5) studies of optimal punishment schemes under quan-

tity competition, and 6) repeated games with …xed discount factors.

Demand ‡uctuations and optimal tacit collusion: The well known paper by Rotem-

berg and Saloner [46] o¤ers interesting results with respect to tacit collusion that also

follow from changes in the relative importance of present and future pro…ts. In their

paper, however, those changes are driven by changes in demand, not the discount fac-

tor. This di¤erence in the source of the changes in the relative importance of future

and present pro…ts is not trivial and leads to signi…cantly di¤erent results.

First, in this paper an increase in the discount factor always has a nonnegative

e¤ect on the equilibrium price, while in Rotemberg and Saloner [46] an increase in

demand may result in either an increase or a decrease in price. In their model, the

threat of a future price war, which depends on the expectation of future equilibrium

pro…ts, results in an upper bound to equilibrium collusive pro…ts. Hence, at this

upper bound on pro…ts, increases in demand do not result in increases in pro…ts but

a decrease in prices. If instead the demand is so low that the upper bound to pro…ts is

not binding, a small increase in demand will result in an increase in prices. In addition,

contrary to discount factor ‡uctuations, the e¤ect of demand ‡uctuations on prices
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may not be robust to assuming quantity competition instead of price competition,

as Rotemberg and Saloner [46] note, or to the existence of capacity constraints, as

Staiger and Wolak [53] note.

Second, while in this paper an increase in the volatility of the discount factor

always results in a decrease in pro…ts and prices, in Rotemberg and Saloner’s model

an increase in the volatility of demand is again ambiguous -it may result in an increase

in pro…ts and prices.16 Therefore, in contrast to ‡uctuating demand, changes in the

level or volatility of the discount factor have unambiguous e¤ects.

The third di¤erence between the two models lies in the e¤ect that present and

future shocks have on collusive prices. In Rotemberg and Saloner’s model, a high

demand today makes it di¢cult to support collusion since it o¤ers greater incentives

to deviate, while a high demand in future periods makes it easy to collude today given

that a future price war becomes a bigger threat. In contrast, in this model both high

discount factors today and in the future make it easy to support collusion given that

both increase the threat of future punishment.

The di¤erent e¤ects that present and future levels of demand have on collusive

pricing in Rotemberg and Saloner [46] led to several studies of whether their results

were robust to correlation on demand shocks. Kandori [33] …nds conditions under

which demand correlation does not a¤ect the result of countercyclical collusive pric-

ing. Haltiwanger and Harrington [28] study tacit collusion under deterministic cyclic

‡uctuations of demand and …nd that higher collusive prices can be supported when

demand is increasing than when it is decreasing. Bagwell and Staiger [8] study tacit

collusion when demand shifts stochastically between high and low growth rates and

16Rotemberg and Saloner [46] do not provide this comparative static result but straightforward

examples can be obtained from their model. In their model the pro…t function may be convex in

the ‡uctuating parameter so that an increase in volatility increases the expected pro…ts and moves

up the incentive compatibility constraint.
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…nd that collusive prices are higher for high rates of demand growth if demand growth

rates are positively correlated through time.

Under discount factor ‡uctuations, the issue of positive correlation is less impor-

tant than under demand ‡uctuations, given that both high discount factors today

and in the future increase today’s collusive prices. However, I show that the discount

factor volatility may be important in understanding how more general discount factor

‡uctuations a¤ect the basic results.

Customer markets and oligopolistic pricing: There are other environments in

which changes in the discount factor may a¤ect oligopoly prices. In models of cus-

tomer markets, as in Phelps and Winter [43] and Gottfries [27], and models of com-

petition when consumers have switching costs, as in Klemperer [35] and Chevalier

and Scharfstein [14], …rms face a trade-o¤ between charging high prices to extract

the surplus from current customers and charging low prices to attract new customers

(whose surplus can be extracted later). In these models an increase in the discount

factor increases the incentives to invest in new customers and results in lower prices,

as Rotemberg and Woodford’s [47] and Klemperer [35] note. In contrast, in the model

of tacit collusion presented here, an increase in the discount factor results in higher

prices. The higher the discount factor, the stronger the threat of future price wars

and the higher the prices that can be supported in equilibrium.

Empirical literature on collusive pricing: Based on the frameworks established by

Rotemberg and Saloner [46] or Porter [44] and Green and Porter [24], there is an

extensive literature that concentrates on changes in demand as sources of changes in

collusive pricing. Those papers do not include the interest rate in their studies, see

for example Porter [45], Domowitz, Hubbard and Petersen [16], Slade [51], Ellison

[17] and Borenstein and Shepard [10].17 An exception can be found in Rotemberg

17For a review of empirical studies up to the 1980s see Bresnahan [11].

28



and Woodford’s [47] study of markups and the economic cycle. Working with aggre-

gate log-linearized data around the steady state of an intertemporal macroeconomics

model, they use rates of return to “instrument” for the …rm’s expectations of future

pro…ts and …nd that high interest rates result in low markups. In this paper I present

additional comparative static results arising from interest rate movements that may

be used in empirical studies of collusive pricing.

Collusive pricing and macroeconomic ‡uctuations: Previous literature has related

tacit collusive pricing with macroeconomic ‡uctuations. For example, Rotemberg and

Saloner [46] present a simple two-sector general equilibrium model in which one sector

is oligopolistic and the other one is perfectly competitive. They show that exogenous

shifts in demand towards the oligopolistic sector induce a decrease in collusive prices

(since it increases the short run incentives to deviate) and may result in an increase

in aggregate production. Rotemberg and Woodford [48] present a real business cycle

model with tacitly colluding oligopolistic producers. In their model, an increase in

government expenditure raises the short run incentives to deviate and results in a

decrease in collusive prices. This, in turn, increases real wages, employment and out-

put. In addition, the authors note that the increase in government expenditure may

result in an increase in interest rates (since consumers must postpone consumption),

which reinforces the …rst e¤ect by lowering the threat of future punishments.

In this paper I present another way in which tacit collusion may result in aggregate

‡uctuations. Any change in policy, technology or preferences may have an impact on

aggregate production through changes in collusive behavior, not only by a¤ecting the

real interest rate level, but also by a¤ecting its volatility.

Optimal punishment schemes under quantity competition: Abreu [1] provides a

simple stick-and-carrot characterization of optimal symmetric punishments for a …xed

discount factor under quantity competition: “...the most e¢cient way to provide low
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payo¤s, in terms of incentives to cheat, is to combine a grim present with a credibly

rosy future.”18 In this paper I show that the stick-and-carrot characterization extends

to the case of discount factor ‡uctuations, with both the size of the stick and the size

of the carrot depending on the realization of the discount factor.

The level e¤ect and repeated games with …xed discount factors: It is well known

that, for repeated games with …xed discount factors, the higher the discount factor,

the bigger the set of equilibrium outcomes will be (see for example, Abreu, et al. [3]).

In this paper I show that under discount factor ‡uctuations it is not only the level of

the discount factor that matters, but also its volatility.

2.3 Price competition

Consider a market withN identical …rms with a constant marginal cost of c and facing

a demand function D(p) (D0(p) < 0). Firms compete repeatedly on price and the

demand is divided equally among the …rms charging the lowest price in each period.

Firms only care about pro…ts and are risk neutral and, hence, their objective is to

maximize the discounted stream of pro…ts. The distinctive feature of this model is

that the discount factor ±t, which discounts earnings from t+ 1 to t, is a continuous,

independent and identically distributed random variable, between a and b, with p.d.f.

f(±t) and c.d.f. F (±t).

The timing of the game in a given period t is as follows: the …rms observe the real-

ization of the discount factor, ±t, then they choose the price for that period and …nally

they observe the market clearing price, quantities and payo¤s. All the characteristics

of the environment are common knowledge.

Given that …rms cannot commit to charge a given price or sign contracts amongst

themselves or with third parties regarding prices, any equilibrium of the model must

18Abreu [1], pg. 206.
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be a subgame perfect equilibrium of the in…nitely repeated oligopoly game. I restrict

my attention to equilibria in which all the …rms charge the same price p. In this

symmetric case, I can write the pro…ts of each …rm as ¼(p) = (p¡c)D(p)
N

and total

industry pro…ts as ¦(±) = (p ¡ c)D(p). I assume that there exists a price pm that

maximizes the total industry pro…ts, that is, pm is the monopoly (or perfect collusion)

price. Denote ¼m = ¼(pm) as the monopoly pro…t per …rm.

2.3.1 Optimal tacit collusion with a random discount factor

It is well known that in repeated oligopoly games, prices above the marginal cost

can be supported in equilibrium if any price undercutting triggers future price wars.

In the case of price competition, the best price war, in terms of punishment, is the

reversion forever to the Bertrand equilibrium after any deviation. This punishment

gives a discounted payo¤ of zero. Any other punishments that would result in a lower

payo¤ are not enforceable given that any …rm can make sure to earn zero pro…ts by

charging a price equal to the marginal cost in every period.

Given this punishment, I look for symmetric optimal tacit collusion strategies -

strategies without price di¤erences among …rms and that in equilibrium support the

maximum present value of pro…ts. Since the environment in which the …rms interact

does not change over time, with the exception of the discount factor, the optimal

tacit collusion solution will consist of the highest equilibrium price that the …rms can

charge in a period given the discount factor in that period. Therefore the solution

will consist of a function p¤(±) : [a; b] ! [c; pm] which gives the highest equilibrium

price that can be supported for each discount factor. This in turn de…nes a function

¼¤(±) : [a; b] ! [0; ¼m], which denotes the optimal tacit collusion equilibrium pro…ts

as a function of the period discount factor.

Fortunately, in the search for the optimal tacit collusion behavior it is enough
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Figure 1: The pro…t function

to work with ¼¤(±). As we see in Figure 1, a given level of pro…ts, for example

¼1, can result from di¤erent prices, such as p1 and p2. Given that I am interested

in the optimal levels of pro…ts that can be supported under tacit collusion and the

fact that ¼1 may be supported more easily by p1 than by p2,19 I only consider the

increasing part of the pro…t function. In this way, for every pro…t lower than ¼m

corresponds one and only one price lower than pm. Therefore, I can de…ne the function

Á(¼) = ¼¡1(¼) : [0; ¼m] ! [c; pm], and once I solve for ¼¤(±), I can recover p¤(±) as

p¤(±) = Á(¼¤(±)). Note that Á(¼) is increasing on ¼.20

Given the simplicity of the optimal punishment (reversion to Bertrand) and the

fact that we are able to uniquely relate pro…ts to prices, I concentrate on the charac-

19As it will be clear soon, ¼1 can be supported more easily by p1 than by p2 since the optimal

deviation from p1 yields N¼(p1) which is lower than N¼(pm) which can be obtain deviating from

p2.
20For simplicity, I will assume for the rest of the section that Á(¼) is di¤erentiable and, hence,

Á0(¼) > 0:
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terization of the equilibrium optimal tacit collusion pro…ts ¼¤(±) without relying on

the strategies that result in that equilibrium path. I study next the restriction on

collusive pro…ts for then characterizing the optimal tacit collusion solution.

Using the recursiveness of the problem, the present value at t of a …rm stream of

pro…ts can be written as:

V (±t) = ¼(±t) + ±t

bZ

a

V (±t+1)f(±t+1)d±t+1 (1)

where ¼(±t) denotes the pro…ts that the …rms receive at time t if the discount

factor is ±t. Integrating over equation 1 and rearranging we have
bR
a

V (±t)f (±t)d±t =

1
1¡±

bR
a

¼(±t)f(±t)d±t, where ± is the expected value of ±t. Plugging this into (1), the

present value of pro…ts can be written as:

V (±t) = ¼(±t) +
±t

1¡ ±

bZ

a

¼(±t+1)f(±t+1)d±t+1 (2)

Since these …rms cannot commit to a given price, in equilibrium they must be

unwilling to charge a price di¤erent from the equilibrium price. How much can a

…rm gain from deviating? If all the …rms are charging the same price above marginal

cost, a single company can decrease its price by a penny and capture the whole

market. Therefore, if the equilibrium pro…t is ¼(±t), a single company can gain

(N ¡ 1)¼(±t) by deviating (if we forget about pennies). For …rms to be unwilling

to deviate, punishment must follow a deviation. How much can a …rm lose from

being punished? As described before, the best punishment is to revert forever to

the Bertrand equilibrium (the Nash equilibrium of the one stage game). Under this

threat if one …rm deviates it will earn the total industry pro…t the period of deviation

but then it will earn zero pro…ts forever. Then, for no …rm to have an incentive to
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deviate, the following must hold:

¼(±t) � ±t

(N ¡ 1)
¡
1¡ ±

¢
bZ

a

¼(±t+1)f (±t+1)d±t+18±t (3)

In addition, the pro…ts per …rm cannot be greater than under monopoly pricing:

¼(±t) � ¼m (4)

Therefore it is clear that under the optimal symmetric tacit collusion equilibrium …rms

will choose pro…ts as large as possible without violating the incentive compatibility

constraint (3) and the feasibility constraint (4).21 Then, dropping the subindexes for

simplicity, the optimal tacit collusion pro…ts levels ¼¤(±) is a function from [a; b] to

[0; ¼m] subject to the following equation:

¼¤(±) = min

8
<
:

±

(N ¡ 1)
¡
1¡ ±

¢
bZ

a

¼¤(±0)f(±0)d±0; ¼m

9
=
;8± (5)

Note that this equation does not provide the optimal tacit collusion pro…ts since ¼¤(±)

appears in both sides of it. Equation (5) is just a necessary condition for optimal tacit

collusion. In fact, choosing pro…ts equal to zero for every discount factor solves this

equation. From the possible many solution to equation (5), the one that provides the

highest pro…t for each discount factor is the optimal tacit collusion solution: ¼¤(±).

The following proposition fully characterizes the function ¼¤(±).

Proposition 7 The function ¼¤(±) depends on f(±) and N in the following way:

1) if ± ¸ 1¡ a
N¡1 , ¼

¤(±) = ¼m;

21 It could be argued that that is not necessary since having pro…ts lower than possible in a …nite

subset does not a¤ect the expected value. But if we want the solution to be independent of the

discount factor of the …rst period, pro…ts must be as high as possible for every possible value of the

discount factor.
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2) if N¡1
N

� ± < 1¡ a
N¡1 , ¼

¤(±) = ¼m for ± ¸ b± and ¼¤(±) = ±
b±¼

m for ± < b±, for a

number b± 2 (a; b] that solves the following equation: b± = (N ¡ 1)(1¡ ±) +
b±R
a

F (±)d±;

3) if ± < N¡1
N

, ¼¤(±) = 0.

Proof. Case 1): ± ¸ 1¡ a
N¡1 implies that ¼m � a

(N¡1)(1¡±)
¼m � ±

(N¡1)(1¡±)
¼m 8±

and perfect collusion, ¼¤(±) = ¼m, can be supported for every discount factor.

Case 2): Consider the case in which the two terms inside the brackets in equation

(5) are binding for di¤erent ranges of ±. Given that the …rst term is increasing in ±,

it would be binding for ± < b±, the second term would be binding for ± > b±, and both

terms equal and binding for ± = b±, where b± 2 [a; b]. In this case, integrating over

equation (5) and denoting the expected pro…t as A:

A =

b±Z

a

±

(N ¡ 1)
¡
1¡ ±

¢Af(±)d± +
³
1¡ F

³
b±
´´
¼m

In addition, given that for ± = b± both terms of equation (5) are equal, the expected

pro…t can be also written as:

A =
¼m (N ¡ 1)

¡
1¡ ±

¢

b±

Combining these two equations and by the fact that (integrating by parts)
sR
a

±f(±)d± =

sF (s)¡
sR
a

F (±)d±, the number b± solves the following equation:

b± = (N ¡ 1)
¡
1¡ ±

¢
+

b±Z

a

F (±)d± (6)

It remains to be shown that, under the conditions of case 2), the number b± that solves

equation (6) exists and is unique. Write H(r) = (N ¡ 1)
¡
1¡ ±

¢
+

rR
a

F (±)d±¡r. Then

H
³
b±
´
= 0. If N¡1

N
< ± < 1¡ a

N¡1 , it can be easily seen that H(a) = (N ¡ 1)
¡
1¡ ±

¢
¡

a > 0 andH(b) = (N ¡ 1)
¡
1¡ ±

¢
¡± < 0. In addition,H(r) is continuous and strictly
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decreasing (@H(r)@r = F (r)¡ 1 < 0 for a � r < b). Then, there exists a unique number

b±, between a and b, that makes H
³
b±
´
= 0. If ± = N¡1

N , H(b) = 0 and b± = b is the

unique solution since H(:) is strictly decreasing.

Case 3): From the analysis of the previous two cases follows that when ± <

min
©
N¡1
N
; 1¡ a

N¡1
ª

neither a solution with perfect collusion for all or some discount

factors is feasible, nor a solution with imperfect collusion is feasible. Then, the only

possible solution to equation (5) is ¼¤(±) = 0. Since N¡1
N

can be greater than 1¡ a
N¡1

only if a > N¡1
N

, in which case ± can never be lower than N¡1
N

, it follows that ¼¤(±) = 0

if ± < N¡1
N

.

Proposition 1 shows that, depending on the distribution of the discount factor

and the number of …rms, there are three mutually exclusive cases that result in three

di¤erent types of optimal tacit collusion. In case 1), ± ¸ 1 ¡ a
N¡1 , any possible

realization of the discount factor is high enough for each …rm to value the future

monopoly pro…ts more than the one stage pro…ts of deviation, and, hence, perfect

collusion is an equilibrium for any discount factor. On the contrary, in case 3),

± < N¡1
N

, all the realizations of the discount factor are too low to be able to support

any level of collusion. In between these two cases, case 2), perfect collusion can be

supported for a range of high realizations of the discount factor while only lower levels

of pro…ts can be supported for a range of low realizations. The reason for this is that

while for low discount factors it is not possible to support full collusion, it may still

be possible to satisfy the incentive compatibility constraint by reducing the present

incentives to deviate. For this, the present pro…ts should be lowered so that no …rm

has an incentive to deviate. In this case, an increase in the discount factor results in

an increase in the optimal tacit collusion pro…ts and, hence, in prices. Given that in

the other two cases changes in the discount factor have no e¤ect on pro…ts, the next

theorem follows.
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Theorem 8 d¼¤(±)
d± ¸ 0 and dp¤(±)

d± ¸ 0.22

Note that the characterization of optimal tacit collusion under discount factor

‡uctuations includes the case of a …xed discount factor. For the …xed discount factor

case, a = b, Proposition 1 coincides with the text book solution: perfect collusion if

± ¸ N¡1
N and no collusion otherwise.

2.3.2 The e¤ects of changes in f(±)

The characterization of the optimal tacit collusion equilibrium leads to interesting

comparative statics results with respect to changes in the distribution function of the

discount factor: 1) the higher the probability of high discount factors, the higher the

equilibrium prices and pro…ts, and 2) the higher the volatility of the discount factor,

the lower the equilibrium prices and pro…ts.

As an intermediate step to these results, I study …rst how changes in the distri-

bution function modify the range of perfect collusion under case 2) of Proposition 1.

For a cumulative distributions functions F de…ne ±F as the expected discount factor

and b±F as the solution limit to perfect collusion if case 2) applies.

Lemma 9 Consider two cumulative distributions functions, F and G, such that

N¡1
N
< ±F;G < 1¡ a

N¡1 and F second-order stochastically dominates23 G, then b±F � b±G.

Proof. From the de…nition of b±F : HF
³
b±F

´
= (N ¡ 1)

¡
1¡ ±F

¢
+

b±FR
a

F (±)d± ¡

b±F = 0. By second-order stochastic dominance
b±FR
a

F (±)d± �
b±FR
a

G(±)d± and ±F ¸ ±G.

22 I omit straightforward proofs.
23For two cumulative distributions functions F (±) and G(±), F second-order stochastic dominates

G if for any r, a � r � b,
rR
a

F (±)d± �
rR
a

G(±)d±, and the inequality is strict in some range. In that

case, it can be proven that ±F ¸ ±G and
bR

a

u(±)f(±)d± ¸
bR

a

u(±)g(±)d±, for any increasing concave

twice-piecewise-di¤erentiable function u(±). See Hirshleifer and Riley [29].
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Therefore, HG
³
b±F

´
= (N ¡ 1)

¡
1¡ ±G

¢
+

b±FR
a

G(±)d± ¡ b±F ¸ 0 and, given that HG(:)

is strictly decreasing and the conditions on ±G, there exists b±G 2
³
b±F ; b

´
such that

HG

³
b±G

´
= 0.

Denote ¼¤F (±), E¼
¤
F and p¤F (±) as the optimal tacit collusion pro…t, it’s expected

value and optimal collusion prices under F , respectively.

Theorem 10 Consider two cumulative distribution functions, F and G, such that F

second-order stochastically dominates G, then ¼¤F (±) ¸ ¼¤G(±) and p¤F (±) ¸ p¤G(±) for

every ±. In addition, E¼¤F ¸ E¼¤G.

Proof. By second-order stochastic dominance ±F ¸ ±G. So, from Proposition

1, we can see that if the solution under F belongs to case 1), the solution under

G can belong to any of the three cases. If the solution under F belongs to case

2), the solution under G can belong to cases 2) or 3). And if the solution under F

belongs to case 3), the solution under G must belong to the same case. For most of

this combinations it is straight forward to see that ¼¤F (±) ¸ ¼¤G(±) for every ±. The

situation in which both the solution under F as under G belong to case 2) needs more

analysis. Since F second-order stochastically dominates G, by Lemma 3, b±F � b±G.

Then, ¼¤F (±) =
±

b±F
¼m ¸ ¼¤G(±) =

±
b±G
¼m if the incentive compatibility constraint is

binding in both cases, ¼¤F (±) = ¼m ¸ ¼¤G(±) =
±

b±G
¼m, if the incentive compatibility

constraint binds for G but not for F , and ¼¤F (±) = ¼
¤
G(±) = ¼

m if it is not binding for

any of the two. Therefore, ¼¤F (±) ¸ ¼¤G(±) for every ±.

The result with respect to prices follows directly from the positive relationship

between pro…ts and prices.

Note that ¼¤F (±) is increasing and concave, hence, by second-order stochastic

dominance and ¼¤F (±) ¸ ¼¤G(±) for every ± we have that E¼¤F =
bR
a

¼¤F (±)f(±)d± ¸
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bR
a

¼¤F (±)g(±)d± ¸
bR
a

¼¤G(±)g(±)d± = E¼
¤
G.

The intuition of this result becomes clear if we consider two particular cases of

second order stochastic dominance: when F …rst-order stochastically dominates24 G

and when G is a mean preserving spread of F .

From Theorem 2 we know that given a distribution of the discount factor, say G,

equilibrium prices and pro…ts are increasing in the realization of the discount factor.

Then, a shift in the distribution function to higher values (which yields a cumulative

distribution function F that …rst-order stochastically dominatesG), would result in an

increase in expected pro…ts. This, in turn, increases the threat of future punishments

and increases equilibrium prices an pro…ts.

Corollary 11 If F …rst-order stochastically dominates G, then ¼¤F (±) ¸ ¼¤G(±) and

p¤F (±) ¸ p¤G(±) for every ±. In addition, E¼¤F ¸ E¼¤G.

From Proposition 1 we know that given a distribution factor, say F , the optimal

tacit collusion pro…t function is concave in the discount factor. Therefore, a mean

preserving spread (which yields G), would result in a reduction in expected pro…ts.

This, in turn, reduces the threat of future punishment and results in lower equilibrium

prices and pro…ts.

Corollary 12 If G is a mean preserving spread of F , then ¼¤F (±) ¸ ¼¤G(±) and

p¤F (±) ¸ p¤G(±) for every ±. In addition, E¼¤F ¸ E¼¤G.

Therefore, the volatility of the discount factor is inversely related to the …rms’

pro…ts. This result might seem somewhat counterintuitive given that the …rms are
24For two cumulative distributions functions F (±) and G(±), F …rst-order stochastic dominates G

if for all r, a � r � b, F (r) � G(r), and the inequality is strict in some range. In that case, it can

be proven that F second-order stochastic dominates G and
bR

a

u(±)f(±)d± ¸
bR

a

u(±)g(±)d±, for any

increasing piecewise di¤erential function u(±). See Hirshleifer and Riley [29].
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risk neutral, but the intuition is in fact simple. The combination of the incentive

compatibility constraint with the feasibility constraint yields a pro…t function which

is concave in the discount factor even when …rms are risk neutral. Hence, an increase

in volatility reduces expected pro…ts reducing the threat of future punishment and

lowering equilibrium prices and pro…ts.

2.3.3 The e¤ects of changes in the number of …rms

With N …rms in the market a single …rm may steal a fraction N¡1
N

of the market by

undercutting the price. Since this fraction is increasing in the number of …rms, the

higher the number of …rms the higher is the present pro…t from deviation for a given

pro…t, and the more di¢cult it will be to support collusion. In fact, it can be easily

seen from Proposition 1 that for any distribution of the discount factor, there is large

enough number of …rms above which it is not possible to support any collusion.25

De…ne ¼¤N(±) and p¤N (±) as the optimal tacit collusion pro…ts and prices for N …rms.

Theorem 13 If N > 1
1¡± , then ¼¤N(±) = 0 and p¤N(±) = c.

In addition, it can be easily shown that increases in the number of …rms reduce

prices and pro…ts (at both industry and …rm levels). The next theorem follows from

restatement Proposition 1 in terms of industry pro…ts ¦¤N and noting that the range

of perfect collusion in case 2) shrinks with increases in the number of …rms.

25 It is interesting to note that this result does not depend on …xing the size of the market while

changing the number of …rms. If both the size of the market and the number of …rms increase in

the same proportion (that would consists on multiplying the demand function D(p) and the number

of …rms N by a positive integer), the same result holds. Since an increase in the number of …rms

and size of the market leaves monopoly pro…ts per …rm unchanged but increases the incentives to

deviate, the scope of collusion diminishes up to a point in which it disappears.
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Theorem 14 Consider two di¤erent number of …rms N and M , N < M , then

¦¤N (±) ¸ ¦¤M (±), ¼
¤
N (±) ¸ ¼¤M (±) and p¤N (±) ¸ p¤M (±) for every ±.

2.3.4 Example with uniform distributions

The particular case in which the discount factor is distributed uniformly between a

and b, 0 � a < b � 1, provides clear examples of the previous results.

In the uniform case, taking into consideration that ± = a+b
2

, I can restate Propo-

sition 1 in the following way:

Proposition 15 If ± » U(a; b), the function ¼¤(±) depends on a, b and N in the

following way:

1) if b ¸ 2¡ aN+1
N¡1 , ¼

¤(±) = ¼m;

2) if 2(N¡1)
N ¡a � b < 2¡aN+1N¡1 , ¼

¤(±) = ¼m for ± ¸ b± and ¼¤(±) = ±
b±¼

m for ± < b±,

with b± = b¡
p
N(b2 ¡ a2) ¡ 2(b¡ a)(N ¡ 1);

3) if b < 2(N¡1)
N

¡ a, ¼¤(±) = 0.

Therefore, in the case of uniform distribution of the discount factor, the level

of pro…ts for each discount factor depends on the magnitudes of a, b and N . If

b ¸ 2 ¡ aN+1
N¡1 perfect collusion can be supported for any realization of the discount

factor. If 2(N¡1)N ¡a � b < 2¡ aN+1N¡1 , perfect collusion can be supported only for high

discount factors and only lower levels of pro…ts can be supported for lower discount

factors. Finally, if b < 2(N¡1)
N ¡ a no collusion can be supported.

Figure 2 shows the di¤erent ranges of a and b for the three cases of tacit collusion

when N = 2.

Since b > a, the relevant portion of the …gure is above the 45 degree line. That

part of the graph shows the ranges of a and b that result in di¤erent kinds of tacit
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Figure 2: Ranges of tacit collusion

collusion. For example, to the northeast of the solid black line are the combinations

of a and b that results in perfect collusion (case 1) when there are two …rms in the

market. Between the solid and dashed black lines we see the combinations that result

in perfect collusion for high discount factors and imperfect collusion for low discount

factors (case 2), and below the dashed black line are the combinations that cannot

support any collusion (case 3).

Consider the distributions of ± represented in Figure 2 by the points A, B and C

(the discount factor is distributed U(0:4; 1), U(0:4; 0:65) and U(0:4; 0:5), respectively).

Each of the points falls in a di¤erent region and hence will result in a di¤erent tacit

collusion solution. The distribution denoted by point A results in perfect collusion,

the distribution denoted by point B results in perfect collusion for high discount

factors and imperfect collusion of lower discount factors and the distribution denoted

by C results in no collusion at all. There are two additional things to note from

this example. First, pro…ts are (weakly) increasing in the realization of the discount
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Figure 3: The e¤ect of levels

factor, as Theorem 2 proves. While for A and C the tacit collusion pro…ts do not

depend on the realization of the discount factor, for B increases in realization of the

discount factor may result in an increase of pro…ts and prices. Second, the “more

to the right” the distribution function is, the higher pro…ts and prices are. Figure 3

shows that pro…ts under A are larger than under B or C, as Corollary 5 proves.

Consider now the distribution function denoted by pointD in Figure 2, U(0:5; 0:55).

This distribution function has the same expected value but a lower volatility than

the distribution function denoted by point B. We can see from Figure 2 that if there

are only two …rms in the market, perfect collusion can be supported at point D,

while perfect collusion can only be supported for a range of high discount factors for

point B. Figure 4 shows the tacit collusion pro…t functions for these two cases as a

percentage of monopoly pro…ts per …rm. Consistent with Corollary 6, Figure 4 shows

that a mean preserving spread in the distribution of the discount factor reduces the

expected value of pro…ts.
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Figure 4: The e¤ect of volatility

To make clear that the volatility e¤ect is not a second order e¤ect consider the

distributions denoted by point E in Figure 2, U(0:1; 1). This distribution has a

higher expected discount factor than the distribution denoted by point D but it also

has a higher volatility. Figure 5 shows that the distribution function with the highest

expected discount factor and volatility results in lower collusive pro…ts.

Figure 6 shows the limits to the three cases of tacit collusion for N = 2, 4, 8 and

16. We see that the greater the number of …rms, the smaller the set of distribution

functions for which some collusion is possible.

Consider now the distribution of ± represented in Figure 6 by pointE: the discount

factor is distributed U(0:52; 1). From Figure 6, we see that perfect collusion can be

supported if N = 2, while perfect collusion can only be supported for a range of high

discount factors if N = 4, and cannot be supported at all for N = 8. Figure 7 shows

the tacit collusion industry pro…ts (as a percentage of industry monopoly pro…t) for

these three cases and, consistent with Theorem 8, shows that the pro…ts decrease

44



0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

discount factor

p
ro

fi
t 

(a
s 

%
 o

f 
m

o
n

o
p

o
ly

 p
ro

fi
t)

D (0.5, 0.55) E (0.1, 1)

D (0.5, 0.55)

E (0.1, 1)

Figure 5: Volatility matters

0

0.2

0.4

0.6

0.8

1

b

0.2 0.4 0.6 0.8 1a

E

N=4

N=8

N=2

N=16

Figure 6: Ranges of tacit collusion for di¤erent N

45



0

20

40

60

80

100

120

0.4 0.5 0.6 0.7 0.8 0.9 1

discount factor

in
d

u
st

ry
 p

ro
fi

t 
(a

s 
%

 o
f 

m
o

n
o

p
o

ly
 p

ro
fi

t)

N=2 N=4 N=8

N=2

N=4

N=8

Figure 7: Tacit collusion and the number of …rms

with the number of …rms.

2.4 Quantity Competition

In this section I show that, under certain assumptions, the three main results that

hold under price competition also hold under quantity competition. Namely, …rst,

the higher the discount factor in a period, the higher the collusive prices and pro…ts

in that period, second, the higher the probability of high discount factors, the higher

the collusive prices and pro…ts, and third, the higher the volatility of the discount

factor, the lower the collusive prices and pro…ts that can be supported in equilibrium.

However, to prove this I have to characterize the optimal punishment scheme,

which was not necessary under price competition. This is interesting because I show

that, while punishment schemes can be extremely complex under quantity competi-

tion, the optimal punishment has a simple stick-and-carrot characterization.

I consider the same model of section 2 with one main di¤erence: …rms compete on

quantities. In addition, and only for the sake of generality, I also assume that …rms
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have a continuous and di¤erentiable cost function c(q) instead of the linear cost of

section 2.

As in section 2, I restrict my attention to symmetric equilibria: all the …rms pro-

duce at a given period the same quantity q. In this symmetric case, I can write

the pro…ts of each …rm as ¼(q) = P (Nq) q ¡ c(q) and total industry pro…ts as

¦(±) = N¼(q). I assume that there exists a quantity qm that maximizes the total

industry pro…ts, that is the perfect collusion quantity (qm would be the Nth part of

a monopolist optimal production if there are no …xed cost per factory and increasing

returns to scale). Denote ¼m = ¼(qm) as the perfect collusion pro…t per …rm.

2.4.1 Optimal tacit collusion with a random discount factor

In the case of quantity competition the Cournot reversion is not necessarily the best

available punishment since it may be possible to generate subgame perfect threats

that lower the pro…ts below the Cournot level. Therefore, to characterize the optimal

tacit collusion solution it is also necessary to de…ne the optimal punishment scheme.

In this section I characterize the optimal equilibrium punishment and collusion under

certain assumptions. The …rst assumption is that there exists a symmetric Cournot

equilibrium.

Assumption 1: There exists a quantity qc that is the unique symmetric Cournot

equilibrium.

In this equilibrium each …rm earns a pro…t of ¼c and it can be proven that ¼m > ¼c,

and qm < qc.

The second assumption concerns the pro…ts from deviation. In the case of quantity

competition, if N ¡ 1 …rms are each producing a quantity q, the remaining …rm can

obtain at most a pro…t of ¼d(q) = max
s¸0

fP (s+ (N ¡ 1)q) s¡ c(s)g by producing some

other quantity. The second simplifying assumption establishes that both ¼d(q) an
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¼(q) are decreasing with the former having a bigger slope than the latter, in absolute

terms, for quantities below qc while the opposite occurs for quantities above qc.

Assumption 2: For q 2 [qm; qc), d¼d
dq
< d¼

dq
< 0 and for q 2 (qc;+1), d¼

dq
< d¼d

dq
�

0.

These assumptions are valid, for example, in a market with a linear demand

function and constant marginal cost. In addition, in the linear case there is a unique

quantity that maximizes industry pro…ts (qm) and a unique and symmetric Cournot

equilibrium (qc). Hence there is no contradiction between the assumptions made in

this section.26

As in section 2, the optimal symmetric tacit collusion equilibrium can be char-

acterized by the maximum level of pro…ts per …rm that can be supported for each

discount factor, which I denote ¼¤(±) : [a; b] ! [¼c; ¼m], abusing notation from section

2. Since assumption 2 ensures that there is a one to one relationship between pro…ts

and quantities produced in the relevant range, once ¼¤(±) is obtained, the optimal

tacit collusion quantities q¤(±) : [a; b] ! [qm; qc] are also obtained. From the demand

function we can obtain the optimal tacit collusion pro…ts p¤(±) = P (Nq¤(±)).27

As in section 2, I use the recursiveness of the problem to write the present value

of pro…ts:

V (±) = ¼(±) +
±

1¡ ±

bZ

a

¼(±0)f(±0)d±0 (7)

26 In addition, these assumptions, as the assumption presented in the next subsection, could be

obtained from assumptions regarding the demand and cost functions. Since those assumptions

would be only su¢cient ones and would not provide a better intuition I prefer to present conditions

regarding ¼(q) and ¼d(q) that yield the desired results.
27Note that this functions denote equilibrium outcomes and not strategies. The supporting strate-

gies are not explicitly de…ned due to their lack of peculiarities.
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In addition, the feasibility condition can be written as:

¼(±) � ¼m (8)

The incentive compatibility constraint di¤ers from that in the previous section

since neither the short run incentives to deviate nor the future punishments are the

same. Under price competition, a …rm can capture the whole market by a small price

deviation, obtaining (N ¡ 1)¼(±) in pro…ts from deviation. Under quantity compe-

tition, the maximum pro…t from deviation is ¼d (q (¼(±))) ¡ ¼(±), where q(¼) is the

quantity that every …rm has to produce to get a per …rm pro…t of ¼. In addition,

the possible punishment from deviation may not be the same as in price competition.

In price competition reverting to a situation of zero pro…ts is a credible threat, since

that is the Bertrand equilibrium. Instead, under quantity competition a punishment

of zero pro…ts forever may not be credible. What is credible depends on the biggest

credible threat. This threat would consists of punishing the deviator with the low-

est equilibrium discounted payo¤, denoted by V (±), while rewarding compliance with

the equilibrium with the highest equilibrium discounted payo¤, denoted by V (±), if

tomorrows discount factor is ±. Assume for now that the extreme discounted equi-

librium payo¤ functions V (±) and V (±) exist, as it is proven later, and de…ne their

expected values as EV and EV , respectively. Therefore, for ¼(±) to be incentive

compatible, it must be the case that no player has incentives to deviate if conforming

is rewarded with the highest possible expected continuation payo¤ EV and deviating

is punished with the lowest possible expected continuation payo¤ EV :

¼d (q (¼(±)))¡ ¼(±) � ±
£
EV ¡ EV

¤
8 ± (9)

For simplicity, write the left hand side of equation (9) as ©(¼(±)) and denote

EV ¡ EV on the right hand side of the equation as B. As such, for a given B, the
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incentive compatibility constraint can be written as

©(¼(±)) � ±B 8 ± (10)

Note that ©(¼c) = 0 and that ©(¼) increases as ¼ separates from ¼c. Then, for

a given amount of threat ±B,there is a highest and lowest amount of pro…t that can

be supported. Next I characterize the incentive compatible upper bound to pro…ts,

and its interaction with the feasibility constraint, and then characterize the incentive

compatible lower bound to pro…ts.

Lemma 16 Under Assumptions 1 and 2, for a given B, the incentive compatible

upper bound to pro…ts is not binding for any ± if aB > ©(¼m). If instead aB �

©(¼m), there exists a number b±(B) 2 [a; b] such that the upper bound can be written

as ¼(±) � ©¡1+ (±B) for ± � b±(B), where ©¡1+ (±B) is the inverse of ©(¼) if we restrict

its domain to [¼c; ¼m], and it is not binding for ± > b±(B). In addition, the incentive

compatible upper bound is increasing in ± for ± � b±(B), and b±(B) and ©¡1+ (±B) are

continuous.

Proof. In Appendix.

Therefore, for low discount factors the maximum level of pro…ts that can be sup-

ported is bounded by the incentive compatible upper bound, while for high values it is

bounded by the feasibility constraint. Combining both we have the IC+-F constraint:

¼(±) �

8
><
>:
©¡1+ (±B) if aB � ©(¼m) and ± � b±(B)

¼m otherwise
(11)

In the optimal symmetric tacit collusion equilibrium, …rms will choose pro…ts

as large as possible given the incentive compatible upper bound and the feasibility

constraint. In addition, given that conforming with the equilibrium strategy must

be rewarded with the highest equilibrium payo¤, the highest equilibrium discounted
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payo¤ V (±) has a simple relationship with the optimal tacit collusion solution. If ¼¤(±)

is the optimal tacit collusion pro…t function, then V (±) = ¼¤(±)+ ±
1¡±

bR
a

¼¤(±0)f(±0)d±0

and its expected value is EV = E¼¤

1¡± . Therefore, given the lowest expected equilibrium

payo¤ EV , the optimal tacit collusion solution is subject to the following equation:

¼¤(±) =

8
>>>><
>>>>:

©¡1+

³
±
h
E¼¤

1¡± ¡ EV
i´

if a
³
±
h
E¼¤

1¡± ¡ EV
i´

� ©(¼m) and ± � b±
³
E¼¤

1¡± ¡EV
´

¼m otherwise

(12)

The following lemma characterizes the incentive compatible lower bound to pro…ts.

Lemma 17 Under Assumptions 1 and 2, for a given B, the incentive compatible

lower bound to pro…ts can be written as ¼(±) ¸ ©¡1¡ (±B), where ©¡1¡ (±B) is the inverse

of ©(¼) if we restrict its domain to (¡1; ¼c]. In addition, the incentive compatible

lower bound is decreasing in ±, and ©¡1¡ (±B) is continuous.

Proof. In Appendix.

Having characterized the incentive compatible lower bound to pro…ts, I must still

characterize the lower discounted continuation payo¤ V (±). I show that the optimal

punishment scheme, which yields V (±), has a simple stick-and-carrot characterization

(the punishment takes only one period and is as big as possible in equilibrium),

extending the results of Abreu [1] from the …xed discount factor case.

Lemma 18 Given E¼¤ and EV , the lowest equilibrium payo¤ function is V (±) =

©¡1¡

³
±
h
E¼¤

1¡± ¡EV
i´
+ ±

1¡±E¼
¤.

Proof. Consider any punishment scheme consisting of a pro…t of e¼(±) in the

…rst period and an expected continuation payo¤ of E eV . De…ne the present value of

the game in that case as eV (±) = e¼(±) + ±E eV . For this punishment scheme to be

credible it must be the case that eV (±) ¸ ¼d (q(e¼(±))) + ±EV . Choose now the …rst
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payo¤ of a two phase punishment ¼0(±) so that ¼0(±) + ±
1¡±E¼

¤ = eV (±). Given that

E¼¤

1¡± ¸ E eV , ¼0(±) � e¼(±) and by ¼d (q(:)) being increasing, eV (±) ¸ ¼d (q(¼0(±)))+±EV

and the two phase punishment is credible. Therefore any equilibrium punishment can

be matched with a two phase punishment that yields the best continuation payo¤ in

the second phase. Then, choosing the lowest equilibrium present payo¤, I obtain

the lowest equilibrium discounted payo¤ for a given discount factor, and V (±) =

©¡1¡

³
±
h
E¼¤

1¡± ¡EV
i´
+ ±

1¡±E¼
¤.

Therefore, given the optimal tacit collusion solution, the lowest possible continu-

ation payo¤s are subject to the following equation:

V (±) = ©¡1¡

µ
±

�
E¼¤

1¡ ±
¡ EV

¸¶
+

±

1¡ ±
E¼¤ (13)

The solution to the problem of …nding the optimal tacit collusion pro…ts and the

optimal punishment that support that collusion consists of …nding the functions ¼¤(±)

and V (±) that solve equations (12) and (13) simultaneously and choosing the solution

with the highest expect pro…t E¼¤. The next proposition shows that this problem

has a unique solution.

Proposition 19 Under Assumptions 1 and 2, ¼¤(±) and V (±) exist. In addition

¼¤(±) is unique.

Proof. Taking the expected value over (12), for any possible solution ¼(±) it has

to hold that:

E¼ =

b±
³
E¼¤
1¡± ¡EV

´

Z

a

©¡1+

µ
±

�
E¼¤

1¡ ±
¡EV

¸¶
f(±)d± +

µ
1¡ F

µ
b±

µ
E¼¤

1¡ ±
¡EV

¶¶¶
¼m

(14)

In the same way, taking the expected value over (13), for any possible solution
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V (±) it has to hold that:

EV =

bZ

a

©¡1¡

µ
±

�
E¼¤

1¡ ±
¡ EV

¸¶
f(±)d± +

±

1¡ ±
E¼¤ (15)

Note that there is a one to one relationship between the pro…t functions that satisfy

equation (12) and the expected values that satisfy equation (14). That is, if ¼¤(±) sat-

is…es equation (12), then E¼¤ must satisfy equation (14), and if the value E¼¤ satis…es

equation (14), ¼¤(±) satis…es equation (12) with E¼¤ in the right hand side. The same

is true for equations (13) and (15). Therefore, we can …nd ¼¤(±) and V (±) by choosing

the solution to equations (14) and (15) with the highest E¼¤. Note that E¼¤ = ¼c

and EV = ¼c

1¡± solve the pair of equations and, hence, there is at least one solution.

Let H(r; s) =

8
>>><
>>>:

b±
³

r
1¡±¡s

´
R
a

©¡1+

³h
r
1¡± ¡ s

i´
f (±)d± +

³
1¡ F

³
b±

³
r
1¡± ¡ s

´´´
¼m ¡ r

bR
a

©¡1¡

³
±
h

r
1¡± ¡ s

i´
f(±)d± + ±

1¡± r ¡ s
.

Since b± (:), ©¡1+ (:), ©¡1¡ (:), and F (:) are continuous, H(r; s) is also a continuous func-

tion. Then, the set of numbers that make H(r; s) = (0; 0) is closed, given that the

inverse images of closed sets are closed for continuous functions. In addition it must

be bounded since r 2 [¼c; ¼m] and s 2
h
0; ¼

c

1¡±

i
. Therefore, the set of solutions is

non-empty, closed and bounded. Then, among the solutions there exists one with

the highest r that gives (E¼¤; EV ). Plugging this into equations (12) and (13) we

obtain ¼¤(±) and V (±). Uniqueness is clear from the fact that there is a one to one

relationship between E¼¤ and ¼¤(±).

Optimal tacit collusion must fall in one of the following three cases, depending

on which restriction is binding. First, it may be that only the feasibility constraint

binds for every discount factor. In this case, the value of the future monopoly pro…ts

outweighs the pro…ts from deviation, and perfect collusion is an equilibrium for any

discount factor. Second, it may be possible that the incentive compatibility constraint
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binds for low discount factors while the feasibility constraint binds for high discount

factors. Third, it may be possible that the incentive compatible upper bound to

pro…ts binds for every value of the discount factor. While in the …rst case changes in

the discount factor do not a¤ect pro…t and prices, in the last two cases, an increase

in the discount factor results in an increase in collusive pro…t and prices. The reason

for this is that a higher discount factor results in a higher threat of punishment, so

that higher pro…ts can be achieved without …rms having incentives to deviate, and

the next Theorem follows.

Theorem 20 Under Assumption 1 and 2, d¼¤(±)
d±

¸ 0 and dp¤(±)
d±

¸ 0.

As in section 2, the equilibrium pro…ts and prices are increasing in the discount

factor.

2.4.2 The e¤ects of changes in f(±)

In section 2, the comparative static results with respect to the distribution function

of the discount factor depend on the optimal tacit collusion pro…t function being

increasing and concave. If that is the case, shifts to the left of the distribution

function or increments in volatility reduce the expectation of future pro…ts and result

in lower equilibrium pro…ts and prices. Because under quantity competition the level

of punishment is not independent of the discount factor, it is not enough to look at

the shape of the optimal tacit collusion pro…ts to obtain a comparative static result

with respect the distribution function. What is important is the shape of the threat

of future punishments: V (±)¡ V (±).

The stick-and-carrot property of the optimal punishment implies that streams of

payo¤s leading to the highest and lowest discounted equilibrium payo¤ di¤er only in

the …rst period. As a result, the threat of future punishment is simply the maximum
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di¤erence in payo¤s that can be supported in equilibrium in one period. Since I have

already proved that the upper bound to pro…ts is increasing and the lower bound to

pro…ts is decreasing, it only remains to be shown that the upper bound is concave

while the lower bound is convex. The following assumption is a su¢cient condition

for that.

Assumption 3: For q 2 [qm;+1), d2¼d
dq2

¸ 0 ¸ d2¼
dq2

.

As Assumptions 1 and 2, this assumption is valid in a market with a linear demand

function and constant marginal cost. Hence, there is no contradiction among the

assumptions made in this section.

Lemma 21 Under Assumptions 1-3, V (±)¡ V (±) is increasing and concave.

Proof. In Appendix.

From the future threat being increasing and concave in the next period discount

factor, the desired comparative static result with respect to the distribution function

of the discount factor follows.

Theorem 22 Consider two cumulative distribution functions, F and G, such that F

second-order stochastically dominates G, then ¼¤F (±) ¸ ¼¤G(±) and p¤F (±) ¸ p¤G(±) for

every ±. In addition, EF¼¤F ¸ EG¼
¤
G.

Proof. Let V j(±) and V j(±), j = F;G, be the highest and lowest equilibrium dis-

counted payo¤ under j. First, I show thatEF
¡
V F (±)¡ V F (±)

¢
¸ EG

¡
V G(±)¡ V G(±)

¢
.

Suppose not, then EG
¡
V G(±)¡ V G(±)

¢
¸ EF

¡
V F (±)¡ V F (±)

¢
. Since F second-

order stochastically dominates G and V G(±) ¡ V G(±) is increasing and concave by

Lemma 16, EF
¡
V G(±)¡ V G(±)

¢
¸ EG

¡
V G(±)¡ V G(±)

¢
¸ EF

¡
V F (±)¡ V F (±)

¢
.

But then, the strategies that yield ¼¤G(±) and V G(±) under G do not violate the
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incentive and feasibility constraints under F , by ©¡1+ being increasing and ©¡1¡ be-

ing decreasing on ±
h
E¼¤

1¡± ¡ EV
i
. Therefore ¼¤F (±) is not an optimal tacit collusion

solution under F , which is a contradiction.

Second, given that EF
¡
V F (±)¡ V F (±)

¢
¸ EG

¡
V G(±)¡ V G(±)

¢
and ©¡1+ is in-

creasing, ¼¤F (±) ¸ ¼¤G(±) for every ±. The last two results follow from the positive

relationship between pro…ts and prices and the relationship between F and G, re-

spectively.

The intuition behind this results is simple. Given that the threat of future punish-

ment is increasing and concave in the discount factor, both increases in the probability

of low discount factors and increases in its volatility reduce the expected value of the

punishment and result in a reduction of collusive pro…ts and prices.

2.4.3 The e¤ects of changes in the number of …rms

In section 2 I showed that under price competition, increases in the number of …rms

increase the incentives to deviate, decreasing equilibrium pro…ts. This result may not

be valid when …rms compete on quantities since not only do the incentives to deviate

change with the number of …rms, but so may the threat of future punishment. In fact,

the higher the number of …rms the easier it is to support low pro…ts -a consequence of

which is that industry Cournot pro…ts fall with the number of …rms- and the higher

the threat of punishment for deviation. Therefore, while under price competition it

is enough to study the e¤ect of the number of …rms on the incentives to deviate, this

is not su¢cient under quantity competition.

While more work is needed to characterize general conditions under which in-

creases in the number of …rms decrease equilibrium pro…ts and prices, the next sub-

section presents an example of such a situation.28

28To my knowledge this issue also remains to be solved for the case of a …xed discount factor.
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2.4.4 Example with uniform distributions

I study next the case in which the discount factor is distributed uniformly between a

and b, 0 � a < b � 1, and the inverse demand function -net of a constant marginal

cost- is P = 12¡Q, and I provide clear examples of the previous results.

Three di¤erent types of optimal tacit collusion exist. If a and b are high, relative

to the number of …rms, perfect collusion can be supported for any realization of the

discount factor. If a and b are low, relative to the number of …rms, perfect collusion

cannot be supported for any realization of the discount factor, but in contrast to what

happens under price competition, some collusion can still be supported. If a and b fall

in a middle ground, perfect collusion can be supported only for high discount factors

and only lower levels of pro…ts can be supported for low discount factors.

Figure 8 shows the di¤erent ranges of a and b for the three cases of tacit collusion,

for N = 2 and N = 16.

Since b > a, the relevant portion of the …gure is above the 45 degree line. That

part of the graph shows the ranges of a and b that result in di¤erent kinds of tacit

collusion. For example, to the northeast of the solid black line are the combinations

of a and b that result in perfect collusion when there are two …rms in the market.

Between the solid and dashed black lines are the combinations that result in perfect

collusion for high discount factors and imperfect collusion for low discount factors,

and below the dashed black line are the combinations that cannot support perfect

collusion. For example consider the distributions depicted by points A, B and C.

The closest related paper is Brock and Scheinkman [12] which studies the e¤ect of the number of

…rms on tacit collusion for a …xed discount factor, price competition and an exogenous capacity per

…rm. They …nd that changes in the number of …rms have a non-monotone e¤ect on optimal collusive

prices. Note that the capacity is exogenous and the link to quantity competition from Kreps and

Scheinkman [38] does not apply.
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Figure 8: Ranges of tacit collusion

While A results in perfect collusion, B can only support perfect collusion for high

discount factors and lower pro…ts for low discount factors. Finally, C cannot support

perfect collusion for any discount factor but can still support some collusion. See

Figure 9.

From Figure 9 it is clear that pro…ts are increasing in the discount factor. The

comparison between the optimal tacit collusion pro…ts for points A and C is an

example of the result that the higher the probability of high discount factor, the

higher collusive pro…ts and prices. The comparison between the collusive pro…ts for

points A andB is an example of the result that the higher the volatility of the discount

factor, the lower pro…ts and prices.

One can see the limits to the three types of tacit collusion for N = 16 in Figure 8.

For the distribution function depicted by point A, perfect collusion can be supported

if N = 2, but perfect collusion cannot be supported at all -but lower levels of collusion

can- for N = 16, therefore, pro…ts must be lower in the latter case.
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2.5 Extensions

In this section I analyze the restrictiveness of the assumption of symmetric equilibria

and study some extensions. As an extension, I modify the assumption of indepen-

dently distributed discount factor in two ways. I consider …rst deterministic discount

factor cycles and show that increasing discount factors make easier to support col-

lusion. Second, I consider the case in which the distribution of tomorrow’s discount

factor depends on today’s value and show that an increase in the discount factor may

result in a decrease in equilibrium prices and pro…ts (since the increase in the discount

factor may lead to an increase in its future volatility). Finally, I study the validity of

the three main results of this paper for general repeated games.

2.5.1 Asymmetric equilibrium prices

In this paper I only consider symmetric equilibrium collusive prices and quantities.

This assumption may not be that restrictive given that joint overall pro…ts to …rms
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are generally higher when all the …rms charge the same price or produce the same

quantity in equilibrium. The existence of asymmetries in …rms’ equilibrium collusive

behavior can only reduce prices and total industry pro…ts, since it is the incentive

compatibility constraint of the less favored …rm that binds.

In addition, in the case of price competition, this asymmetry e¤ect is strengthened

by an intrinsic discontinuity of the Bertrand model. With price competition, if …rms

o¤er di¤erent prices there will be a group of …rms that will not provide goods to the

market and will get zero pro…ts. These …rms will have large incentives to deviate.

Thus, under price competition, the impact of even small price asymmetries on the

incentive compatibility constraints can be signi…cant.

Therefore, there is a compelling reason to restrict ourselves to symmetric equilib-

rium behavior in this paper: it is the equilibria that maximizes the industry’s total

pro…t. Introducing asymmetries would reduce the industry’s pro…ts by increasing the

incentives to deviate for those less favored …rms that get a small share of the market.29

2.5.2 Deterministic discount factor cycles

In this section I consider deterministic discount factor cycles and show that higher

collusive prices and pro…ts can be supported when the discount factor is increasing.

The reason is simple: the higher the future discount factors, the higher future collusive

pro…ts and the larger the threat of punishment. Hence, the higher the future discount

factors, the higher present collusive prices and pro…ts, as the next example shows.

Example 23 An increasing discount factor facilitates collusion: For the discount
29Nevertheless, under quantity competition, it may be useful to allow for asymmetric behavior

o¤ the equilibrium path. The optimal punishment schemes characterized in this paper may only be

optimal under the restriction of symmetry o¤ the equilibrium path. It is possible that asymmetries

during the punishment stage generate bigger punishments and higher symmetric collusion, as it is

the case under a …xed discount factor (Abreu [1]).
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factor cycle f:55; :75; :55; :35g, price competition and two …rms in the market, the

optimal tacit collusion solution is represented in Figure 10 as a percentage of monopoly

pro…ts. We can see that for ± = 0:55 the optimal tacit collusion is higher when the

discount factor is increasing (point A) than when it is decreasing (point B). Therefore,

it is easier to support collusion for a given discount factor when the discount factor

is increasing.

Under cyclical discount factor ‡uctuations, both high discount factors today and

in the future make it easy to support collusion given that both increase the threat of

future price wars. In contrast, Haltiwanger and Harrington [28] …nd that under cycli-

cal demand ‡uctuations, a high demand today makes it di¢cult to support collusion

since it o¤ers high incentives to deviate, while high demand in future periods makes

it easy to collude today because it increases the threat of future price wars.
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2.5.3 Correlated discount factor and the volatility e¤ect

Given that both a high discount factor today and in the future make it easy to

support collusion, allowing for the more realistic case of positively correlated discount

factors will not a¤ect the main results. But these results may be modi…ed if changes

in today’s discount factor a¤ect its future volatility. In this section I present an

extension to the basic model to illustrate that an increase in the discount factor

does not necessarily lead to higher collusive prices and pro…ts if the increase in the

discount factor also raises the volatility of future discount factors. When the value

of the present discount factor a¤ect the distribution of the future discount factor,

the solution to the optimization problem cannot be found easily. Nevertheless, under

price competition and a discrete distribution of the discount factor, the problem can

be solved as a linear programming problem (see appendix)30.

Example 24 Consider the case in which the discount factor can take only three val-

ues (1
4 ,

1
2 and 3

4), there are two …rms and the monopoly pro…t per …rm is 18. The

distribution function of the discount factor depends on the past discount factor in the

following way:

p (±t j ±t¡1) ±t

±t¡1

1
4

1
2

3
4

1
4 3/5 1/5 1/5

1
2 0 1 0

3
4 12/25 0 13/25

30Note that this example is not equivalent to an extension to three states of Bagwell and Staiger [8]

model of correlated demand shocks. In that model changes in present demand growth only a¤ected

the future through changes in the expectation of future growth rates. In this example, changes in

the discount factor a¤ect both expectations and the present valuation of future pro…ts making the

analysis more complicate.
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Solving the linear programming problem we …nd that the optimal symmetric tacit

collusion equilibrium yields pro…ts equal to 4:8, 18 and 15:8 for the discount factor

being 1
4
, 1
2

and 3
4
, respectively.

This example shows that an increase in the discount factor, while increasing the

expectation of the future discount factor, may still result in a reduction of pro…ts and

prices. The reason is that not only does the expectation of future discount factors

matter, but so does its volatility. In this case, given that future discount factors have

higher volatility when ± = 3
4 than when ± = 1

2 , equilibrium pro…ts are lower under

the former than under the latter.

2.5.4 General normal form games

In this section I study whether the main results of this paper can be extended to

general in…nitely repeated games with discount factor ‡uctuations. I consider an

in…nitely repeated simultaneous move game in which the discount factor is indepen-

dently and identically distributed. As in the rest of this paper, players observe the

realization of the discount factor before choosing an action.

In this more general environment the following results regarding discount factor

levels can be shown: …rst, the higher the realization of the discount factor the larger

the set of equilibrium outcomes, and second, the higher the probability of high dis-

count factors the larger the set of equilibrium outcomes.31 In contrast, it is not true

that an increase in the volatility of the discount factor always results in a decrease

31Given that the discount factor is i.i.d., before discounting it, the threat of future punishment is

independent of the present realization of the discount factor. Hence, the higher the discount factor

the more important that threat is and the bigger the set of equilibrium outcomes. Given this …rst

result, shifts of the distribution function to the right result in increments in the threat of punishment

and an increase in the set of outcomes for every realization of the discount factor.
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in the set of equilibrium outcomes. The next example shows that an increase in the

volatility of the discount factor may increase the set of equilibrium outcomes for some

discount factors.

Example 25 An increase in volatility of the discount factor may increase the set of

equilibrium outcomes:

Consider the following stage game:

Column

Row

a b c

A 5, 5 0, 0 -2, 10

B 0, 0 4, 4 -2, 5

C 10, -2 5, -2 0, 0
In this stage game there is a unique Nash equilibrium (C,c), which is Pareto

dominated by either (A,a) or (B,b). The in…nite repetition of the stage game opens

the possibility that these outcomes can be supported in equilibrium. Note that (A,a)

yields a higher payo¤ than (B,b) but o¤ers higher incentives to deviate. With discount

factor ‡uctuations, we should expect that in the optimal symmetric equilibrium, (A,a)

is played for realization of the discount factors that are high enough, (B,b) for lower

ones and, …nally, (C,c) when the realization of discount factor is too low to be able

to support any cooperation by the threat of future punishment. In fact, if the discount

factor is distributed U(0,1), the outcomes of the optimal symmetric equilibrium are

the following32: (A,a) if ± ¸ 0:65, (B,b) if 0:13 � ± < 0:65, (C,c) if ± < 0:13, as

shown in Figure 11. In this case the expected utility equals 3:82.

Consider now a modi…cation of the distribution of the discount factor. From the

original U(0,1) distribution take the mass of the segment [0:45; 0:55] and add it to

32The problem consists of …nding the minimum discount factors for which (A,a) and (B,b) can be

played in a symetric equilibrium.
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Figure 11: Volatility and general games

the area between [0:25; 0:3] and [0:7; 0:75]. This modi…cation adds volatility to the

discount factor but at the same time adds weight to the discount factors that yield a

high payo¤. Hence, the change in the distribution function increases the equilibrium

expected utility and relaxes the incentive compatibility constraint, increasing the set

of discount factors for which (A,a) can be supported in equilibrium. In fact, under

the modi…ed distribution function, the outcomes of the equilibrium that maximizes the

players expected utility is the following: (A,a) if ± ¸ 0:63, (B,b) if 0:126 � ± < 0:63,

(C,c) if ± < 0:126. In this case the expected utility equals 3:97.

This example shows that a mean preserving spread of the discount factor may

result in an increase on the expected payo¤ of the players and an expansion of the set

of possible outcomes for some discount factors.

For repeated games in general it is no longer true that increases in the volatility
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of the discount factor reduce the set of equilibrium outcomes. The reason is that the

maximum level of utility, as a function of the discount factor, is not necessarily a

concave function (nor is the minimum level of utility necessarily convex). As result,

increases in volatility may increase the expected equilibrium utility, increasing the

threat of future punishment. This, in turn, increases the set of outcomes that can be

supported for each discount factor.

2.6 Conclusions

To my knowledge, this paper represents the …rst e¤ort to examine the e¤ect of dis-

count factor ‡uctuations in repeated games. In a repeated oligopoly, I characterized

the optimal symmetric collusion and found that collusive prices and pro…ts increase

with both present and future discount factor levels and decrease with discount factor

volatility. These results stress the importance that discount factor levels have on

repeated games and introduce a new element to the literature: the volatility of the

discount factor.

This work has several important implications for future study. While most of the

existing empirical literature on collusive pricing has largely ignored the role of the

interest rate, this paper suggests that both the level and the volatility of the interest

rate are important determinants of collusive pricing. Thus, to be complete, future

empirical work should consider these forces.

This paper also has implications for the study of aggregate ‡uctuations. I show

that any change in policy, preferences or technology may have an impact on the

aggregate level of activity through changes in collusive behavior, not only by a¤ecting

the real interest rate, but also by a¤ecting its volatility.

Finally, it would be interesting to study extensions of this work to general repeated

games. While I show here that volatility reduces the scope for cooperation in repeated
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oligopolies, I also show that this is not necessarily true for general repeated games.

Determining conditions under which higher volatility reduces the set of equilibrium

outcomes for general repeated games remains for future work.
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3 Cooperation under the shadow of the future: ex-

perimental evidence on in…nitely repeated games

3.1 Introduction

Game theorists have long recognized that repeated playing and the possibility of

future interaction may modify current behavior. The possibility of future interaction

may enable players to establish punishment and reward structures to prevent or limit

opportunistic behavior. In a complete information game it is necessary that players

do not know when the game ends: each period players must believe that there may

be future interaction with positive probability. The higher this probability, the bigger

“the shadow of the future” is and the easier it is to reduce opportunistic behavior in

theory.

While there has been a large number of theoretical papers on this subject, the

empirical and experimental evidence is scarce and in most cases inconclusive or char-

acterized by methodological problems. Given this scarcity of conclusive empirical

results, we run a series of experiments to study whether the possibility of future in-

teraction modi…es players’ behavior, allowing them to prevent opportunistic actions.

In…nitely repeated prisoner’s dilemma games are simulated in the experiment by

having a random continuation rule. The experimental design represents an improve-

ment over the existing literature by including sessions with …nite repeated games as

controls and a large number of players per session (which allows for learning without

contagious e¤ects).

We …nd strong evidence that the higher the probability of continuation, the higher

the levels of cooperation. While in one shot prisoner’s dilemma games there is only

9% of cooperation, for a probability of continuation of 3/4 there is 38% of cooperation.
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The e¤ect of the shadow of future on the levels of cooperation is greater than previous

studies have shown and points out that self-enforcing reward and punishment schemes

that eliminate opportunistic behavior are important not only in theory.

In addition, the results from the in…nitely repeated games are compared with the

results from …nitely repeated games to test whether cooperation depends on “the

shadow of the future,” as theory predicts, or merely on the length of the games.

The lengths of the …nitely repeated games were chosen to coincide with the expected

lengths of the in…nitely repeated ones. In the …nitely repeated games the levels of

cooperation are signi…cantly lower than in the in…nitely repeated ones. For example,

in repeated games with a …nite horizon of 4 rounds the probability of continuation is of

21% against the 38% of cooperation in an in…nitely repeated game with a probability

of continuation of 3/4.

Finaly, to study how close the behavior of the subject is to the theoretical pre-

dictions, we use the fact that di¤erent prisoner’s dilemma payo¤ matrices result in

di¤erent sets of equilibrium outcomes. We used two di¤erent payo¤ matrices in the

experiment with the peculiarity that, for a probability of continuation of 1/2, one

of them can have both players cooperating in equilibrium while the other can not.

Consistently with this, we …nd that the percentage of outcomes in which both subject

cooperate is almost 19% when it is an equilibrium, while it is less than 3% when it is

not. Then, these experimental results show that behavior closely, but not perfectly,

follows the theoretical predicions that are dependent on the payo¤ details of the stage

game, providing further support to the theory of repeated games.

The experimental evidence presented here show that the shadow of the future

matters, it signi…cantly reduces opportunistic behavior and it does it in a way that

closely follows the theoretical predictions.

The next section summarizes previous experimental research on the topic and
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discusses some of its shortcomings. Section 3 describes the experimental design and

section 4 describes the theoretical predictions. Section 5 presents the results of the

experiment and the last section concludes.

3.2 Previous Experiments

While there exist extensive experimental literature on …nitely repeated games, the

experimental literature on in…nitely repeated games is limited and presents some

methodological shortcomings.

Previous experiments on in…nitely repeated games are of two types: 1) experi-

ments with a random continuation rule known to the subjects and 2) experiments

with a …nite number of repetitions known to the experimenter but unknown to the

subjects. In the …rst type, subjects knew that there was always a positive probability

of continuation. In the second type, games were not in…nitely repeated since there

was a …nal round, but this round was unknown for the players. Therefore, in each

round the subjects may have assigned a positive probability of continuation.

Experiments that fall into the …rst category are those of Roth and Murnighan [50]

and Murnighan and Roth [40]. These two papers present results of experiments with

in…nitely repeated prisoner’s dilemma for di¤erent continuation probabilities. Roth

and Murnighan [50] …nd that the higher the probability of continuation, the higher

the number of players that cooperated in the …rst period of the game, see Table

1. Murnighan and Roth [40] present results for experiments with twelve di¤erent

variations of prisoner’s dilemma. Considering the results of the twelve variations

together, one can see that, in contrast to the results of Roth and Murnighan [50],

higher probabilities of continuation did not result in more cooperation in the …rst

round, see Table 1.

In addition to presenting contradictory evidence (and o¤ering little hope that
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Table 1: Previous studies (% of cooperation in …rst round)

Probability of continuation

Roth and Murnighan [50]a

Murnighan and Roth [40]b

0.105 0.5 0.895

19 29.75 36.36

17.83 37.48 29.07

a) Over 121 subjects. b) Over 252 subjects

opportunistic behavior can be limited by increases on the shadow of the future),

these two papers display several methodological problems. In both experiments, sub-

jects played against the experimenter instead of playing against each other. While

in Roth and Murnighan [50] subjects were told that they were playing against the

experimenter they were not told that the experimenter was following the tit-for-tat

strategy. In Murnighan and Roth [40] subjects where told that they where playing

against each other while in fact they where playing against the experimenter who

was following either the tit-for-tat or grim strategy. In addition, in both experiments

subjects where not paid proportionately to the “points” they earned during the ex-

periments. In Roth and Murnighan [50] “the best player” in the experiment, as they

called it, received a $10 price, while in Murnighan and Roth [40] the player with the

highest average score in each session received $40 and the second one $20.

Another experiment that employed a random continuation rule is Feinberg and

Husted [18]. They combine a …xed continuation probability with di¤erent discount

factors (they shrink the payo¤s in every round) to study the e¤ect of repetition in the

levels of cooperation in a prisoner’s dilemma game disguised as a duopoly game. They

…nd that the levels of cooperation increase as the discount factor increases. Never-

theless, that increase is small and far from the increase needed to fully exploit the

possible bene…ts from cooperation even when the experiment and it instructions were
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purposely designed to facilitate cooperation. In addition, these results are weakened

because the payments made to the subjects were quite low and the basic payo¤s were

not the same in all treatments33.

Another experiment in which subjects faced a random continuation rule was con-

ducted by Palfrey and Rosenthal [42]. This paper presents an experiment designed to

test whether the possibility of future interaction leads to greater cooperation in pub-

lic good games with incomplete information. They compare the rate of contribution

for a public good when players meet only once with each other and when they meet

repeatedly with a probability of continuation of 0.934. They …nd that repetition leads

to more cooperation than one shot games but this increase is small (the percentage

of contribution goes from 29% to 40%). They concluded that “This contrast between

our one-shot and repeated play results is not encouraging news for those who might

wish to interpret as gospel the oft-spoken suggestion that repeated play with discount

rates close to one leads to more cooperative behavior. True enough it does-but not

by much.”35 As the authors suggest later, the power of repeated play may be more

evident in a simpler environment.

A problem with the experiments with a random continuation rule is that it is not

clear that any increase of cooperation as the probability of continuation increases is

due to an increase in the importance of the future as theory predicts or if it is merely

due to an increase of the repeated game expected horizon. There is experimental

evidence that subjects cooperate more in …nitely repeated prisoner’s dilemma games

than in one-shot ones (see Andreoni and Miller [5] and Cooper et al. [15]). A reason

33Another experiment that used a random continuation rule to study repeated oligopoly games is

Holt [30]. Since this experiment was designed to test for consistent-conjectures, the results do not

provide information regarding cooperation.
34There were at least 20 round, after which the probability of continuation was 0.9.
35Palfrey and Rosenthal [42], pag. 548.
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for this e¤ect is that in …nitely repeated games subjects may have incentives to build

reputations if there is incomplete information (see Kreps et al. [33]). Therefore, if

we observe an increase in cooperation as the probability of continuation increases, it

could be due to an increase on reputation e¤ects as the expected horizon of the game

increases and not to the in…nitely repeated feature of the game.

There exist some old repeated oligopoly experiments, like the ones presented in

Fouraker and Siegel [20], that fall into the second category of games in which the

number of repetitions was known to the experimenter but not to the subjects. In

each round the subjects may assign a positive probability of continuation and we

may consider these experiments as experiments on in…nitely repeated games, at least

in the minds of the subjects. Fouraker and Siegel [20] …nd some cooperation in

Cournot duopoly markets but not in triopoly markets.

A more recent paper in this category is Brown Kruse et al. [13] which presents an

experiment on repeated price competition in an oligopoly market with …xed capacity

constraints. While they observe prices above competitive levels, those prices are

far below the monopoly price. In addition, in the treatments in which collusion is

more easily supported (requires a lower belief of continuation) the prices are lower.

This contradicts what we would expect from in…nitely repeated game theory, which

predicts that when collusion is easier to support, higher prices should be observed if

some of the subjects coordinate in collusive equilibria.

All experiments with a …xed number of rounds unknown to subjects raise the

problem that the experimenter can not control for the players’ beliefs with respect to

the continuation of the game36.

Previous experimental results do not provide much support for the theory of

36This type of design also adds a source of incomplete information since subjects may not know

what others subjects beliefs are.

73



in…nitely repeated games or much hope that self-enforcig reward and punishment

schemes are used to overcome opportunistic behavior. But given the shortfalls of

some experiments’ design, (i.e. no real interaction among subjects, …nal earnings

that are not proportional to the payo¤s during the game, low earnings, …xed number

of rounds unknown to the subjects and lack of control sessions), and the complicate

environment of others (i.e. environments of incomplete information), previous exper-

imental evidence is insu¢cient to assess the degree in which the theory of in…nitely

repeated games is supported empirically. This paper presents results from an experi-

ment that was designed to overcome the mentioned shortcomings and shows that not

only the shadow of the future matters, but that its e¤ect is signi…cant and that it

closely, but not perfectly, follows the theoretical predictions.

3.3 Experiment design

As mentioned before, this experiment was designed to overcome the shortcomings

of the previous literature and allow for a better testing of the theory of in…nitely

repeated games. Then, we use simple stage games: prisoner’s dilemma games. The

subjects interacted with each other through computer terminals anonymously (see

Figure 1) and the pairing of subjects was done such that there was no possibility of

interaction or contagious e¤ects among the di¤erent repeated games. We controlled

for the subjects’ discount factor by having a know probability of continuation. The

subjects’ …nal payo¤ were proportional to the points earned during the experiment

plus a show up fee. The exchange rate points/$ made sure that subjects had a

signi…cant incentives to try to increase their earnings.

In addition, the experimental design incorporates new elements that allow for

a better testing of the theory of repeated games. First, in addition to the random

continuation rule sessions, we run sessions with …xed …nite horizon games. The length
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Figure 12: Computer screen that subjects saw before each interaction.

of the …xed …nite horizon sessions were chosen to coincide with the expected length

of the random continuation rule ones. Therefore, for the …rst time in the literature,

the experimental design allows us to compare the results from the in…nite repeated

sessions with the results from …xed …nite horizon repeated games to test whether

cooperation depends on “the shadow of the future”, as theory predicts, or merely on

the length of the games.

Second, we considered two di¤erent prisoner’s dilemma games that results in dif-

ferent set of equilibrium outcomes for some discount factors. In this way we can study

how closely the experimental results follow the theoretical predictions.

I explain next the main characteristics of the experiment in greater detail.

Stage game payo¤s: We consider two di¤erent stage games payo¤s, denoted PD1
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and PD237:

Table 2: Stage game payo¤s in points

PD1 PD2

Blue player

Red

player

C D

C 65 , 65 10 , 100

D 100 , 10 35 , 35

Blue player

Red

player

C D

C 75 , 75 10 , 100

D 100 , 10 45 , 45

The set of equilibrium outcomes for the in…nitely repeated verion of these games

are described in the next seccion.

Public randomization device: To allow subjects to coordinate actions and rotate

through di¤erent outcomes, every ten seconds a random number between 1 and 1000

was displayed on a screen at front of the room.

Subjects’ total earnings: All payo¤s in the game were in points. At the end of each

session, the points earned by each subject were converted into dollars at the exchange

rate 200 points=$1 and paid privately in cash. In addition, subjects were paid a 5

dollar show up fee. In this way, subjects’ real earnings in dollars are proportional (up

to a constant) to the “points” obtained during the experiment. In addition, these

amounts seem signi…cant enough to in‡uence subjects’ behavior. In a session with

…xed …nite horizon games and 30 (60) subject the di¤erence between the maximum

and minimum possible earning is above 15 (31) dollars38.

In…nitely repeated games: In one half of the sessions a random continuation rule
37While in the experiment the actions were called U and D for Red subjects and L and R for Blue

subjects, we will use here the usual names C and D.
38 In the sessions with a random continuation rule this di¤erence depends, of course, on the real-

ization of the random continuation rule.
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was used to induce in…nitely repeated games. This was done by having one of the

subjects -who had been selected as the monitor- roll publicly a four sided die after

each round. The randomization generates an in…nitely repeated game given that at

the moment of choosing an action there is always the possibility of interacting in

future rounds with the same partner.

The probability of continuation ±, of which three di¤erent values were considered,

is the principal treatment variable in these sessions. One treatment corresponds with

the one-shot game case: ± = 0 and the rest corresponds with positive probability of

continuations: ± = 0:5; 0:75. This treatment variable allows us to control for the

subjects’ beliefs on the probability of continuation. We call these sessions “Dice”

sessions.

Finitely repeated games: In the other half of the sessions …xed …nite horizon games

were used. We considered three treatments that allows me to compare results with

the in…nitely repeated games experimental results: 1) one-shot game: H = 1, 2) two

rounds repeated game: H = 2 and 3) four rounds repeated game: H = 4. Note that

each of this treatments coincides in the number of rounds with the expected number

of rounds in one of the random continuation rule treatments39. The number of rounds

was common knowledge among the subjects. We call these sessions “Finite” sessions.

Order of treatments: To control for learning e¤ects from one treatment to another,

two sessions were run for each kind of continuation rule and payo¤ matrix. For

example, for PD1 and Dice we run one session with the order (± = 0, ± = :5, ± = :75)

and another with the inverse order (± = :75, ± = :5, ± = 0). We call the …rst kind of

session “Normal” and the last kind “USD” (up-side-down).

39 In the in…nitely repeated game with a continuation probability of ±, the expected number of

stages is equal to 1
1¡± . Therefore, the expected number of stages in the random continuation session

will be 1, 2 and 4 for ± equal to 0, 0.5 and 0.75, respectively.
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Matching procedure: A rotation matching scheme was used to avoid potential

interaction and contagious e¤ects between the di¤erent repeated games40. In each

session subjects were divided in two groups: Red and Blue. In each match every Red

subject was paired with a Blue subject. No pair consisted twice of the same subjects.

In addition, subjects were not paired with someone that had played with some that

had played with him or her or with someone that had played with someone that had

played with someone that had played with him or her, and so on. Thus, the pairing

was done in such a way that the decisions one subject made in one match could not

a¤ect, in any way, the decision of subjects he or her would meet in the future. All

these features were explained and made clear to the subjects.

Given that each subject was only matched once with each subject of the other

color, the total number of matches in a session is N
2
, where N is the number of subject

in a session. Given that there are three treatment per session, in each treatment

there are N
6

matches. The size of the experimental lab CASSEL allowed us to run

experiments with up to sixty subjects, what provided up to ten matches per treatment

per subject. This provided enough matches for the subjects to familiarize with the

game in each treatment leaving enough observations to analyze.

Sessions: Given the two stage games (PD1 and PD2), the di¤erent continuation

rules (Dice and Finite), the di¤erent treatments (± = 0; :5; :75, and H = 1; 2; 4), and

the change in the order of the treatments (Normal and USD), this experiment consists

of eight sessions with three treatments each. Each treatment, or part, consists of one

practice match for wich subject are not paid and N
6

real matches, where N is the

number of subjects in the session. Each match consists of as many rounds as the

continuation rule indicates.
40Note that, given Kandori [?, kandori92]’s contagious equilibrium, random matching is not enough

to isolate the di¤erent games.
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PD1 PD2

C, C

D, C

C, C

D, C

D, D

C, D C, D

D, D

Figure 13: Equilibrium average payo¤s V (±)

3.4 Theoretical predictions

As discussed in the previous section, the random continuation results in an in…nitely

repeated game in the sense that there is always the possibility of future interaction.

If we assume that the payo¤s in Table 2 are the actual total payo¤s that the subjects

obtain from the game and this is common knowledge, that is if we abstract from

problems of interdependent utilities, altruism, taste for cooperation and reputation

e¤ects, the set of subgame perfect equilibria can be calculated using the results in

Stahl [51]. Figure 2 shows the set of equilibrium average payo¤s (V (±)) in each game

for each of the discount factors used in the experiment. The outcomes that can be

supported in equilibrium -and therefore the outcomes accordingly with theory we

should observe- for the di¤erent discount factors are presented in Table 3.

New equilibria appear as the discount factor increases, allowing the subjects to

reach -in principle- higher levels of cooperation and payo¤s. We can think that some
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Table 3: Equilibrium outcomes

± PD1 PD2

0 DD DD

0.5 DD, CD, DC DD, CC

0.75 DD, CD, DC, CC DD, CD, DC, CC

subjects will make the most of this opportunity to cooperate, regardless of the fact

that DD remains an equilibrium for high discount factors. Therefore, we have the

following testable hypothesis41:

Hypothesis 1: The larger ±, the larger the levels of cooperation.

In the …xed and …nite horizon sessions the theoretical prediction is that no coop-

eration is possible. Therefore I have the following testable hypothesis42:

Hypothesis 2: In…nitely repeated games ( ± = :5 and ± = :75) result in larger

levels of cooperation than …nitely repeated games (H = 2 and H = 4).

From Table 3 we see that the set of equilibrium outcomes is di¤erent for PD1 and

PD2 for ± = :5. Under that discount factor, CC can be played in equilibrium for PD1

41 It is important to note that for this hypothesis it is not necessary to assume that the subjects’

only payo¤s from the stage game are the ones in Table 2. With di¤erent payo¤s the predictions

presented in Figure 2 and Table 3 may not be appropriate, but Hypothesis 1 can still be true. Abreu,

Pearce and Stacchetti [3] showed that the set of equilibrium payo¤s (and consequently the set of

outcomes) that can be observed in a in…nitely repeated game (even with imperfect monitoring), can

not decrease when the discount factor increases. Then, for any stage game in which DD is the only

Nash equilibrium, increases in the discount factor result in increases in the levels of cooperation.
42As mentioned before, the levels of cooperation in a …nitely repeated game may be above the

levels from one shot games given reputation e¤ects. Unfortunately, there is no theoretical result that

allow us to compare the set of equilibrium outcomes between …nitely and in…nitely repeated games

under incomplete information. Therefore, the following proposition is based solely on the theory for

repeated games under complete information.
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while that is not the case under PD243. Therefore, we have the following testable

hypothesis:

Hypothesis 3: For ± = :5, the payo¤s PD2 result in more outcomes CC than

PD1.

The …rst two hypothesis are quite general in the sense that they can be sumarized

by the statement that “the shadow of the future matters.” The last hypothesis,

instead, is quite speci…c in the sense that it is closely based on the speci…ed payo¤

matrixes. Because of this close dependance on the payo¤ matrixes, Hypothesis 3 may

seem more likely to be rejected and, then, a more strict test of the theory of in…nitely

repeated games.

3.5 Experimental results

Given the two stage games (PD1 and PD2), the di¤erent continuation rules (Dice

and Finite), the di¤erent treatments, and the change in the order of the treatments

(Normal and USD), this experiment consists of eight sessions with three treatments

each. The main descriptive statistics of these sessions are in Table 4. The exper-

imental sessions were run between November 2001 and April 2002 with an average

length of one hour (without counting the time to pay subjects). Without counting the

subjects selected to be monitors, 390 subjects participated in the experiment, an av-

erage of 48.75 subjects per session with a maximum of 60 and a minimum of 30. The

subjects were UCLA undergraduates recruited through advertisement in university

webpages and signs posted on campus. A 22.31% of these undergraduates declared

that they were in one of the Economics major programs (Economics, Business Eco-

nomics, Mathematics/Economics and Economics/International Area Studies).

43Note that cooperation can still be observed in equilibrium for PD1 given that the outcomes CD

and DC can be part of an equilibrium.
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The subjects performed a total of 22,482 actions with an average of approximately

2810 actions per session and 58 actions per subject. They earned an average of $18.94

with a maximum of $25.85 and a minimum of $12. The total payment to subjects

was of $7387.55 (without considering the payments to the monitors and students that

showed up but did not participate in the experiment).

Even when subjects participated in a practice match before the real matches of

each treatment, we should expect to see during the …rst matches of each treatment

some learning regarding the treatment characteristics and other’s subjects behavior.

As you can see in Table 5, there is clear learning regarding the possibilities of co-

operation in the ± = 0 treatment of the Dice sessions and all the treatments of the

Finite sessions (that is, in all the treatments with …xed and …nite repeated games).

For example, in the ± = 0 treatment, cooperation goes from above 26% in the …rst

match to less than 11% in the third match.

Given this learning regarding the treatments, in the analysis of the experimental

result we focus on the matches after the third.

3.5.1 Does cooperation increase with the shadow of the future?

Our …rst objective is to study how changes in the probability of future interaction

a¤ect the levels of cooperation. The experimental results show that the greater the

shadow of the future, the larger the levels of cooperation. Considering the aggregate

results for the Dice sessions (matches after third and all rounds) we see that cooper-

ation is just above 9% for the one shot treatment, while it is above 27% and 37% for

± = :5 and ± = :75, respectively -see Table 6. These di¤erences are statistically sig-

ni…cant with p values of less than 0.001. Therefore, the experimental results support

Hypothesis 1: the larger ±, the larger the levels of cooperation.

In addition, these results show that the e¤ect of the shadow of the future is of an
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Table 4: Sessions’ descriptive data
PD1

Dice Finite

PD2

Dice Finite

Normal

Date

Time*

Subjects

Any Econ+

Actions

Ave Earning

Max Earning

Min Earning

Total $

11/6/01 11/13/01

2:30-3:28 4:45-5:31

42 30

23.81% 23.33%

2268 1050

17.09 13.03

19.40 15.23

13.48 12.05

717.7 390.85

2/7/02 4/18/02

1:45-2.56 5:15-6:25

54 48

12.96% 18.75%

3132 2688

19.91 19.36

22.18 21.88

15.98 15.48

1075.10 929.20

USD

Date

Time*

Subjects

Any Econ+

Actions

Ave Earning

Max Earning

Min Earning

Total $

11/29/01 11/20/01

5:10-6:05 5:10-6:05

42 54

16.67% 12.96%

1722 3402

14.37 17.77

16.23 21.55

12.18 12

603.65 959.45

4/9/02 4/15/02

4:45-5:53 4:45-5:54

60 60

31.67% 35%

4020 4200

23.09 22.11

25.85 25.10

19.93 17.15

1385.10 1326.50

*Starting Scheduled time and …nal actual time.
+Percentage of all Economics majors in the session.
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Table 5: Percentage of cooperation by match and treatment*
Match

Dice

± = 0

± = :5

± = :75

1 2 3 4 5 6 7 8 9 10

26.26 18.18 10.61 11.62 12.63 12.63 5.56 5.26 5.26 5

28.36 27.12 34.58 35.53 21.60 19.08 29.84 35.96 28.16 50

40.44 28.57 27.78 32.92 46.51 33.09 44.05 53.51 42.26 45.83

Finite

H=1

H=2

H=4

26.56 18.23 16.67 17.19 11.98 8.02 6.79 10.49 6.14 6.67

19.79 15.89 14.84 9.64 11.46 10.80 12.04 10.19 6.58 6.67

31.64 30.34 30.47 25.52 25.13 23.77 16.36 19.75 14.91 20.83

*All rounds.

Table 6: Percentage of cooperation by treatment*

Dice Finite

± = 0 9.17

± = :5 27.41

± = :75 37.64

H=1 10.34

H=2 10.11

H=4 21.43

*Matches after third and all rounds.

important magnitude: the percentage of cooperation for ± = :75 is almost three times

greater than for the one shot treatment. This magnitude is greater than previously

studies have indicated. For example, in the public good experiments with incomplete

information of Palfrey and Rosenthal [42] the percentage of contributions increases

only from 29% to 40% when the treatment changes from one shot games to a random

continuation rule with ± = :9. This is also the case if we compare the results of this

experiment with the results from Roth and Murnighan [50] and Murnighan and Roth

[40]44. While in those experiments the percentage of cooperation in the …rst round

44Given the described characteristics of these experiments we compare the results for the …rst

round of each match.
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Figure 14: Cooperation by treatment (matches after third and all rounds)

less than doubles when the probability of continuation increases from 0.105 to 0.895,

in this experiment the percentage cooperation is four times higher with a probability

of continuation of 0.75 than in one shot games. These results support the idea that

in…nitely repeated interaction can signi…cantly reduce opportunistic behavior.

3.5.2 In…nitely repeated games vs. …nitely repeated games

Our second objective is to compare the levels of cooperation in the Dice and Finite

sessions. As Table 6 shows, the percentage of cooperation is similar for the one shot

treatments in both types of sessions (p value = 0.507), showing that there are no

signi…cant di¤erences in the “kind” of people that participated in each session. More

importantly, the percentage of cooperation is greater in the in…nitely repeated games

than in the …nitely repeated games (with p values of less than 0.001). Therefore, the

experimental results support Hypothesis 2: in…nitely repeated games result in larger

levels of cooperation than …nitely repeated games.
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Studying the levels of cooperation by round for each of the treatments (Table 7)

results in further support for the theory of repeated games. In the fourth round of the

± = :75 treatment the level of cooperation is signi…cantly greater than in the fourth

(and last) round of the H = 4 treatment (34.58% against 10.63%, with p value of

less than 0.001). The level of cooperation in the …nal round of the H = 4 treatment

is similar to the level of cooperation in one shot games. Therefore, the absence of a

future a¤ects subjects behavior in the …nal round of the …xed …nite horizon games.

They cooperate less when there is no future. This seems to be understood by the

subjects at the beginning of the game. The levels of cooperation in the …rst round

are much greater in in…nitely repeated games than in …nitely repeated games (46.20%

against 34.58%, with p value of less than 0.001). Similar reasonning applies to the

comparison of the behavior for ± = :5 and H = 2.

Table 7: Percentage of cooperation by round and treatment*
Round

Dice

± = 0

± = :5

± = :75

1 2 3 4 5 6 7 8 9 10 11 12

9.17

30.93 26.10 19.87 12.50 12.96

46.20 40.76 38.76 34.58 33.04 27.27 24.75 26.28 29.17 26.04 32.29 31.25

Finite

H=1

H=2

H=4

10.34

13.31 6.90

34.58 21.55 18.97 10.63

*Matches after third.

3.5.3 Do payo¤ details matter?

Our third objective is to compare the outcomes under PD1 and PD2 when ± = :5.

Remember that CC is not an equilibrium outcome under PD1 but it is under PD2.
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Consistent with that, the percentage of outcomes in which both players cooperate

is signi…cantly lower under the payo¤ matrix PD1 than under PD2 (3.17% against

18.83% with a p value of less than 0.001). Then, the experimental results support

Hypothesis 3: For ± = :5, the payo¤s PD2 result in more outcomes CC than PD1.

Table 8: Distribution of outcomes for ± = :5*
PD1 PD2

CC 3.17 18.83

CD 16.67 11.00

DC 11.90 14.50

DD 68.25 55.67

*Matches after third and all rounds.

The percentage of outcomes in which only one subject cooperates (CD and DC)

is greater under PD1 than under PD2 (28,57% against 25.50%) as theory predicts.

Nevertheless, this di¤erence is not statistically signi…cant (p value of 0.19) pointing

out the di¢culty of coordinating on alternating asymetric outcomes even when there

is a public randomization device available.

3.5.4 Do Economics majors behave di¤erently?

It is important to note that the support for all three hypothesis does not depend

on the major of the subjects. All three hypothesis are supported by the experimen-

tal results for students in any of the Economics majors and students in the rest of

the majors. With respect to the …rst two hypothesis, for both Economics majors

and Non-Economics majors cooperation increases as the probability of future inter-

action increases and cooperation is greater in in…nitely repeatd games than in …nitely

repeated games -see Table 9.

Notewistanding this, there are di¤erences in behavior across majors. Economics
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majors cooperate signi…cantly less than Non-Economics majors in games with a …xed

…nite horizon (this di¤erence is signi…cant for the Finite sessions with p values of 0.009,

0.042 and less than 0.001 for H=1, 2 and 4, respectively, but it is not signi…cant for

± = 0 with p value of 0.45). Instead, the evidence is contradictory regarding in…nitely

repeated games. While Economics majors cooperate more than Non-Economics ma-

jors for ± = :5 (p value of less than 0.001), that is not the case for ± = :75. In fact,

the percentage of cooperation is lower for Economics majors, but this di¤erence is

not signi…cant (p value of 0.159).

Table 9: Percentage of cooperation by treatment and major*

Dice Finite

Non-Econ Econ

± = 0 9.68 7.41

± = :5 26.65 29.97

± = :75 38.93 33.15

Non-Econ Econ

H=1 12.19 4.44

H=2 11.12 6.85

H=4 23.81 13.81

*Matches after third and all rounds.

With respect to the third hypothesis, for both types of majors PD1 results in a

lower percentage of CC than PD2 when ± = :5 (p values of less than 0.001 for both

types of majors). Nevertheless, it is interesting to note that this e¤ect is stronger for

Economics majors.

3.6 Conclusions

The experimental evidence presented in this paper provides strong support for the

extensive use of the theory of in…nitely repeated games by showing that the shadow

of the future matters, it signi…cantly reduces opportunistic behavior and it does it in

a way that closely follows the theoretical predictions.
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Table 10: Distribution of outcomes for ± = :5 and major*

PD1 PD2

CC

CD

DC

DD

Non-Econ Econ

2.55 5.36

18.88 8.93

12.76 8.93

65.82 76.79

Non-Econ Econ

14.02 30.81

10.51 12.21

14.25 15.12

61.21 41.86

*Matches after third and all rounds.

The data produced in this experiment deserves further study. It remains for

future work to analyze the reward and punishment schemes used by the subjects. It

would also be important to study whether, given these schemes, subjects’ behavior

constitutes an equilibrium, or how close they are to an equilibrium, by measuring

subjects’ average losses as in Fudenberg and Levine [21].
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4 Appendices

4.1 Apendix to chapter 1

Proof of Theorem 5: Consider the following social norm that yields v in equilib-

rium: if player i meets player j, and both are nice (zi = zj = 0), they play (aij; aji);

if a nice player i meets a guilty player j (zi = 0, zj 6= 0) the former plays m and the

latter plays r, (that is, the nice player punishes the guilty one, and this “asks” for

forgiveness); and if two guilty players (zi 6= 0, zj 6= 0) meet they both play m. The

local information system works as follows: if a player deviates he gets a ‡ag z = T ,

denoting that he has to be punished for T periods; if a guilty player conforms he has

his ‡ag reduced one unit and if a nice player conforms he keeps the z = 0 ‡ag.

To prove that the former is a sequential equilibrium I show that no player has

incentives to deviate after any possible history if the rest of the players follow the

social norm. As in the previous proposition, this makes beliefs unimportant, since

regardless of what has happened in the past no player has incentives to deviate. First

I check that a nice player has no incentives to deviate and second, I check that a

guilty player has no incentives to deviate.

When a nice player studies if he should conform or deviate he must not only

consider today’s pro…t from the deviation but also the loss in the future T periods of

punishment. This loss depends on whether the other players are nice or guilty and the

payo¤ that the player receives upon meeting each nice player. De…ne gij = g(aij; aji)

as the payo¤ that a nice player i receives for playing with a nice player j. If j is nice,

player i would face a future loss for deviating today equal to gij ¡ g every time he

meets player j in the next T periods (remember that g(r;m) = g). If j is guilty the

future loss by deviation for i, when he meets j, would be g(m; r) ¡ gm. Hence for a

nice player i the future loss for deviating today each time he meets player j would
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be greater when the latter is nice if gij ¡ g > g(m; r) ¡ gm. Therefore when gij >

g(m; r) ¡ gm + g player i has more incentives to deviate when j is guilty than when

j is nice.

If the former inequality holds for every j with ®ij > 0, a nice player i would have

the greatest incentive to deviate when the other players are T -guilty. In that case, if he

conforms with the prescribed strategy he would get at least (1¡±)g(m; r)+±v0i where

v0i =
¡
1¡ ±T¡1

¢
g(m; r) + ±T¡1vi. By deviating he would get at most (1¡ ±)g + ±vp1i ,

where vp1i =
¡
1¡ ±T¡1

¢
gm + ±

T¡1(1¡ ±)g + ±Tvi. Choose T so that ±T = d 2 (0; 1).

Then, given that g(m; r) > gm ¸ g, it is true that v0i > vp1i independently of ±.

Therefore, for ± large enough it is true that (1¡ ±)g(m; r) + ±v0i > (1¡ ±)g + ±vp1i .

If gij < g(m; r) ¡ gm + g for every j with ®ij > 0, player i has more incentives

to deviate when all the other players are nice. In this case he would get at least

(1¡±)g+±vi by conforming and at most (1¡ ±) g+±
£¡
1¡ ±T

¢
g + ±Tvi

¤
by deviating.

Since vi > g, choosing T so that ±T = d 2 (0; 1), the former is greater than the latter

for ± large enough.

It could also be the case that player i faces players with whom the inequality is sat-

is…ed with probability ®, and with probability (1¡®) faces players with whom it is not

satis…ed. In this case the incentives for i to deviate will be the highest when the players

belonging to the …rst group are T -guilty and the rest are nice. By conforming he would

get at least (1¡±)g+±v00i , where v00i =
¡
1¡ ±T¡1

¢ ¡
®g(m; r) + (1¡ ®)g

¢
+±T¡1vi and by

deviating he would get at most (1¡±)g+±vp2i , where vp2i =
¡
1-±T¡1

¢ ¡
®gm + (1-®)g

¢
+

±T¡1(1-±)g + ±Tvi. Choose T so that ±T = d 2 (0; 1). Then, given that g(m; r) > gm,

it is true that v00i > vp2i independently of ±. Therefore, for ± large enough it is true

that (1¡ ±)g + ±v00i > (1¡ ±)g + ±vp2i .

Consider the case of a ¿¡guilty player i. De…ne ®t as the probability that i will

be matched with a guilty player at time t. The least he can make by conforming with
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the prescribed strategy is:

(1¡±)
�
g +

¿P
t=2

±t¡1
¡
®tgm + (1¡ ®t)g

¢
+

TP
t=¿+1

±t¡1
¡
®tg(m; r) + (1¡ ®t)g

¢¸
+±Tvi

(remember that g(r;m) = g) and by deviating he can get at most:

(1¡±)
�
¿P
t=2

±t¡1
¡
®tgm + (1¡ ®t)g

¢
+

TP
t=¿+1

±t¡1
¡
®tgm + (1¡ ®t)g

¢
+ ±Tg

¸
+±T+1vi

Therefore the gains from conforming are at least:

(1 ¡ ±)

�
±Tvi +

TP
t=¿+1

±t¡1®t (g(m; r)¡ gm) +
¡
1¡ ±T

¢
g

¸
.45 By Assumption 1 the

second term is non negative for any sequence of ®t. Hence, it is enough to have

±Tvi+
¡
1¡ ±T

¢
g > 0 for the gains from conforming to be positive. This can be done

by choosing ±T = d large enough.

Note that there is no contradiction in the requirements made on ± and T in the

two parts of the proof, it is only required that ±T = d and ± are large enough. ¥

Proof of Proposition 6: Consider the following social norm that yields v in

equilibrium: if player i meets player j, and both are nice (zi = zj = 0), they play

(aij; aji); if a nice player i meets a guilty player j (zi = 0, zj = 1) the former plays m

and the latter plays r; and if two guilty players (zi = zj = 1) meet they minmax each

other. The local information system works as follows: if a player deviates he gets a

‡ag z = 1, denoting that he has to be punished; with probability p 2 (0; 1) all the

guilty players that have conformed last period are forgiven and get a ‡ag z = 0 or

remain guilty (z = 1) with probability (1¡ p); and if a nice player conforms he keeps

the z = 0 ‡ag.

First I check that a nice player has no incentives to deviate and second, I check

that a guilty player has no incentives to deviate.

As in the proof of Theorem 5, for a nice player i the future loss by deviating today

45This formulas are only valid for the case of ¿ < T . For the case in which ¿ = T , a

similar formula for the gains from conforming results. The only di¤erence is that in the

latter case the second term disappears.
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each time he meets player j would be greater when the latter is nice if gij ¡ g >

g(m; r) ¡ gm. Therefore if gij > g(m; r) ¡ gm + g player i has more incentives to

deviate when j is guilty than when j is nice.

If the former inequality holds for every j with ®ij > 0, a nice player i would

have the greatest incentive to deviate when the other players are guilty. Using the

recursiveness of the problem it can be found that the expected utility player i receives

by conforming is 1
1¡±p [(1¡ ±)g(m; r) + ±(1¡ p)vi] while by deviating he receives at

most (1¡ ±)g + ±(1¡±)
1¡±p

£
pgm + (1¡ p)g

¤
+ ±2(1¡p)

1¡±p vi.

Calculating the di¤erence between them and simplifying, for player i not to have

incentives to deviate it must be the case that 1
1¡±p

£
g(m; r)-±

¡
pgm+(1-p)g

¢
+±(1-p)vi

¤
¸

g. From Assumption 1 and vi > 0, it must be true that the term in brackets is positive,

therefore, the inequality is satis…ed for ±p large enough.

If gij < g(m; r) ¡ gm + g for every j with ®ij > 0, player i has more incentives

to deviate when all the other players are nice than when they are guilty. In this

case he would get at least (1 ¡ ±)g + ±vi by conforming and (using the recursive-

ness of the problem) at most (1¡ ±) g + ±(1 ¡ ±)g + ±2

1¡±p
£
p(1¡ ±)g + (1¡ p)vi

¤
by

deviating. Then, for player i not to have incentives to deviate it must be the case

that ±
1¡±p

¡
vi ¡ g

¢
¸ g ¡ g. Given that vi > g, the inequality is satis…ed for ±p large

enough.

It could also be the case that player i faces players with whom the inequal-

ity is satis…ed with probability ®, and with probability (1 ¡ ®) faces players with

whom it is not satis…ed. In this case the incentives for i to deviate will be the

highest when the players belonging to the …rst group are guilty and the rest are

nice. In this case it can be shown that player i has no incentives to deviate if

±
1¡±p

£
p®(g(m; r)¡ gm)¡ (1¡ p)g + ±(1¡ p)vi

¤
¸ g ¡ g. From Assumption 1 and

vi > 0, it must be true that the term in brackets is positive (remember that g 6 0),
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therefore, the inequality is satis…ed for ±p large enough.

If player i is guilty it can be shown that, regardless of the other players ‡ags, he

does not have incentives to deviate if ±(1 ¡ p)vi + (1 ¡ ±)g ¸ 0. This inequality is

satis…ed for ±p large enough.

Note that there is no contradiction in the requirements made on ± and p in the

four di¤erent parts of the proof: it is only required that ±; p 2 (0; 1) with ± and p

large enough. ¥

4.2 Appendix to chapter 2

Proof of Lemma 10: It is straight forward to see that if aB > ©(¼m) perfect

collusion can be supported for any discount factor. If that condition does not hold,

de…ne

b±(B) =

8
><
>:

min
±2[a;b]

f± j ©(¼m) � ±Bg if ©(¼m) � bB

b if ©(¼m) > bB

If aB � ©(¼m) � bB there exists a number b±(B) that makes ©(¼m) = b±(B)B by

continuity of a linear function. If bB < ©(¼m), b±(B) = b. Therefore, b±(B) exists (and

is continuous).

When ± > b±(B), the incentive compatibility constraint is not binding since ¼m

could be supported with even a lower discount factor. On the opposite case, when ± <

b±(B), the incentive compatibility constraint is binding given that under Assumption

2, d©
d¼
= d¼d

dq
dq
d¼

¡ 1 > 0.

Since ©(¼) is increasing for ± � b±(B), its inverse exists in the relevant rage and the

incentive compatibility constraint can be written as a function of ±B, ¼(±) � ©¡1+ (±B),

for ± � b±(B). Since d©
d¼
> 0, this constraint is increasing in the discount factor. Finally,

given that ©(¼) is continuous ©¡1+ (±B) is also continuous. ¥
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Proof of Lemma 11: Since ©(¼) is decreasing in (¡1; ¼c], its inverse exists in

that range and the incentive compatibility constraint can be written as a function of

±B, ¼(±) ¸ ©¡1¡ (±B), which is decreasing in the discount factor. Finally, given that

©(¼) is continuous ©¡1¡ (±B) is also continuous. ¥

Proof of Lemma 15: From the stick and carrot property of the optimal punish-

ment, Lemma 13, the continuation payo¤s of both the highest and lowest equilibrium

discounted payo¤ coincide and V (±)¡V (±) = ¼¤(±)¡©¡1¡
³
±
h
E¼¤

1¡± ¡ EV
i´

. From the

characterization of V (±) and equation (12) we know that the shape of ¼¤(±) depends

on the shape of the IC+-F constraint. In the IC range the concavity of the constraint is

determined by the sign of
d2©¡1+
d±2

. By Assumptions 2 and 3, d
2©
d¼2

= d2¼d

dq2

¡
dq
d¼

¢2
+ d¼d

dq
d2q
d¼2

¸

0, and by Lemma 11,
d©¡1+
d±

> 0, then
d2©¡1+
d±2

= ¡B2

(d©d¼ )
2
d2©
d¼2

d©¡1+
d±

� 0 and ©¡1+ is concave.

The F range of the constraint is also concave, since it is a constant. Hence, given

that the IC+-F constraint is increasing and continuous, the IC+-F constraint is in-

creasing and concave and so is ¼¤(±). From equation 13 we know that V (±) is convex

if ©¡1¡ (:) is also convex. By Assumptions 2 and 3, d
2©
d¼2 =

d2¼d

dq2

¡
dq
d¼

¢2
+ d¼d

dq
d2q
d¼2 ¸ 0, and

by Lemma 12,
d©¡1¡
d± < 0, then

d2©¡1¡
d±2

= ¡B2

( d©d¼ )
2
d2©
d¼2

d©¡1¡
d± ¸ 0 and ©¡1¡ is decreasing and

convex. Therefore, ¼¤(±)¡ ©¡1¡
³
±
h
E¼¤

1¡± ¡ EV
i´

is increasing and concave on ±. ¥

Optimal collusion and linear programming: Consider the case in which the

discount factor takes in every period one of L values: ±1; ±2; ::; ±l; :::; ±L. Denote as T

the transition matrix, where tls denotes the probability that the future discount factor

is ±s given that today’s is ±l. Let V be the column vector of discounted continuation

payo¤s and ¦ the column vector of pro…ts given the discount factor. De…ne bT as

the matrix for which btls = ±ltls. Then, V = ¦ + bTV , the incentive compatibility

constraint is (N ¡ 1)¦ � bTV and the feasibility constraint is ¦ � ¼m1L, where 1L

is a column vector of ones. Then, the optimal tacit collusion pro…ts result from the

following problem:
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max®¦ subject to:
�
(N ¡ 1) I ¡ bT

³
I ¡ bT

´¡1¸
¦ � 0L and ¦ � ¼m1L, where ®

is any non-negative row vector.

4.3 Appendix to chapter 3: Instructions for PD2-Dice-USD

Session (4/9/02)

Welcome

You are about to participate in a session on decision-making, and you will be paid

for your participation in cash, privately at the end of the session. What you earn

depends partly on your decisions, partly on the decisions of others, and partly on

chance.

Please turn o¤ pagers and cellular phones now. Please close any program you may

have open on the computer.

The entire session will take place through computer terminals, and all interaction

between you will take place through the computers. It is important that you not talk

or in any way try to communicate with other participants during the session.

We will start with a brief instruction period. During the instruction period you

will be given a description of the main features of the session and will be shown how

to use the computers. If you have any questions during this period, raise your hand

and your question will be answered so everyone can hear.

General Instructions

In this session one participant will act as a monitor. The monitor will be paid

a …xed amount for the session. The monitor will assist in running the session and

checking that the session is run correctly. We will select the monitor now.

Open your envelope, and read the record sheet inside. If your sheet says ”monitor”

you are the monitor. Will the monitor please come to the master computer. If your
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sheet does not say ”monitor” you will use this sheet later to record your participant

number that will be assigned by the computer and your …nal score. Keep your sheet

in a safe place, you will need it at the end of the session to receive your payment.

At this time, please pull out the dividers that separate you from your neighbors.

During the course of this session, please refrain from communicating with your neigh-

bors.

Please double click on the Dice Icon.

In the dialog box, please enter your full name and select server #128.97.190.171,

as shown on the screen at the front of the room, and click OK. This will log you on

to the session. In the upper side of your screen you can see you ID number for this

session and your color - please look at the example on the screen in the front of the

room. Please write your participation ID number in the record sheet that came in

the envelope.

[Wait for people to …ll in the record sheet]

Any question?

The session you are participating in is broken down into 3 separate parts. At the

end of the last part, you will be paid the total amount you have accumulated during

the course of the 3 parts in addition to the show-up fee. Everybody will be paid in

private after showing the record sheet. You are under no obligation to tell others how

much you earned.

During the session all the earnings are denominated in points. Your dollar earnings

at the end of the session are determined by the points/$ exchange rate posted on the

board in the front and back of the room. This exchange rate is equal to 200points/$.

Therefore, 200 points are equivalent to $1.

The participants are divided in two groups: Red and Blue.

Red and Blue participants will be matched together to interact in the following

97



way. As you see on the screen at the front of the room, the Red participant can

choose between U or D and the Blue participant can choose between L and R.

If the Red participant chooses U and the Blue participant chooses L, both earn

75 points.

If the Red participant chooses U and the Blue participant chooses R, the Red

participant earns 10 and the Blue participant earns 100 points.

If the Red participant chooses D and the Blue participant chooses L, the Red

participant earns 100 and the Blue participant earns 10 points.

If the Red participant chooses D and the Blue participant chooses R, both earn

45 points.

The points of the Red participants are indicated on the screen in red, and the

Blue participant points are indicated in blue.

In addition, the screen will show on the right hand side the result of previous

rounds of the current match.

Every ten seconds, we will generate a random number between 1 and 1000 and

project this number on the screens in the front of the room. You can use this number

to select one of the actions, if you want, like the ‡ip of a coin. For example, if you

are a Red participant, you can decide to choose U any time the random number is

above, say, 200.

Part 1

We will begin the …rst part now. This …rst part will consist of 10 matches. In

each match every Red participant is paired with a Blue participant. You will not be

paired twice with the same participant during the session or with a participant that

was paired with someone that was paired with you or with someone that was paired

with someone that was paired with someone that was paired with you, and so on.

Thus, the pairing is done in such a way that the decisions you make in one match
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cannot a¤ect the decisions of the participants you will be paired with in later matches

or later parts of the session.

In this part, after each round the monitor will roll a four sided dice. If the

numbers 1, 2 or 3 appear, the participants will interact again without changing pairs.

If a 4 appears, the match ends and participants are re-matched to interact with other

participants. Therefore, in this part, each pair will interact until a 4 appears. After

that, a new match will start with di¤erent pairs. Therefore you will interact until a

4 appears, with 10 di¤erent participants.

But …rst, we are going to teach you about this part of the session and how to use

the computer by going through one practice match. During the practice part do not

hit any keys until you are told to do so. You are not paid for the practice match; it

is just for you to familiarize yourself with the session and the computer program.

[Begin Treatment 1 - Practice Part 1]

[Press OK to continue and press Start Treatment]

[Important: Tick Abort Current Match!!!!!]

Your screen shows the possible actions you can choose, the actions the participant

you are matched with can choose, and the points. You may choose your action by

pressing the desired action at the side of the matrix now. If you are a Red participant

you can press the actions in red, U or D, and if you are a Blue participant you can

press the actions in Blue, L or R. Make your choices now. Once everyone in the

room has made their selections and pressed con…rm, your results from this round will

appear on the screen.

[Wait until everybody has made a decision]

Monitor, would you please roll the dice?

[1) If a 1, 2 or 3 appeared press NO] A __ appeared therefore this match continues.

Now you are in the second (third, fourth, …fth,) round of the same match. You are still
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interacting with the same participant. Your screen shows all the same information

as before. In addition you can see on your right the result of the previous rounds.

[Important: Tick Abort Current Match!!!!!] You may choose your action by pressing

the desired action at the side of the matrix now. Make your choices now. Once

everyone in the room has made their selections and pressed con…rm, your results

from this round will appear on the screen. Monitor, would you please roll the dice?

[If 1, 2 or 3 appeared go to 1). If 4 appeared go to 2)]

[2) If a 4 appeared press YES] A 4 appeared therefore this match ended. On the

screen you see a dialog box with the points you earned during the practice match.

Press OK to end the practice match.

We have …nished with the practice match. Any questions?

We start now with the …rst part of the session. You will now participate in 10

matches, each match paired with a di¤erent participant. In each match you will inter-

act with the same person until a 4 appears. Remember: your decisions in one match

cannot a¤ect the decisions of the people you will interact with in future matches.

This is not a practice; you will be paid!

[Begin Treatment 2 - Part 1 Paid.]

[Press Start Treatment, press Yes]

[Important: Tick Abort Current Match!!!!!]

Make your choices now. Remember to press con…rm.

[Wait until everybody has made a decision]

Monitor, would you please roll the dice?

[1) If 1, 2 or 3 appears press NO] A __ appeared. This match continues. You

are still interacting with the same participant. [Important: Tick Abort Current

Match!!!!!] Make your choices now. Remember to press con…rm. Monitor, would you

please roll the dice? [If 1, 2 or 3 appeared go to 1). If 4 appeared go to 2)]
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[2) If 4 appears press YES] A 4 appeared. This match ends. On the screen you

will see a dialog box with the points you earned during this match. Press OK to be

matched with the next participant.

. . . .

This is the end of Part 1. On your screen you will see a dialog box indicating your

point and dollar points for this part. Press OK to move to the next part.

Part 2

We will begin the second part now. This part will consist of 10 matches. In each

match every Red participant is paired with a Blue participant. No pair will consist

of the same participants as in Part 1. As before, you will not be paired twice with

the same participant during the session or with a participant that was paired with

someone that was paired with you or with someone that was paired with someone

that was paired with someone that was paired with you, and so on. Thus, the pairing

is done in such a way that the decisions you make in one match cannot a¤ect the

decisions of the participants you will be paired with in later matches or later parts of

the session.

In this part, after each round the monitor will roll a four sided dice. If the

numbers 1 or 2 appear, the participants will interact again without changing pairs. If

3 or 4 appear, the match ends and participants are re-matched to interact with other

participants. Therefore, in this part, each pair will interact until a 3 or 4 appear.

After that, a new match will start with di¤erent pairs. Therefore you will interact

until a 3 or 4 appear, with 10 di¤erent participants.

But …rst, we are going to teach you about this part of the session and how to use

the computer by going through one practice match. During the practice part do not

hit any keys until you are told to do so. You are not paid for the practice match; it

is just for you to familiarize yourself with the session and the computer program.
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[Begin Treatment 3 - Practice Part 2]

[Press Start Treatment, press Yes]

[Important: Tick Abort Current Match!!!!!]

As before, your screen shows the possible actions you can choose, the actions the

participant you are matched with can choose, and the points. You may choose your

action by pressing the desired action at the side of the matrix now. Make your choices

now. Once everyone in the room has made their selections and pressed con…rm, your

results from this round will appear on the screen.

[Wait until everybody has made a decision]

Monitor, would you please roll the dice?

[1) If a 1 or 2 appeared press NO] A __ appeared therefore this match continues.

Now you are in the second (third, fourth, …fth,) round of the same match. You are still

interacting with the same participant. Your screen shows all the same information

as before. In addition you can see on your right the result of the previous rounds.

[Important: Tick Abort Current Match!!!!!] You may choose your action by pressing

the desired action at the side of the matrix now. Make your choices now. Once

everyone in the room has made their selections and pressed con…rm, your results

from this round will appear on the screen. Monitor, would you please roll the dice?

[If 1 or 2 appeared go to 1). If 3 or 4 appeared go to 2)]

[2) If a 3 or 4 appeared press YES] A __ appeared therefore this match ended.

On the screen you see a dialog box with the points you earned during the practice

match.

Press OK to end the practice match.

We have …nished with the practice match. Any questions?

We start now with the second part of the session. You will now participat in

10 matches, each match paired with a di¤erent participant. In each match you will
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interact with the same participant until a 3 or 4 appear. Remember: your decisions

in one match cannot a¤ect the decisions of the people you will interact with in future

matches. This is not a practice; you will be paid!

[Begin Treatment 4 - Part 2 Paid.]

[Press Start Treatment, press Yes]

[Important: Tick Abort Current Match!!!!!]

Make your choices now. Remember to press con…rm.

[Wait until everybody has made a decision]

Monitor, would you please roll the dice?

[1) If 1 or 2 appear press NO] A __ appeared. This match continues. You are still

interacting with the same participant. [Important: Tick Abort Current Match!!!!!]

Make your choices now. Remember to press con…rm. Monitor, would you please roll

the dice? [If 1 or 2 appeared go to 1). If 3 or 4 appeared go to 2)]

[2) If 3 or 4 appear press YES] A __ appeared. This match ends. On the screen

you will see a dialog box with the points you earned during this match. Press OK to

be matched with the next participant.

. . . .

This is the end of Part 2. On your screen you will see a dialog box indicating your

point and dollar points for this part and your cumulative total points for the …rst two

parts. Press OK to move to the next part.

Part 3

We will begin the third part now. This part will consist of 10 matches. In each

match every Red participant is paired with a Blue participant. No pair will consist of

the same participants as in Part 1 or 2. As before, you will not be paired twice with

the same participant during the session or with a participant that was paired with

someone that was paired with you or with someone that was paired with someone
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that was paired with someone that was paired with you, and so on. Thus, the pairing

is done in such a way that the decisions you make in one match cannot a¤ect the

decisions of the participants you will be paired with in later matches.

In this part, each pair will interact once. After that, a new match will start with

di¤erent pairs. Therefore, you will interact once with 10 di¤erent participants.

But …rst, we are going to teach you about this part of the session and how to use

the computer by going through one practice match. During the practice do not hit

any keys until you are told to do so. You are not paid for the practice match; it is

just for you to familiarize yourself with the session and the computer program.

[Begin Treatment 5 - Practice Part 3]

[Press Start Treatment, press Yes]

[Important: Tick Abort Current Match]

As before, your screen shows the possible actions you can choose, the actions the

participant you are matched with can choose, and the pointss. You may choose your

action by pressing the desired action at the side of the matrix now. Make your choices

now. Once everyone in the room has made their selections and pressed con…rm, your

results from this round will appear on the screen.

[Wait until everybody has made a decision]

You have interacted once so this match ends. On the screen you will see a dialog

box with the points you earned during the practice match. Press OK to end the

practice match.

We have …nished with the practice match. Any questions?

We start now with the third part of the session. You will now participate in

10 matches, each match paired with a di¤erent participant. In each match you will

interact with the same participant once. Remember: your decisions in one match

cannot a¤ect the decisions of the people you will interact with in future matches.
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This is not a practice; you will be paid!

[Begin Treatment 6 - Part 3 Paid.]

[Press Start Treatment, press Yes]

[Stage screen 1]

Make your choices now. Remember to press con…rm.

Press OK to be matched with the next participant.

[Press Start Match, Yes]

[Stage screen 2]

Make your choices now. Remember to press con…rm.

Press OK to be matched with the next participant.

[Press Start Match, Yes]

. . . . .

[Stage screen __]

Make your choices now. Remember to press con…rm.

This is the end of Part 3. On your screen you will see a dialog box indicating your

point and dollar points for this part and your cumulative total points for the three

parts. Press OK to end this part.

Farewell

The session has ended. On your screen you will see a dialog box indicating your

total earnings for the session. Please make sure you record the dollar points in your

record sheet. Press OK to end the session. Take this sheet to the counter for payment.

This sheet will be matched to our computer print out of results for payment. Your

payments will be rounded up to the nearest quarter. Thank you for your participation.
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