Let X, Z, Y be three variables with support $\{0,1\}$. Let f be a three-dimensional vector valued function $f:\{0,1\} \times\{0,1\} \times\{0,1\} \rightarrow\{0,1\} \times\{0,1\} \times\{0,1\}$

$$
f:=\left\{\begin{array}{l}
1\{a-b(Y+Z) \geq 0\} \\
1\{c-b(X+Z) \geq 0\} \\
1\{d-b(X+Y) \geq 0\}
\end{array}\right.
$$

Let $a, c, d \in R$ and $b>0$. I have shown that the function f has at least one fixed point for any $a, c, d \in R$ and $b>0$ and that the set of fixed points is finite. This implies that the set of fixed points has a maximum and a minimum. Now, I need to write an algorithm that finds the maximum and minimum fixed points for any value of $a, c, d \in R$ and $b>0$. The problem is that the function is monotone decreasing in $\{0,1\} \times\{0,1\} \times\{0,1\}$ since $b>0$. Could you help me?

To compare vectors, I can use coordinatewise comparison

$$
\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right) \geq\left(\begin{array}{l}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right) \leftrightarrow X \geq X^{\prime} \text { and } Y \geq Y^{\prime} \text { and } Z \geq Z^{\prime}
$$

or lexicographical order

$$
\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right) \geq\left(\begin{array}{l}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right) \leftrightarrow X>X^{\prime} \text { or } X=X^{\prime} \text { and } Y>Y^{\prime} \text { or } X=X^{\prime} \text { and } Y=Y^{\prime} \text { and } Z \geq Z^{\prime}
$$

Thank you very much!

