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ABSTRACT

This paper studies the set of equilibrium payoffs in games with long-
and short-run players and little discounting. Because the short-run players
are unconcerned about the future, equilibrium outcomes must always lie on
their static reaction (best response) curves. The obvious extension of the
Folk Theorem to games with this constraint would simply include the constraint
in the definitions of the feasible payoffs and of the minmax values. This
extension does obtain under the assumption that each player's choice of a
mixed strategy for the stage game is publicly observable, but, in contrast to
standard repeated games, the limit value of the set of equilibrium payoffs is

different if players can observe only their opponents’ realized actions.



1. Introduction

The "folk theorem" for repeated games with discounting says that (under
mild conditions) each individually-rational payoff can be attained in a
perfect equilibrium for a range of discount factors close to one. It has long
been realized that results similar to the folk theorem can arise if some of
the players play the constituent game infinitely often and others play the
constituent game only once, so long as all of the players are aware of all
previous play. A standard example is the infinitely-repeated version of
Selten's [1977] chain-store game, where a single incumbent faces an infinite
sequence of short-run entrants in the game depicted in Figure 1. Each entrant
cares only about its one-period payoff, while the incumbent maximizes its net
present value. For discount factors close to one there is a perfect
equilibrium in which entry never occurs, even though this is not a perfect
equilibrium if the game is played only once or even a fixed finite number of
times. In this equilibrium, each entrant’s strategy is "stay out if the
incumbent has fought all previous entry; otherwise, enter;" and the
incumbent’s strategies is "fight each entry as long as entry has always been
fought in the past, otherwise acquiesce." Other examples of games with long
and short run players are the papers of Dybvig-Spatt [1980] and Shapiro [1982]
on a firm's reputation for producing high-quality goods and the papers of
Simon [1951] and Kreps [1984] on the nature of the employment relationship.

This paper studies the set of equilibrium payoffs in games with long-
and short-run players and little discounting. This set differs from what it
would be if all players were long-run, as demonstrated by the prisoner’s

dilemma with one enduring player facing a sequence of short-run opponents.



Because the short-run players will fink in every period, the only equilibrium
is the static one, no matter what the discount factor. In general, because
the short-run players are unconcerned about the future, equilibrium outcomes
must always lie on their static reaction (best response) curves. This is also
true off of the equilibrium path, so the values of the long-run players are
higher when some of their opponents are short-run, because their punishments
must be drawn from a smaller set.

The perfect folk theorem for discounted repeated games (Fudenberg-Maskin
[1986]) shows that, under a mild full-dimensionality condition, any feasible
payoffs that give all players more than their minmax values can be attained by
a perfect equilibrium if the discount factor is near enough to one.\l The
obvious extension of this result to games with the constraint that short-run
players always play static best responses would simply include that constraint
in the definitions of the feasible payoffs and of the minmax values.

Propositions 1 and 2 of Section 2 shows that this extension does obtain under

the assumption that each player’s choice of a mixed strategy for the stage
game is publicly observable.

We then turn to the more realistic case in which players observe only
their opponents’ realized actions and not their opponents’ mixed strategies.
While in standard repeated games the folk theorem obtains in either case,
when there are some short-run players the set of equilibria can be strictly
smaller if mixed strategies are not observed. The explanation for this
difference is that in ordinary repeated games, while mixed strategies may be
needed during punishment phases, they are not necessary along the equilibrium
path. In contrast, with short-run players some best responses, and thus some

of the feasible payoffs, can only be obtained if the long-run players use



mixed strategies. If the mixed strategies are not observable, inducing the
long-run players to randomize may require that "punishments" occur with
positive probability even if no player has deviated, and the set of
equilibrium payoffs may be bounded away from the frontier of the feasible
set. This fact in itself would not preclude a folk theorem for the same is
true in repeated games with moral hazard, where the folk theorem does indeed
obtain under the conditions provided by Fudenberg-Levine-Maskin [1989].
However, one of their conditions is that the highest feasible payoff for each
player i be attainable with a strategy m:'L where that player uses a static best
response against the strategies m%i of his opponent. This condition is not
satisfied in games with short-run players, as we explain in Section 3.
Proposition 3 of Section 3 provides a complete characterization of the
limiting value of the set of equilibrium payoffs for a single long-run player.
This characterization, and the results of Section 2, assume that players have
access to a publicly observable randomizing device. The device is used to
implement strategies of the form: "If player i deviates, then players jointly
switch to a "punishment equilibrium" with some probability p < 1."

While the assumption of public randomizations is not implausible, it is
interesting to know whether it leads to a larger limit set of equilibrium
payoffs. Proposition 4 in Section 4 shows that it does not. We construct
equilibria in "target strategies," in which a player is punished whenever his
discounted payoff to date exceeds a target value. Whenever the player's
payoff to date is below the target, he is given a stochastic "reward" whose
expected value exceeds the target level. We show that no strategy can yield a
player more than his target, and that the specified strategies do yield the

target payoffs so long as these targets are below the critical level of



Proposition 3. Thus the same set of equilibria can be obtained without public
randomizations.

One nice feature of the target strategies is that they have a simple
form. This simplicity helps us provide additional insight into the question
of why some feasible payoff cannot be attained by equilibria. Inspection of
the strategies shows that they do not form an equilibrium for target payoffs
that are higher than what the long-run player can obtain with probability one
given that the short run player play static best responses. For payoffs this
high, there is a positive probability that player 1 will suffer a run of "bad
luck" after which no possible sequence of payoffs could draw his discounted
normalized value up to the target.

As this problem does not arise under the criterion of time-average
payoffs, one might wonder if the set of equilibrium payoffs is larger under
time-averaging. Proposition 5 shows that the answer is yes. In fact, any
payoffs that are feasible given the restriction that short-run players play
static best responses can arise as equilibria with time-averaging, so that we
obtain the same set of payoffs as in the case where the player’'s privately
mixed strategies are observable. We prove this with "target strategies” of
the kind cited in Proposition 4. The fact that the equilibrium set expands
discontinuously in passing from discounting to time averaging is reminiscent
of a similar discontinuity that has been established for the equilibria of
repeated partnership games (Radner [1986], Radner-Myerson-Maskin [1986]). Our
simple construction may help shed light on the reason for discontinuities
there as well. The relationship between the two models is discussed further
in Section 5.

The case of several long-run players and unobservable mixed strategies



is more difficult, as shown by example 2 in Section 6. This case has
recently been solved by Fudenberg-Levine [1989a], who extend the techniques

of Fudenberg-Levine-Maskin [1989] to games where the folk theorem does not

obtain.

2. Observable Mixed Strategies

Consider a finite n-player game in normal form,

n
g: Slx...xSn 5> R .

We denote player i’s mixed strategies by ai € and write g(o) for the

1
expected value of g under distribution o.

In this section we assume that a player can observe the others’ past
mixed strategies. This assumption (or a restriction to pure strategies) is
standard in the repeated games literature, but as Fudenberg-Maskin {1986]
[1987a] have shown, it is not necessary there. (Here it matters -- see the
next section!) We will also assume that the players can make their actions
contingent on the outcome of a publicly observable randomizing device.

Label the players so that players 1 to £ are long-run and &+1 to n are

short-run. Let

B Iyx...xY, 3 Tpyq ¥,

be the correspondence which maps any strategy selection (al,...,aj) for the
long-run players to the corresponding Nash equilibria strategy selections for

the short-run players. That is, for each o € graph (B), and each i = £+1,



9y is a best response to o i If there is only one short-run player, B(o) is
his best response correspondence.

. . i i i i
For each i from 1 to j, choose m = (ml,...,mn) so that m~ solves

i min max gi(ai,m_;),
m €graph(B) 9y

and set

v, = max gi(ai,m_;).

i

i
(This minimum is attained because the constraint set graph(B) is compact and

: i, . . . i
the function max gi(ai,m_i) is continuous in m_i.)
o,
i
. S . . .

The strategies m ; minimize long-run player i’'s maximum attainable
payoff over the graph of B. The restriction to this set reflects the
constraint that the short-run players will always choose actions that are
short-run optimal. The short-run players could force player i’'s payoff even
lower using strategies that are not short-run optimal, but this cannot occur
. g s i ‘o . i .
in equilibrium. Note that m” specifies player i’'s strategy m, , which need

i . . . .
not be a best response to m E Player i must play in a certain way to induce
s eas i
the short-run players to attain the minimum in the definition of m~. To
illustrate the definition of the minmax strategies, consider repeated play of

the game in Figure 1, with a long-run player 1 facing a sequence of short-run

player 2's.



Player 2

L M R
Player 1 L 0,0 2,3 -2,-1
D -1,2 1,1 -2,-1
Figure 1

Here player 2's minmax strategy against player 2 is m; = L, which holds player
1's payoff to at most v, = 0. Playing R would hold player 1's payoff even
lower, but R is a strictly dominated strategy, and so it will never be used by
a short-run player 2. (If player 2 were a long-run player, we would have vy =
-2.) 1In order to induce player 2 to play L, player 1 must put probability at
least 1/2 on D, so any choice of ml must have gl(ml) < -1/2, which is less

than player 1's minmax value of 0 = v Thus, in contrast to standard

1
repeated games, equilibrium strategies that hold a long-run player close to
his minmax value may need to provide him with incentives to cooperate in his
own punishment. We will see that such strategies can indeed be constructed
for discount factors near one provided the players’ choice of mixed strategles
are observable.

In the repeated version of g, we suppose that long-run players maximize

the discounted normalized sum of their single-period payoffs, with common
=

discount factor §. That is, long-run player i's payoff is (1-5)2 6tgi(a(t)).
t=0

Short-run players in each period act to maximize that period’'s payoff. All
players, both long- and short-run, can condition their play on all previous
choices of mixed strategies.

More formally, the history at time t is h(t) = (0(7)} where o(71)

O=r<t’



= (Ol(r),az(f),...,an(f) is the vector of mixed strategies chosen in period
7. A strategy for player 1 is then a sequence of maps SE = Ht - 21, and a
strategy for the period t player 2 maps Ht to 22.

One interpretation of this definition of the information structure is
that players implement their mixed strategies using a "randomizing device,"
which has a fixed, known density on the unit interval. A mixed strategy is
then a map from the outcome of the device to actions. The assumption that
players observe each others' choice of randomizing probability corresponds to
the assumption that both the outcome of the device and the map from outcome to
action are observable.

If players observed only the outcome of the randomizing devices and not
the maps used, they would not be able to infer the exact randomizing
probabilities used by their opponents, so the mixed strategies themselves
would not be observable. However, players would still be able to detect any
deviation from the action prescribed by a given mixed strategy. As we will

explain, this weaker form of observability will be sufficient for our results.

let U= { v = (Vl,...vi) | Jo in graph (B) with gi(a) -V,
for all i from 1 to ¢)

Let V = convex hull of U;

*
and let V = (veV|lv, >v.).
S |

*
Note that points in U,V, and V  specify payoffs for the long-run players
only. We will not be concerned with the possible payoffs of the short-run
players.

*
We call payoffs in V attainable payoffs for the long-run players. We



begin with the case of a single long-run player.

Proposition 1: For no § is there an equilibrium in which player i's payoff is

less than Vi'

Proof: To see that player i’'s payoff cannot be below v, in any equilibrium,
note first that since all players begin each periéd with the same information,
in equilibrium player i correctly anticipates the mixed strategy a_i(h(t))
that his opponents will play in period t. One feasible (not necessarily
optimal) strategy for player i is to play in each period the strategy that
maximizes that period’s expected payoff against a_i(h(t)). Since the other

players are all short-run, they will only use actions in the range of B, so

mgg gi(ai.o_i(H(t))) > v,
1
Since players {+1 through n are short-run, each o(h(t)) must lie in the
graph of B in any equilibrium. Thus max gi(ai,o_l(h(+l)) z V. and so player
i

i can ensure himself at least v each period. Q.E.D.

Proposition 2: If only player 1 is a long-run player, then for any

*
vleV there exists a §E(O,l) such that for all 5€(§,l), there is a

subgame-perfect equilibrium of the infinitely repeated game with discount

factor 6 in which player 1's discounted normalized payoff is vy

* s s
Proof: Fix a v € V  and consider the following strategies. Begin in

Phase A, where players play a ¢ € graph (B) (or a public randomization over

such ¢’'s) that gives player 1 payoff v Deviations by the short-run players

1



are ignored. If player one deviates, he is punished by players switching to
the punishment strategy m1 for T(§) periods, after which play returns to Phase
A; if T(§) is large enough, deviations in Phase A are unprofitable. Now my
need not be a best response against m_i, so we must insure that player one
does not prefer to deviate during the punishment phase. This is done by
specifying that a deviation in this phase restarts the punishment. Since the
most that player 1 can obtain in any period of the punishment phase is vy he
will prefer not to deviate so long as T(6§) is short enough that player 1's
normalized payoff at the start of the punishment phase is at least ME Let Ql
= max g, (o). The two constraints on T(§) will be satisfied if:

oc€graph(B)

T, oy or equivalently

1) (-8 6(1-8T(6))g1(ml)+5 SV

T(6)+1

(1) 6 <(vy -85, (n)+(1-6)7))/(v) -, (), and

(2) (1-6T(6))gl(ml) + ST(G)Vl > Yl’ or equivalently

) 87 > (v g /(v e D).

The right-hand side of (2’) is less than one, and the right-hand side of (17)
converges to 1 as o goes to 1. Thus for ¢ sufficiently close to 1, we can

find ¢ and 7(§) that satisfy (1°) and (2°). Q.E.D.
Note that the strategies constructed in the proof of Proposition 2

treat all deviations from the prescribed mixed strategies in the same way.

Thus to implement the strategies it suffices that players can detect whether

10



a deviation occurred; it is not necessary that they observe the way in which
the opponent deviated.

For this reason, Proposition’a\would obtain if players could only
observe the outcomes of their opponents’ randomizing devices; it is not
necessary that the choices of mixed strategy themselves be observed. A

similar observation applies to Propositioﬂ’@.\aako‘*J'

In repeated games with three or more players, a full-dimensionality
condition is required for all feasible individually rational payoffs to be
enforceable when § is near enough to one. The corresponding condition here is

that the dimensionality of V* equals the number of long-run players.

Proposition 3: Assume that the dimensionality of V* = £, the number of
long-run players. Then for each v in V*, there is a §€(O,l) such that for
all 6€(8,1) there is a subgame-perfect equilibrium of the infinitely repeated

game with discount factor 6 in which player i's normalized payoff is v,

Remark: The proof of Proposition 2 follows that of Fudenberg-Maskin's Theorem
2: If a (long-run) player deviates, he is punished long enough to wipe out the
gain from deviation. To induce the other (long-run) players to punish him,
they are given a "reward" at the end of the punishment phase. One small
complication not present in Fudenberg-Maskin is that, as in Proposition 1, the
strategies we construct cannot in general allow player i to play a static
best response in the periods when he is being minmaxed. This,

however, can be arranged with essentially the same strategies as before.

11



Proof: Choose a o (or a public randomization over several o¢’'s) so that g(o) =

v. Also choose v/ in the interior of V* and an ¢ > 0 so that for all i from 1

to j (Vi+€"" v, L+e, V.,V

. ' 4€,...,V.4+¢) is in V* and v+ € < Vv,.
i-1 S 5 T " ) i i

Let Ti be a joint strategy that yields vi + ¢ to all the long-run players but
i, and yields v; to i. Let wi = gi(mj) be player i’s period payoff when j is

being punished with the strategies ml. For each i, choose an integer Ni S0

that

vi+ NiYi < (N+1) vy

where Gi = max g, is i's greatest one-period payoff.
Consider the following repeated-game strategy for player 1i:
Q) Begin in Phase (A).

(A) Play g, each period as long as all long-run players played o last
period, or if o had been played until last period and two or more long-run
players failed to play o last period.

If long-run player j deviates from (A), then
(Bj) Play mg for Nj periods, and then
(C) Play Tg thereafter.

If long-run player k deviates in phase (Bj) or (C), then begin phase
(Bj) again with j = k. (As in phase A, players ignore simultaneous deviations

by two or more long-run players.)

As usual, it suffices to check that in every subgame no player can gain

12



from deviating once and then conforming. The condition on Ni ensures that for
§ close to one, the gain from deviating in Phase A or Phase C is outweighed by

Phase B's punishment. If player j conforms in Bj (i.e. when she is being

N, . N
punished) her payoff is at least qj- (1-§ J)wg +6 jva, which exceed Yj if 6§ is

close enough to one. If she deviates once and then conforms, she receives at
most Yj the period she deviates, and postpones the payoff qj > Yj , which

lowers her payoff. 1If player k deviates in Phase Bj’ she is minmaxed for the
next Nk periods and Phase-C play will give her v& instead of vi + ¢. Thus it

is easy to show that such a deviation is unprofitable. (See Fudenberg-Maskin

for the missing computations.) Q.E.D.

3. Unobservable Mixed Strategies

We now drop the assumption that players can observe their opponents’
mixed strategies, and instead assume they can only observe their opponents’
realized actions. In ordinary repeated games, (privately) mixed strategies
are needed during punishment phases, because in general a player’s minmax
value is lower when his opponents use mixed strategies. However, mixed
strategies are not required along the equilibrium path, since desired play
along the path can be enforced by the threat of future punishments.
Fudenberg-Maskin showed that, under the full-dimension condition of
Proposition 2, players can be induced to use mixed strategies as punishments
by making the continuation payoffs at the end of a punishment phase dependent
on the realized actions in that phase in such a way that each action in the
support of the mixed strategy yields the same overall payoff.

In contrast, with short-run players some payoffs (in the graph of B) can

only be obtained if the long-run players privately randomize, so that mixed

13



strategies are in general required along the equilibrium path. As a

consequence, the set of equilibrium payoffs in the repeated game can be
strictly smaller when mixed strategies are not observable. This is
illustrated by the game in Figure 2, with one long-run player, Row, and one
short-run player, Col.

Let p be the probability that Row plays D. Col's best response is M if
0<p=<1/2, L if 1/2 < p < 100/101, and R if p = 100/101. There are three
static equilibria: the pure strategy equilibrium (D,R), a second in which p =
1/2 and Col mixes between M and L, and a third in which p = 100/101 and Col
mixes between L and R. Row’s maximum attainable payoff is 3, which occurs

when p = 1/2 and Col plays L.

L M R

U | 4, 0 0, 1 -1, -100 |

D 2, 2 1, 1 0, 3 ‘
Figure 2

If Row's mixed strategy is observable, she can attain this payoff in the
infinitely repeated game if § is near enough to 1. If however Row's mixed
strategy is not observable, her highest equilibrium payoff is at most 2
regardless of §.
. . - 3 *
To see this, fix a discount factor §, and let v (§) be the supremum

*
over all Nash equilibria of ROW's equilibrium payoff. If for some & v (§) =

14



2 4+ ¢ > 2, then for all sufficiently small ¢ > 0 there is an equilibrium 2
such that player 1's payoff is v(s) = v*(é) - e€> 2, It is easy to see that
the set of equilibrium payoffs is stationary: Any equilibrium payoff is an
equilibrium payoff for any subgame, and conversely. Thus, the highest payoff
player 1 can obtain starting from period 2 is also bounded by v*(6). Since
v(s) is the weighted average of player 1's first-period payoff and her
expected continuation payoff, player 1's first-period payoff must be at

least v*(6) - ¢/(1-§). For e sufficiently small, this implies that player
1's first period payoff must exceed 2.

In order for Row's first-period payoff to be at least 2, Col must play L
with positive probability in the first period. As Col will only play L if Row
randomizes between U and D, Row must be indifferent between her first period
choices, and in particular must be willing to play D. Let VD(O) be Row's
expected payoff (according to the strategies ¢) from period 2 on if she plays

D in the first period. Then we must have
(3) 2(1-6) + SVD(A) = v(a) = v*(§) - €.

Since VD(O) < v*(§), and for all sufficiently small ¢ there is an & so that
(3) holds, we conclude that v*(§) < 2.

While Row cannot do as well as if her mixed strategies were observable,
she can still gain by using mixed strategies. For § near enough to one there
is an equilibrium which gives Row an normalized payoff of 2, while Row’s best
payoff when restricted to pure strategies is the static equilibrium yielding
1. To induce Row to mix between U and D, specify that following periods when

Col expects mixing and Row plays U, play switches with probability p to (D,R)

15



for ten periods and then reverts to Row randomizing and Col playing L. The
probability p is chosen so that Row is just indifferent between receiving 2
for the next eleven periods, or receiving 4 today and risking punishment with
probability p. This construction works quite generally, as shown in the

following proposition.

Proposition 4: Consider a game with a single long-lived player, player

1, and let

v, = max min gl(sl, a_l).
ocgraph B 4 €supp 71

Then for any v E(Yl’vi) there exists a §° < 1 such that for all §€(§”,1),

1

there is a subgame-perfect equilibrium in which player one’'s normalized

payoff is vy - For no § is there an equilibrium where player one’s payoff

*
exceeds vl.

Proof: We begin by constructing a "punishment equilibrium" in which player
one’'s normalized payoff is exactly vy If vy is player 1's payoff in a
static equilibrium this is immediate, so assume all the static equilibria
given player 1 more than vy- Fix a particular static equilibrium ;, and let
e - gl(;) > vy be player 1's payoff in this equilibrium.

We will construct strategies with two phases, A and B; play begins in

phase A. Here the strategies are

(A) Play ml. If player 1's realized action was Sq then (using a public

16



randomization) remain in phase (A) with probability 1-p(sl), and switch to

phase (B) with probability p(sl), where p(sl) satisfies

(1-6) (v, - gy (s,,m 1)

(4) p(sl) =
bley - ¥y

(If § is near enough to one, p(sl) is between 0 and 1.)

A

In phase (B), the strategies are to play the static equilibrium o
forever.
The switching probability has been constructed so that player one's

normalized profit in phase (A) is v, for all actions, including those in the

1

1 .
support of ml Thus player 1 cannot do better than to use strategy m; in

1
phase (A), nor can she gain by deviating in phase (B). So these strategies
are subgame-perfect if § is large enough that p(sl) is less than 1 for all
=
1 1
* . . . *
Now we assume v, > v and construct equilibrium strategies yielding V.-
* * % . .
Let 0 = (al,a_l) be mixed strategies that attain the maximum in the
definition of v,
{(0): Begin in Phase (A).
* *
(A): Play ¢ . 1If 5 ¢ support (al), go to phase B. If s, € support

* * . A
(al), then switch to phase B with probability p (sl), and otherwise remain in

*
phase A. Here p (sl) satisfies

17



* *
* (l-6)(g1(sl,o_1) - vlj
(5) p (s)) = :

6 *®
(vl - Yl)

Equation (5) is non-negative for all s, € support (aj), and it 1is 1less than
one for § sufficiently close to 1. The probability p*(sl) makes player 1l's
normalized present value of all s, € support (at) equal to Vj.

(B): Play the "punishment equilibrium" constructed above.

Since player l's payoff in the punishment equilibrium is v, < vj, these
strategies are subgame-perfect for sufficiently large 6.

Equilibrium payoffs between vy and v: are obtained by using public
randomizations between those two value. The argument that player one's payoff
cannot exceed vi is exactly as in the example. Q.E.D.
4, No Public Randomizations

The equilibria that we constructed in the proofs of Theorems 1 through 3
relied on our assumption that players can condition their play on the outcome
of a publicly observed random variable. While that assumption is not
implausible, it is also of interest to know whether the assumption is
necessary for our results. For this reason, Proposition 4 below extends
Proposition 3 to games without public randomizations. (We have not thought
about the possible extension of Propositions 1 and 2 because we think the
situation without public randomizations but where private randomization can be
verified ex-post is without interest.) The intuition, as explained in
Fudenberg-Maskin [1988b], is that public randomizations serve to convexify the

set of attainable payoffs, and when § is near to 1 this convexification can be

18



achieved by sequences of play which vary over time in the appropriate way.
Fudenberg-Maskin [1988b] shows that public randomizations are not necessary
for the proof of the perfect Folk Theorem. However, as we have already seen,
there are important differences between classic repeated games and repeated
games with some short-run players, so the fact that public randomizations are
not needed for the folk theorem should not be thought to settle the question

here.

Proposition 5: Consider a game with a single long-run player, player 1,
where public randomizations are not available. As in Proposition 3, let

%
v, = max min gl(sl, a_l),

o € graph(B) sle supp o 4

and let o be a strategy that attains this max. Then, for any v, € (Yl’vi
there exists a §’<l such that for all §e(§’,1) there is a subgame-perfect
equilibrium where player 1's discounted normalized payoff is vy

Remark: Fix a static Nash equilibrium ; with payoffs ;. For each vy the
proof constructs strategies that keep track of the agent's total realized
payoff to date t and compares it to the "target" value of (l-5t) K which is
what the payoff to date would be if the agent received vy in every period. If
vy exceeds the payoff in a static equilibrium, then play initially follows the
(possibly mixed) strategy a*, and whenever the realized total is sufficiently

greater than the target value, the agent is "punished" by reversion to the

static equilibrium. If the target is less than the static equilibrium, then

19



play starts out at the (possibly mixed) strategy ml, with intermittent
"rewards" of the static equilibrium whenever the realized payoff drops too
low.

A

Proof: Let v, be player l's payoff in a static equilibrium.

1
(A) It is trivial to obtain vy as an equilibrium payoff of the repeated
game.
3 *
(B) To attain any payoff Vi between vy and vy we proceed as follows.
Renormalize the payoffs so that vy = 0, and take § large enough

- * * *
that (1-6)vl <v Define = 0 and & (0) = ¢ , and for each time t > 0

1 To
* .
define the strategies o (ht) and an index Jt recursively as follows. First

we define Jt:

- ) (t-1) *
Jt Jt-1+ (1-6)8 gl(sl(t 1),o_l(ht_1),
where sl(t-l) is player 1l's action in period t-1, as opposed to his choice of
mixed strategy. (Note that Jt is common knowledge at the start of time t.)
Define Rt s(l-&t)vl. If player 1's payoff were vy each period, then Jt would
equal Rt' The equilibrium strategies will "punish" the agent whenever Jt

exceeds Rt by too large a margin. More precisely, we define

o if J =R and J = R for all r=<t
t t+1 T T
* *
a (h) = o if J_ < R_, and J = R for all =<t
t t t+1 T T
o if JT < Rr for any r=t
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Note that since Jt is a discounted sum, for each infinite history hm,
Jt converges to a limit J. Moreover, as long as the other players use

*
-1 player 1's payoff to any strategy is simply the expected value

strategy o
of J_, and his expected payoff in any subgame starting at time t is
6_t(Jw-Jt) (in time-t units).

We will now argue that
(i) if player 1 uses strategy o:, then Jt = Rt for all times t and histories
ht’ which implies that J_ 2> vy
(ii) that regardless of how player 1 plays, Jo = vy, SO player 1's payoff in
the subgame starting at time t is bounded by 5-t(vl-Jt) for all histories hw,
and
(iii) that in any subgame where at some r<t, JT < Rr’ it is a best response
for all players to follow the prescribed strategy of always playing the

A

static equilibrium ¢, and so J00 < K
Conditions (i) and (ii) imply that it is a best response for player

1 to play a* in every subgame where JT has never dropped below RT, and that

player 1's equilibrium payoff is vy Condition (iii), whose proof is

immediate, says that following c* is also a Nash equilibrium in subgames

where Jr has dropped below RT, so that o* is a subgame-perfect

equilibrium. (The condition that the short-run players not wish to deviate is

*
incorporated in the construction of o .)

*
Proof of (i): We must show that if player 1 follows Ol then for all t, Jt =

(1-6t)vl= Rt' Since Jo = 0, this is true for t = 0. Assume it is true for

t = r. At period 7, either (a) Jr -3 Rr+1 or (b) JT < R1+l' In case (a),
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* A A
Q (hT) = ¢g. Since gl(sl,a_l) = 0 for every pure strategy s, in the support of

o
. * * *
min {gl(sl(r),a_l(hr))l sl(r) € support(al(hr))} =V and

* *
we have JT+1 = JT > Rr+l from case (a). In case (b), & (hr) = g ,50

T % T T 7+l
JT+1 = JT + (1-8)6 vy = (1-6 )vl + (1-6)6 vy - (1-6 )v1 - RT+1,

where the second inequality comes from the inductive hypothesis and the fact

v

1
J

v

*
vy Thus Jt = (l-8t)v1 for all t, and so if player 1 follows oy then

v

© Vl.

Proof of (ii): Next we claim that regardless of how player 1 plays, J =V, .

We will show inductively that Jt < v, for all t. This is clearly true for

1
t = 0: assume it is true for an arbitrary t. If Jt > Rt+1 then since
* ~ .
a_l(ht) =0 9 and the most player 1 can obtain against 91 is zero,
Jt+l < Jt < vy by inductive hypothesis. If Jt < Rt+l’ then
t+1 t+l -
Jt+l < (1-§ )vl + 6 (1-6)v1 <
t+l t+1
(1-6 )V1 + 6 v1 -V

=%

from our bound on § and the fact that vy <v

(C): Next we show how to construct equilibria (for large enough §) that
yield payoffs Vi between v_land the static equilibrium payoff of zero. Pick
a Vle(Yl’O)’ and choose § > 1/2 and large enough that (1-§)min gl(a) > vl.

a
*
Then set JO = 0, and ¢ (0) = ml. Now define Jf(hb) and o(h_) recursively as

t-1 *
- - - —1
follows for t 1,2.... Set Jt J + (1-6)6 gl(sl(t 1), a_l(ht_l)), and

t-1
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set

Proceeding as above, we claim that

* . .
(i) if player 1 uses strategy o1 then Jt = Vi for all times t and histories

ht’ which implies that J, = K
(ii) that regardless of how player 1 plays, J < Vy. SO player 1's payoff in
the subgame starting at time t is no greater than 5-t(vl-Jt), and

(iii) that in subgames where Jt < Rt it is a best response for player one to
A

*
play » (ht) -0

*
Proof of (i): We must show that if player 1 follows 3 then for all t, Jtzvl.

Since J0= 0, this is true for t=0. Assume it is true for t=r. At period r,

either (a) J =R or (b) J <R .
T T T T
In case (a),

T v T -
Jr+l = Jr + 6 (1 S,mln(gl) = Jr+ s vy {from our bound on §)

> Rr + 6fv1 (from case (a))

-

= v

1
A *
In case (b), Q*(hT)-a, so gl(sl(f),of1(hf))-0 for all s, (7)€ support Ol(h')’

and JT+1 - JT > Vl'

Proof of (ii): We claim that for all strategies of player 1 and all times t
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. . t-1 . * 1
and histories ht’ Jts (1-6 )vl = Rt-l' Since J0= 0, & (ho) =m , and so

Jl < (1-6)v1 <0 = RO. Assume it is true for t = r. Then at period r, either
* A
(a) Jr < RT or (b) Jr ZRT. In case (&), ¢ (t) = o, so JT+1 < JT < Rr—l' In

* 1 *
case (b), o (hr)-m , 80 max gl(sl, °-1(h,)) -V and

!
T r-1 T . . .
J1+1< Jr + (1-6)6 vy < (1-¢6 )v1 +(1-6)6 vy (by the inductive hypothesis)
<(1-6"" 4 §T)v, < (1-6T)v, = R_as § > 1/2.

Thus Jt<(1-5t)vl for all t, and so regardless of how player 1 plays, J =< vy-

(iii) Conditions (i) and (ii) show that in any subgame with Jt 2= Rt
*
player 1 can attain the upper bound of vy by following ¢;. Now we consider

subgames with Jt < Rt' If Jt vy, then regardless of how player 1 plays, we

A

will have Jr =< Rr for all 7 > t, so player 1's opponents will play o for the

remainder of the game. Here it is clearly a best response for player 1 to
A A

*
play oy = 8. If Jt > Vi then by playing 91 player 1 can ensure that JT > R

at some r > t, which ensures that player 1 attains a continuation payoff of

7

1° Jt) in the subgame starting at t. If player 1 instead chooses a

strategy which assigns positive probability to the event that Jr < RT for all

(v

7 > t, he can only lower his payoff: The payoff for histories with J_<R_ 1is
less than vl, and the payoff for the histories with Jm > Rco is bounded above
by v. - J,. Q.E.D.

*
Proposition 4 shows how to attain any payoffs between Vi and vy by means

of "target strategies."” From Proposition 3 we know that such strategies

cannot be used to attain higher payoffs. We think that it is interesting to
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note where an attempted proof would fail.

In part (A), we proved that if player 1 followed 0* then for every
sequence of realizations player l's payoff is at least vy Imagine that we
try to attain a payoff vy > vi by setting the target Rt- (1-6t)v1. Then in

* .
the "reward" phases where o 1is played, it might be that player 1's realized

payoff is less than v (Recall that by definition it cannot be lower than

1
v*l). After a sufficiently long sequence of these outcomes, player 1's
realized payoff Jt would be so much lower than vy that even receiving the best
possible payoff at every future date would not bring his discounted normalized
payoff up to the target.

This problem of going so far below the target that a return is impossible
does not arise with the criterion of time-average payoffs, since the outcomes

in any finite number of periods are then irrelevant. For this reason we can

L

attain payoffs above v;

(After this paper was written, Fundenberg-Levine [1989b] provided

under time averaging, as we show in the next secticn.

another way to obtain this result. They show that any strategy profile that
is an en-equilibrium for discount factor 6n for a sequence (en,6n) » (0,1), is
a time-average equilibrium as well. With the strategies used above, the
probability that player 1's discounted payoff is less than the target is small
for § close to 1, since the mean payoff in the reward phase exceeds the
target. This is why the target strategies of this sector are e-equilibria of

the appropriate kind.)

5. Time Averaging

The reason that player 1's payoff is bounded by what he obtains when she

* ;
plays her least favorite strategy in the support of ¢ 1is that every time she



plays a different action she must be "punished" in a way that makes all of the
actions in a* equally attractive. A similar need for "punishments" along the
equilibrium path occurs in repeated partnership games, where two players make
an effort decision that is not observed by the other, and the link between
effort and output is stochastic. Since shirking by either player increases
the probability of low output, low output must provoke punishment, even though
low output can occur when neither player shirks. This is why the best
equilibrium outcome is bounded away from efficiency when the payoff criterion
is the discounted normalized value. (Radner-Myerson-Maskin [1986],
Fudenberg-Maskin [1987a]). However, Radner [1986] has shown that efficient
payoffs can be attained in partnerships with time averaging. His proof
constructed strategies so that (1) if players never cheat, punishment occurs
only finitely often, and thus is negligible, and (2) an infinite number of
deviations is very likely to trigger a substantial punishment. Since no
finite number of deviations can increase the time-average payoff, in
equilibrium no one cheats yet the punishment costs are negligible.

Since the inefficiencies in repeated partnerships and games with
short-run players both stem from the need for punishments along the
equilibrium path, it is not surprising that the inefficiencies in our model
also disappear when players are completely patient. We prove this with a
variant of the "target strategies" we used in Section 4. These strategies
differ from Radner's in that even if player 1 plays the equilibrium strategy,
she will be punished infinitely often with probability one. However, along
the equilibrium path the frequency of punishment converges to zero, so that as

in Radner the punishment imposes zero cost.
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Proposition 5: Imagine that there is a single long-run player, player

1, who evaluates payoff streams with the criterion

t‘*_-:T-l
lim inf E (1/T) L gl(s(t)).
T t=0

*
Then for all vleV there is a subgame-perfect equilibrium with payoffs vy
Remark: The proof is based on a strong law of large numbers for martingales
with independent increments,z/ which we extend to cover the difference between
a supermartingale and its lowest value to date. The relevant limit theory is

developed in the Appendix.

Proof: As in Proposition 4, we use different strategies for payoffs above and
below some fixed static equilibrium ¢. Imagine that vy exceeds player 1l's
payoff in this equilibrium, and normalize vy o= 0. Let o be the (possibly

mixed) strategy in graph (B) that maximizes player one’'s expected payoff, and

define g,(&) = &1.
pe

T-1

Define JO = 0 and JT= }:gl(sl(t),s_l(t)). (This differs from the
t=0

defirition in Section 4, where we used player l's realized action and the

mixed strategy of her opponents in defining Jt). Note that player 1l's

objective function is 1lim inf E(l/T)JT. Set

* . o 1if Jt =0
NCRIER
o 1if Jt <0
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We claim that (i) no matter how player 1 plays, her payoff is bounded by v,,
and (ii) that by following si player 1 can attain payoff vy almost surely (and
hence in expectation.)

To prove this, let o(ht) be an arbitrary strategy for player 1, and fix
the associated probability distribution over infinite-horizon histories. For
each history, let Rt(ht) - {TSt-l|0*(hT)=;) be the "reward" periods, and let
Pt(ht)—(fst-l | 0*(hr) = ¢) be the "punishment" ones.

Then let Mt(ht) = Z gl(x(t)) be the sum of player l's payoffs in the good

T7€R
t

periods, and set

N (h= ) gy (x(£).

reP
t

Note that the reward and punishment sets and the associated scores are defined
path wise, i.e. they depend on the history ht; henceforth, though, we will

A

A
omit the history h_from the notation. Finally define Mt— max Mt, Nt= min
[
T<t r<t

NT, and Yl = min gl(a)

We claim that for all t,

g - -T J -
(3) v + (Mt Mt) < Jt < xl+ (ht Nt)'

This is clearly true for t = 0. Assume (5) holds for all r<t. At the start

of period t, either (a) Jt >0 or (b) Jt < 0. In case (a), Jt+1 > Y1+J ZYlZ

~

A *
Yl +(Mt-Mt). Also, since ¢ (ht) =0,
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J =J .+ N -N < v_+N -N_ =< \-71+(Nt -N so that (5) is satisfied.

t+1 t t+1 't 1 t+1 't +1 t+1)’

In case (b)), J < v, +J]_=<v, = v1+(Nt+1-Nt+l),

and Jt+ =J + M M, =2 v, M M= Y +(Mt+l-Mt+l)’

so once again (5) is satisfied.

Lemmas 3 in the Appendix shows that (Nt-ﬁt)/t converges to zero almost
surely. Since the per-period payoffs are uniformly bounded, this implies that
limsup (1/T)JT < 0 almost surely, and since the per-period payoffs are
uniformly bounded, limsup 1/T E(JT) < 0 as well. Lemma &4 shows that if player

1 plays so that Mt is a submartingale, then the (Mt-M) converges to Zero as

*
well. Since this is true when player 1 follows o the result follows.

Q.E.D.

We can show that with our strategies, player 1 is punished infinitely
often (Jt > 0) with probability one. This contrasts with Radner's
construction of efficient equilibria for symmetric time-average partnership
games, where the probability of infinite punishment is zero. It seems likely
that our "target-strategy" approach provides another way of constructing
efficient equilibria for those games; it would be interesting to know whether
this could be extended to asymmetric partnerships. Our approach has the
benefit of making more clear why the construction cannot be extended to the

discounting case.

6. Several Long Run Plavers with Unobservable Mixed Strategies

The case of several long-run players is more complex, and we have not
solved it. As before, we can construct mixed-strategy equilibria in which

the long-run players do better than in any pure strategy equilibrium, and
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once again they cannot do as well as if their mixed strategies were directly
observable. However, we have not obtained a general characterization of the
enforceable payoffs.

Figure 3 presents a 3-player version of the game in Figure 2. Row's and
Col's choices and payoffs are exactly as before. The third player, DUMMY, who
is a long-run player, receives 3 if Col plays L and receives 0 otherwise. The
feasible payoffs for Row and DUMMY are depicted in Figure 2. Consider the
feasible point at which p = 1/2 and Col plays L. Here Row and Dummy both
receive 3. The argument of Section 3 shows that Row's best equilibrium payoff
is not 3 but 2, which is the minimum of payoff over the actions in the support
of her mixed strategy. Dummy is not mixing, so Dummy’'s minimum payoff over
the support of her strategy is 3. (Indeed this 1is the minimum over the
support of the product of the two strategies.) Thus one might hope that, by
analogy to the proof of Proposition 3, we could show that the payoffs (2,3)
were enforceable. But these payoffs are not even feasible! The highest
Dummy's payoff can be when Row’s payoff is 2 is 2 %%% . (See Figure 3, which
depicts the feasible set.) The problem is that an equilibrium in which Row
usually randomizes must sometimes have Col play M or R to "tax away" Row's
"excess gains" from playing U instead of D, and this "tax" imposes a cost on
Dummy .

Fudenberg-Levine [1989a] show that the limit set of equilibria with
several leng-run players is exactly the intersection of the feasible,
individually rational payoffs with the constraints v, < v;. As the techniques
in that paper are quite different from those used here, we have chosen to

present them separately.
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Player 2 is

Player

L M R
4 , 3,0 0, 0,1 -1, 0, -100
2 3 3 b 2 l ? O . l O ’ O 3 3

a "dummy'", player 3 chooses COLs.

Figure 3
2
(2557 > 2)
2's payoff 3L (3,3)
24
14
A/
1
=1 P 1 2 3
LlOl’O)

Player 1's pavoff

Feasible set when three plays a SR best response.

Figure 4
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APPENDIX

In this appendix we consider discrete-parameter martingales {xn,Fn) n
0,1,..., where (Fn) is a filtration on an underlying probability space. We

assume that Xy = 0.

Lemma A.1. Let (xn,Fn} be a martingale sequence with bounded increments.

(That is, for some number B, Ixn - Xn-ll < B, almost surely.) Then lim xn/n =
n->o

0 almost surely. A proof of this lemma can be found in Hall and Heyde (1980,

page 36ff).
We also use the following standard adaptation of this strong law:

Lemma A.2 For (£ ,F )} as above, let X = minx,. Then limX_ /n = 0 almost
- T n' 'n l<n © oo 1

surely.

Proof: Since Xg = 0, Xn < 0 for all n. Fix a sample of the stochastic

process. Since Xn/n < 0, we only have to show that lim inf Xn/n - 0.
Suppose, instead, that n, is a subsequence along which the limit is less than

0. For each n., there is m, < n, with x_ = X_, and thus 0 > X_/n, = x_ /&,
i i i m n n,’ 1 m,” i

i i i i

=z x_ /m,. Hence, along the subsequence {m,}, x_ /m, violates the strong law,
m i i’ Tm i
i i

which can happen only on a null set.

Lemma A.3 let {xn,Fn} be a supermartingale with bounded increments and with

XO = (0. Let (X )} be defined from {x ) as in lemma 2. Then lim(x_ - X )/n =
n n e n n

0 almost surely.



Proof: Since x 0z Xn’ we only need to show that the limsup of the sequence
i itive. F =1, ..., 1 = - d let ¢ = -
is nonpositive or n , , let & X, - X, q» and le ¢ £n

n : P
E(iann_l). Note that ¢ =z ¢ Let y =2, 4 $o and let Y = inf(y,:i

0
1,...,n). Then, immediately, {yn,Fn) is a martingale sequence with bounded
increments, and lemmas 1 and 2 tell us that lim yn/n = lim Yn/n = 0, and thus
lim(y_ - Y )/n = 0. We are done, therefore, once we show that x - X =<y -
n n n n n
Yn point wise. But this is easily done by induction. It is clearly true for

n = 0 by convention. Assume it holds for n - 1; then since En < gn,

If X =X , then since Y > Y , we are done. While if X =~ X , then X
n n-1 n-1 n n n-1 n

x ,and x_ - X =<y - Y. Q.E.D.
n n n n n

A symmetrical argument completes the proof, and we obtain:

Lemma A.4 : Let (xq,Fn} be a submartingale with bounded increments and xp =

- xn)/n = 0 almost surely.

0. Let X = max (x,]i=1,...,n). Then lim (X
n i N0 N
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FOOTNOTES

1. The required discount factor can depend on the payoffs to be attained.

2. We thank Ian Johnstone for pointing us to this result.
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