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Abstract

In 2x2 games we often solve them by writing arrows between out-
comes in the matrix. I make this procedure precise and generalize it
to all strategic games using some very basic category theory. I define
a strategic game in categorical form in which outcomes are objects
and preferences are arrows. A subcategory is formed by exclusion
of arrows between outcomes that can not be reached unilaterally. I
show that Nash equilibria in pure strategies are never in the domain
of non-isomorphisms of the subcategory, i.e. a Nash equilibrium is
in the domain of an isomorphism and not in the domain of an arrow
otherwise. If additionally the preference relations are strict then the
terminal object (if it exists) of this subcategory is equivalent to the
unique Nash equilibrium in pure strategies. I use the homesets of this
subcategory to obtain a simple function that attains its maximum in
Nash equilbrium.
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1 Introduction

Strategic games in matrix form are very popular in economics, probably
because it their simplicity. In undergraduate studies we learn how to solve for
Nash equilibria in pure strategies in bi-matrix games by the means of drawing
arrows in the 2x2 matrices or marking the most preferred outcome(s) for each
player in large matrices. E.g. given row player’s action, what is (are) the
column player’s most preferred action(s). The following picture illustrates
the undergraduate Nash procedure in a 2x2 game:

L R
T (4, 4) ←− (0, 2)x y
D (2, 0) −→ (3, 3)

Note that the horizontal arrows only concern the preferences of the column
player, whereas the vertical arrows concern the row player.

Can this procedure made precise and generalized? A collection of out-
comes and arrows between them can be interpreted as a mathematical cate-
gory. In this paper I will only require some basic notions of category theory
introduced in the next section (see [1] Mac Lane, 1971 for more material) that
will serve as a formal framework of my investigation. In the third section
I introduce a strategic game in categorical form and generalize the ”under-
graduate Nash procedure”. Moreover, I obtain a simple function that attains
its maximum in Nash equilibrium in pure strategies.

2 Some Basic Notions of Category Theory

Definition 1 (Category) A category C = 〈C0, C1〉 is a collection C0 of ob-
jects and a collection C1 of morphisms which satisfy following structure:

(i) Each morphism f has a domain X (or dom(f)) and codomain Y (or

cod(f)) which are objects, written f : X −→ Y or X
f−→ Y .

(ii) Given two morphisms f and g such that cod(f) = dom(g), the compo-
sition of f and g, written g ◦ f , is defined and has domain dom(f) and
codomain cod(g): g ◦ f : X −→ Z or

X
f−→ Y

g−→ Z.
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(iii) Composition is associative, that is given f : X −→ Y , g : Y −→ Z and
h : Z −→ W , h ◦ (g ◦ f) = (h ◦ g) ◦ f .

(iv) For every object X there is an identity morphism idX , satisfying idX ◦
g = g for every g : Y −→ X and f ◦ idX = f for every f : X −→ Y .

Note that a category may be empty. In some texts, morphisms are re-
ferred to as ”arrows” and source and target.

Definition 2 (Homset) If a collection of all morphisms f with dom(f) =
X and cod(f) = Y is a set then it is denoted by Hom(X, Y ) called homset.
In this case the category is said locally small. The category is small if all
collections of morphisms in the category form homsets.

Definition 3 (Subcategory) A subcategory D of a category C is a pair of
subsets D0 and D1 of objects and morphisms respectively s.t.

(i) if f ∈ D1, then dom(f), cod(f) ∈ D0,

(ii) if C ∈ D0, then idC ∈ D1,

(iii) if f, g ∈ D1 are a composable pair of morphisms then g ◦ f ∈ D1.

A subcategory is full if for any C, D ∈ D0, if f : C −→ D in C, then f ∈ D1.

Definition 4 (Isomorphism) An morphism f : A −→ B in a category C
is an isomorphism if it has an inverse, i.e. a morphism g : B −→ A for
which f ◦ g = idB and g ◦ f = idA.

Definition 5 (Terminal Object) An object T of a category C is called ter-
minal if there is exactly one morphism A −→ T for each object of C.

Definition 6 (Functor) Given two categories C and D, a functor F : C −→
D consists of operations F0 : C0 −→ D0 and F1 : C1 −→ D1 such that for
each f : X −→ Y , F1(f) : F0(X) −→ F0(Y ) and

(i) for X
f−→ Y

g−→ Z, F1(g ◦ f) = F1(g) ◦ F1(f);

(ii) F1(idX) = idF0(X) for each X ∈ C0.

Definition 7 (Fully Faithful) A functor F : C −→ D is called faithful
if it is injective when restricted to each homset (one-to-one).1 A functor
F : C −→ D is called full if it is surjective2 on each homset, i.e. if for every
two objects A, B of C, every morphism in Hom(F (A), F (B)) is F of some
morphism in Hom(A, B) (onto). A fully faithful functor is full and faithful.

1A function f : A −→ B, A,B being sets, is injective if f(p) = f(q) =⇒ p = q, p, q ∈ A.
2A function f : A −→ B, being A,B sets, is surjective if ∀b ∈ B, ∃a ∈ A s.t. f(a) = b.
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3 Morphisms and Nash Equilibrium

Definition 8 (Strategic Game) Γ = 〈N, (Ai), (�i)〉 is called strategic game,
where

(i) N is the finite set of players,

(ii) Ai the nonempty set of actions available to i ∈ N ,

(iii) �i is the complete, transitive and reflexive preference relation on A =
×j∈NAj of player i ∈ N .

Note that the finite set of players is just an index set for actions and prefer-
ences. Therefore we may as well consider the strategic game in the reduced
form:

Definition 9 (Strategic Game in Reduced Form) G = 〈A, (�i)〉 is called
strategic game in reduced form, where

(i) A = ×j∈NAj the nonempty set of outcomes

(ii) �i is the complete, transitive and reflexive preference relation on A of
each player i ∈ N .

Following representation result is provided:

Proposition 1 (Strategic Game in Categorical Form) G forms a cat-
egory G defined as follows:

(i) A = G0,

(ii) a, b ∈ A, b �i a iff there is a morphism a −→i b,

(iii) reflexivity of �i is forced by identity morphisms a −→i a, ∀a ∈ A,
∀i ∈ N ,

(iv) transitivity of �i is forced by composition of morphisms, i.e. a, b, c ∈ A,
a −→i b, b −→i c then by (a −→i b) ◦ (b −→i c) we have a −→i c,

(v) completeness of �i requires that ∀a, b ∈ A, either a −→i b or b −→i a,
∀i ∈ N .

Proof. It is straightforward to verify that G is indeed a category. q.e.d.
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Remark 1 Suppose a −→i b and b −→j c exists. Then composition is forced
by the axioms of category. Such compositions are used for example to solve
for Nash equilibria in 2x2 games.

Remark 2 Since N is finite, HomG(a, b) is a finite set for all a, b ∈ A (since
for every i ∈ N there can be at most one morphism).

Definition 10 (Subcategory of Strategic Game) Let G ′ be a subcate-
gory of G such that

(i) G0 = G ′0,

(ii) G1 is defined as follows: ∀a, b ∈ A define sets HomG′(a, b) ⊆ HomG(a, b)
s.t. for a = (ai, a−i) and b = (bi, a−i), bi ∈ Ai for some i ∈ N , then

HomG′(a, b) =

{
{a −→i b} if a −→i b exists,
∅ otherwise.

Clearly, G ′ is a subcategory of G. The subcategory is formed by neglecting
an arrow of a player iff this player would need to make some co-operative
effort to reach the co-domain of the arrow. Only arrows between outcomes
the player can unilaterally reach are considered.

As a remark, there exists a full but not faithful functor F : G −→ G ′. Set
F (a) = ida(a) = a, ∀a ∈ A,

F (−→i) =

{
−→i if a−i ∈ cod(−→i) and a−i ∈ dom(−→i)

iddom(−→i) otherwise,

and identity and composition preserved. This functor is full since every
morphisms in G ′ is F of some morphism in G. However, this functor is not
faithful since some non-identity morhpsims in G are taken to identities in G ′.
This functor I won’t use for anything. However, it has a nice interpretation:
In undergraduate game theory we do not consider a player’s arrow between
two outcomes if this player can not unilaterally change one outcome to the
other by her actions. The functor can be interpreted as neglecting those
arrows. Note that an arrow of a player is neglected iff this player would
need to make some co-ordinate effort with some other player(s) to reach the
codomain of the arrow. Indeed, for finding Nash equilibria in pure strategies
(see below) one does not need complete preferences of the players. Rather
one need the player’s preference over outcomes that are affected by her.

Definition 11 (Nash Equilibrium) A Nash equilibrium in pure strategies
of an strategic game G is a profile a∗ ∈ A of actions such that ∀i ∈ N ,

(a∗i , a
∗
−i) �i (ai, a

∗
−i),∀ai ∈ Ai. (1)

Denote the set of Nash equilibria of the objective strategic game by E(G).
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Unless otherwise note, I refer in this paper to Nash equilibrium in pure
strategies simply as Nash equilibrium.

Theorem 1 a ∈ A is a Nash equilibrium of G iff it is the domain only of
isomorphisms in G ′.

Proof. ”=⇒”: Suppose a ∈ E(G) but a domain of morphism f in G ′ which
is not an isomophism. Then ∃b 6= a, a, b ∈ A and i ∈ N s.t. (ai, a−i) −→i

(bi, a−i) in G ′ for which there is no (bi, a−i) −→ (ai, a−i) (otherwise it would
be an isomorphism). By definition of b it follows that a −→i b also in G.
Hence (bi, a−i) �i (ai, a−i) which implies a /∈ E(G), a contradiction.

”⇐=”: Suppose a ∈ A is the domain only of isomorphisms but not a
Nash equilibrium. Not being a Nash equilibrium means that there ∃b ∈ A
s.t. for some i ∈ N b �i a and not a �i b ⇐⇒ (bi, a−i) �i (ai, a−i) and not
(ai, a−i) �i (bi, a−i) in G ⇐⇒ (ai, a−i) −→i (bi, a−i) and not (bi, a−i) −→i

(ai, a−i) in G =⇒ (by definition of b also ”⇐=”) a −→i b and not b −→i a in
G ′. Thus a is the domain of a −→i b but not the codomain of an morphism
b −→i a in G ′. Hence, a is the domain of a morphism which is not an iso-
morphisms, a contradiction. q.e.d

Note that any outcome is the domain of at least one isomorphism since
the identity morphism is an isomorphism.

Corollary 1 If a terminal object in G ′ exists then it is a Nash equilibrium
in G.

Proof. Suppose there exists a terminal object a ∈ A. If for some i ∈ N ,
a ∈ A is the domain of an morphism a −→i b in G ′, then there exists by the
definition of terminal object also a morphism b −→i a. Hence, every terminal
object is only in the domain of isomorphisms. q.e.d.

Remark 3 If a ∈ A is terminal object in G ′ and in the domain of a mor-
phism a −→i b in G ′ then b is also a terminal object and a Nash equilibrium.

Theorem 2 Suppose a ∈ A is a terminal object in G ′. If �i is strict, then
a ∈ A is the unique Nash equilibrium in G.

Proof. Suppose there exists a terminal object a ∈ A which not the unique
Nash equilibium, then there exists another terminal object b 6= a such that
for some i ∈ N , a −→i b in G ′. Since �i is strict, there is no morphism
b −→i a. Hence a ∈ A is not terminal in G ′, a contradiction. q.e.d.
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Define A(a) := {b ∈ A : ∃i ∈ N, bi 6= ai, b−i = a−i}. That is A(a) is
the set of combination of actions which differ exactly in one co-ordinate from
a ∈ A. Define further HomG′(A(a), a) = ∪b∈A(a)HomG′(b, a). This is the set
of arrows between A(a) and a.

Definition 12 P (a) := ]HomG′(A(a), a).

Theorem 3 If E(G) 6= ∅ then E(G) = {a′ ∈ A : a′ ∈ arg maxa∈A P (a)}.

Proof. Suppose E(G) 6= ∅. By definition of E(G) we have each a∗ ∈ E(G),
∀i ∈ N , (ai, a

∗
−i) −→i (a∗i , a

∗
−i), ∀ai ∈ Ai. Hence ]A(a∗) = Σi∈N(]Ai − 1) =

maxa∈A P (a) = P (a∗), ∀a∗ ∈ E(G). What is left to show is that there does
not exist any a /∈ E(G) s.t. P (a) = maxa∈A P (a). Suppose the contrary, then
P (a) = A(a∗), for some a∗ ∈ E(G). Hence ∀i ∈ N , (a′i, a−i) −→i (ai, a−i),
∀a′i ∈ Ai, which implies a ∈ E(G), a contradiction. q.e.d.

Note that in some ordinal potential potential games, P is an ordinal
potential, and in some generalized ordinal potential games, P is a generalized
ordinal potential, but it does not hold in general (see [2] Monderer/Shapley
(1996) for potential games). To see this consider following example of ordinal
potential game (left) and it’s ordinal potential given by P (right) (a similar
example was given in [3] Voornefeld/Norde, 1997).

(3, 1) (1, 2)
(4, 1) (2, 1)

0 1
2 2

To see a counter-example consider following game below (left) that has
an ordinal potential (middle) but the function P (right) is not an ordinal
potential. In this case the ordinal potential function depicted in the mid-
dle is obtained by considering the homesets HomG(A, a) (neglecting identity
morphisms).

(0, 2) (1, 3)
(1, 0) (0, 1)

0 3
1 2

0 2
1 1

To see that P can be used to find generalized ordinal potential functions
in some generalized ordinal potential games, consider following example by
[3] Voornefeld/Norde (1997) of generalized ordinal potential game (left), that
is not an ordinal potential game, and its generalized ordinal potential given
by P (right).

(0, 1) (1, 2) (0, 0)
(1, 1) (0, 0) (0, 0)
(0, 0) (0, 0) (1, 1)

2 4 1
4 2 2
2 2 4
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