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This paper is a study of the dynamics of the efficient distribution of consumption in an 
exchange economy with many consumers, each of whom is subject to private, idiosyncratic taste 
shocks. We propose a recursive method for finding feasible allocations that are incentive- 
compatible and that are Pareto optimal within this set. The method is applied to several parametric 
examples. We find that in an efficient allocation the degree of inequality continually increases, 
with a diminishing fraction of the population receiving an increasing fraction of the resources. 
We discuss the extent to which these allocations can be decentralized via market arrangements. 

1. INTRODUCTION 

This paper is a study of the dynamics of the efficient distribution of consumption in an 
exchange economy with private information. The economy we study has a constant 
endowment flow of a single, non-storable consumption good which is to be allocated 
each period among a large number of consumers. Each period, these consumers experience 
unpredictable, idiosyncratic, privately observed taste shocks affecting their marginal utility 
of current consumption. Efficiency dictates that more resources be allocated to those 
consumers who, in any given period, have a high marginal utility of current consumption, 
due to a high value of their taste shock. But since individual shocks are not observable, 
the efficient allocation of resources in this environment is impeded by the problem of 
incentive compatibility: if consumers who report a high value of the taste shock receive 
more current consumption, then all other consumers have an incentive to misreport their 
current taste shock to receive the same treatment. 

The problem of incentive compatibility is solved in this environment by conditioning 
each consumer's consumption allocation not only on his current report of his taste shock, 
but also on the history of his past reports. In particular, it is possible to induce consumers 
to report their taste shocks truthfully by promising agents who report that they have a 
high marginal utility of consumption in the current period that they will receive more 
current consumption at the expense of less consumption in future periods, and promising 
agents who report a low marginal utility of current consumption that they will receive 
higher consumption in future periods at the expense of less current consumption. Thus, 
incentive compatible allocations in this environment induce dynamics in the distribution 
of consumption that are absent in a full-information environment. Our concern in this 
paper is to examine the dynamics of the distribution of consumption that may be induced 
by the need for incentive compatibility. 

It is possible to construct a wide variety of command or market mechanisms to 
implement incentive compatible allocations. From previous studies, we know that the 
dynamics of the distribution of consumption that are induced by different incentive 
compatible mechanisms or market allocations can be remarkably different. For instance, 
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Lucas (1978) shows that the allocation of resources that results from the use of money 
as the sole asset for intertemporal exchange yields an invariant distribution of consump- 
tion. The current consumption of any given individual varies over time as that consumer 
spends more or less of his inventory of money each period to accommodate the fluctuations 
in his marginal utility of current consumption, but these fluctuations in individual 
consumption remain confined to a stable cross-sectional distribution of consumption. On 
the other hand, the allocation of resources based on the use of shares of the endowment 
or pure credit arrangements, as studied, for example, in Taub (1990), typically result in 
an ever increasing disparity in the cross-sectional distribution of consumption. 

In this paper, we characterize efficient allocations in this informationally constrained 
environment and examine the dynamics of the distribution of consumption that are 
implied on normative as opposed to positive grounds. To solve our model, we reformulate 
our problem as a recursive problem and establish a Bellman equation which characterizes 
the efficient allocation of resources. We then solve this Bellman equation for two classes 
of current utility functions. We find in our examples that the efficient allocation of 
consumption induces spreading of the cross sectional distribution of consumption over 
time. 

Our approach in this paper builds on the partial equilibrium analyses of dynamic 
incentive problems carried out by Spear and Srivastava (1987), Green (1987), Taub 
(1990a), Phelan and Townsend (1991), Marimon and Marcet (1990), Abreu, Pearce, and 
Stacchetti (1990), Thomas and Worrall (1990), and Atkeson (1991).1 In these earlier 
papers, a single principal is assumed to choose an incentive compatible allocation designed 
to minimize the discounted value of resources needed to provide a single agent with a 
given level of expected utility, where the value of resources is evaluated at some given 
set of prices. In such a formulation, no period-by-period resource constraint is imposed 
upon the principal. In this paper, the principal-or planner-chooses the incentive 
compatible allocation for all agents subject to a constraint that the total consumption 
handed out each period to the population of agents cannot exceed some constant 
endowment level. Though many specific results from these other papers can be adapted 
to this new context, the basic Bellman equation that we study is quite different from those 
studied by earlier writers. In the last section of the paper, we discuss the sense in which 
the one-on-one principal-agent problem studied by Green and others can be viewed as 
a component of a decentralized version of the efficient allocation that we construct. 

2. A MODEL 

In this section we set out the model informally, describe the allocation problem in more 
detail, and provide a plan for the rest of the paper. We consider an economy in which 
there is a constant endowment of a single, non-storable consumption good available at 
each date. There is a continuum of consumers, each with the preferences 

EE{t'=o (I1-,8),8V(ct)0t} 

where ct is consumption of the good at date t and Ot is an idiosyncratic, serially independent 
taste shock realized at date t with the distribution ,. 

1. These papers consider various forms of private information including unobserved effort, investment, 
income shocks, and taste shocks. The taste shock model is similar to the income shock model in that current 
income shocks cause consumers to have different marginal utilities of given transfers in the current period. In 
particular, when current utility takes on the negative exponential form, the two models are identical. 
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We identify each consumer with a number w, which we interpret as his initial 
entitlement to expected, discounted utility. We assume that all agents identified with the 
same w receive the same treatment. Let qi denote a distribution of utilities w across the 
population of agents: qi(A) is the fraction of consumers who will receive expected 
discounted utility equal to a number w in the set A c R. We take the distribution qi 
implied by a given way of allocating resources as a complete description of the welfare 
consequences of this allocation, thus treating individual consumers as anonymous. 

One way to think of a resource allocation in this setting is to think of a social planner 
as choosing a sequence of functions {c,j, where c,(w, 0t) is the consumption agent w gets 
at date t if he reports the shock history (0o, 01, . . ., a) = Ot up to that date. Since the 
shocks are assumed to be private, we will also want to restrict attention to allocations 
that are incentive-compatible: sequences {c,j that induce each consumer to reveal his 
shock history 0t truthfully at each date. For any given initial distribution q/ of entitlements 
w, we say that the allocation described by the sequence {c,j attains if with resources y if 
(i) it is incentive-compatible, (ii) it delivers expected utility w to all consumers initially 
entitled to w, and (iii) the total consumption of all consumers does not exceed y in any 
period. 

The efficiency problem that we address in this paper is the following. We define a 
function (p* mapping distributions of utility qi to the real line, where (p*(qi) is defined 
to be the greatest lower bound on constant endowments y such that there exists an 
allocation that attains qi with resources y. We call (p*(qi) the minimum cost of attaining 
distribution qi. Our objective is to characterize the function (p* and to find allocations 
that attain if with resources (p*(qi). This dual approach to the efficiency problem is similar 
to Green's. 

To begin to solve for efficient allocations, we reformulate our problem in the following 
recursive manner. Instead of having the planner choose an agent's consumption each 
period as function of the agent's initial entitlement and the entire history of his taste 
shock reports, let the planner choose a function c0 that assigns initial consumption c0(w, 0) 
to any consumer with the initial entitlement w who gets the initial shock 0, and let the 
planner choose a second function g0 that specifies this consumers' expected utility 
entitlement w, from tomorrow on as a function of the same two variables: w1 = g0(w, 0). 
That is, on the basis of his w-value and his announced shock, a consumer receives an 
immediate quantity of goods and an expected utility from next period on. With goods 
so allocated and consumers' entitlements so respecified, the planner is faced with a 
problem of the same form next period, except that due to the reassignment of expected 
utilities, the initial utility distribution qi has been replaced with a new one, i1l. Accordingly, 
he chooses a new pair of functions (cl, gl), and so on, ad infinitum. 

We call such a sequence of functions, suitably restricted, an allocation rule (to 
distinguish it from an allocation). We say that an allocation rule attains a utility distribu- 
tion qi with resources y if (i) it is incentive-compatible in an appropriate (one-period) 
sense, (ii) if at each date t it delivers expected utility w to all consumers entitled to w at 
the beginning of that period, and (iii) the total consumption of all consumers does not 
exceed y in any period. 

The advantage of this recursive reformulation of the problem of finding the efficient 
allocation of resources is that it delivers a Bellman equation that the cost function So*(41) 
must satisfy. For several example utility functions (logarithmic utility, utility displaying 
constant relative risk aversion, and utility displaying constant absolute risk aversion) we 
are able to use this Bellman equation to show the existence of a solution to our original 
resource allocation problem and characterize the solution in some detail. 
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In Section 3, we spell out the details of the formulation of the resource allocation 
problem, and then establish that a utility distribution can be attained by an allocation 
with the constant endowment y if and only if it can be attained by an allocation rule 
with the same constant endowment y. This result will justify our focus on allocation rules 
in the rest of the paper. In Section 4, we define the function gp* taking utility distributions 
into endowment levels and provide a Bellman equation for this function (p*. We describe 
an iterative process that, if it converges, produces a solution to this Bellman equation. 

In Section 5, we apply these results to particular parametric families of utility 
functions. We show that with log utility, constant relative risk averse preferences, and 
constant absolute risk averse preferences, the solution to the Bellman equation can be 
constructed from a static incentive problem and we develop some facts about the latter 
problem. Section 6 then characterizes the solution to the static problem for all three 
preference assumptions and develops the implications of this solution for the originally 
posed, dynamic allocation problem. 

In Section 7, we consider the possibility of decentralizing efficient allocations through 
exchange at competitively determined prices. We consider first the problem of finding 
prices which decentralize our planning problem of finding the least-cost method of 
attaining a given distribution of utility into component planning problems of minimizing 
the cost of attaining each individual utility level w within that distribution of utilities. 
An analogue to the first welfare theorem is proved. Our results here are used to relate 
our work to Green's work and other earlier work in this area. 

We then ask whether the allocations that solve these component problems can be 
obtained through competitive trading in securities. We find that if unmonitored trading 
in certain, one-period real bonds is admitted, efficient allocations cannot be so supported. 
Section 8 then concludes the paper. The proofs of various lemmas are contained in the 
Appendix. 

3. PROBLEM STATEMENT AND PRELIMINARIES 

In this section we state our assumptions on preferences and the distribution of taste 
shocks, provide definitions of allocations and allocation rules, and state two results that 
justify our subsequent focus on allocation rules. 

The taste shocks 0 take values in a finite set 0 = {01 ..., On}, 01 > > 0" > 0, with 
the fixed probability distribution ,u that assigns positive probability to all 0 values. We 
adopt the normalization E (0) = 1. The current period utility function V: R, -- D C R 
(where D is an interval) is assumed to be continuous, strictly increasing and strictly 
concave. We denote the inverse function of V by C: D -* R+, and refer to the value C(x) 
of this function as the resources required by the utility level x (even though the utility 
level is really (1 -/3)x0, not x).2 

Each consumer is identified with a point w E D (which we interpret below as the 
expected discounted utility this consumer obtains). If two consumers have the same w 
we allocate the same discounted expected utility to each of them. Let 9t?+ be the 
(t + 1)-fold product space and let at+ 1 the product measure, be the distribution of the 

2. Among the examples considered in Section 5, we include constant absolute risk aversion preferences 
of the form V(c) = -exp (-yc). In this case, we allow consumption c to take on both positive and negative 
values, so the functions C(u) and q*(/) can take on values over the whole real line. This example is instructive, 
but we do not modify our general theory to accommodate this case with negative consumption. 
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shock history O' in this space. Let O' and ,u' be the corresponding infinite product 
space and probability measure. 

The individual knows his own history Ot at date t, but the planner's only sources of 
information about this history are the reports provided by the agent himself. We use 
zt(Ot) to denote the report an agent plans (at date 0) to give about his date t shock if he 
has actually experienced Ot, and refer to z = {zt(0t)}2=o, where for all t, zt: tl > 0, as 
a reporting strategy. Let Z be the set of all reporting strategies. The truthful reporting 
strategy is denoted by z* = {z*(0t)},7=o where z*(Ot) = Ot for all t and Ot E Ot+. 

Let ct(w, zt) denote the consumption that individual w receives at date t on the basis 
of the reporting history zt, and let (1 -,3)ut(w, zt)Ot be the utility he receives from this 
consumption. We will find it convenient to think of a social planner as assigning the 
sequence u = {ut(w, zt)}2=o to a consumer. Let S be the set of such sequences-we call 
them plans-such that for all t _ 0 and all z't E 0 t+l, ut zt) is a Borel-measurable function 
on D, and such that: 

limtZO ,83ES=0 f 3S ut+,(w, Ot+s)0t+S =0 (3.1) 

for all w c D and {I Ot c 0'. 
Define the total expected utility function U: D x S x Z - D by: 

U(w, u, z) = (1 -P)Et=? p{ ut[w, zt(0t)]0td1t+1. 
05t+l 

Thus U(w, u, z) is the expected discounted utility agent w receives if the social planner 
chooses the plan u E S and the agent chooses the reporting strategy z c Z. 

We define an allocation as a plan u c S that induces each agent to adopt the truthful 
reporting strategy z* and that delivers expected discounted utility w to each agent w. 
These requirements are, in turn: 

w= U(w, u,9z*) (3.2) 

for all w c D and 

U(w, u, z*)_ U(w, u, z) (3.3) 

for all wcD and all zcZ. 
By a utility distribution we will mean any element qi of the set M of all probability 

measures on (D, D), where D are the Borel subsets of D. We say that an allocation u 
attains qi with resources y if: 

Q cut(w. tt)]d1,ut+'dqi- y (3.4) 
Dx@'+1 

for all t. Since ut is Borel measureable and C is continuous and non-negative, the integral 
on the left in (3.4) is well-defined, though for some allocations u it can be +00. Our 
objective is to characterize the allocations that attain given utility distributions if E: M. 

We next formulate a recursive description of resource allocation, which we refer to 
as an allocation rule (to distinguish it from the allocation we have just defined). In this 
description, think of the planner as choosing a pair (f,t g,) of functions of (w, 0) at each 
date, where ft(w, 0) is interpreted as the current utility an agent receives if his expected 
utility entitlement from t on is w and if he announces the shock 0, and gt(w, 0) is the 
expected utility entitlement this same consumer is assigned from tomorrow on. That is, 
we think of the planner as summarizing a consumer's entire report history and his initial 
entitlement w0 in a single number w that represents his expected utility entitlement from 
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the current period on. For each t, (f, gt): D x 0 -* Dx D, and we require ft(* 0) and 
gt(- 0 ) to be Borel-measurable. Let - = {f,t gt}t=o denote a sequence of such functions. 

A sequence a defines a plan u as follows. Let {wJ} solve the difference equation 
wt+ = gt(wt, zt) with initial value wo, so that wt: D x 0t - D, and define u by u,(wo, zt) = 

ft[wt(wo, zt-), zt]. We say this plan u is generated by a- = {(ft, gt)}. Clearly the plan so 
defined has the requisite measurability properties. We call the sequence a an allocation 
rule if the plan it generates satisfies the boundedness condition (3.1) (if it is in S); if the 
sequence {wj} it implies satisfies the boundedness condition that for all wo E D and all 

limt"0,8 twt(wo, ot-1) = o; (3.5) 

and if it satisfies two conditions that are analogous to the restrictions (3.2) and (3.3) that 
an allocation must satisfy: 

For all t '0 and all w E D, 

w= [(1 -/3)ft(w, 0)60 +f3g,(w, 0)]dy. (3.6) 

For all t0, all wcD and all 0, 0E0, 

( ) t ( W, 0 ) 0 + 13gt ( W, 0 ) 
A 

(A ,0)0+ g(W (1 -/3(w, 6)+f3g~( 6) ? 1 - t3(W, 6)60+f3g(w, 6). (3.7) 

The requirement (3.7) is Green's (1987) temporary incentive compatibility. 
Given an initial utility distribution fr, the functions {gt}t=o of an allocation rule ar 

define a sequence {q,} t=o of distributions as follows. For any Borel measurable g: D x 0 - 

D and any Doc D, let: 

(Sg/i)(Do)= d ( do) , 
B(DO) 

where Bg(Do) = {(w, 0) c D x 0: g(w, 0) c Do}. This defines an operator Sg: M -> M. That 
is, if qf is today's utility distribution and if utilities from tomorrow on are determined by 
g, then tomorrow's utility distribution is Sgq'. Given an initial utility distribution i E M, 
an allocation rule ar defines a sequence of distributions {Ji}Jt=O in M by i/o = 4f and 
It+1 = Sg,qft, t 0> . We will say that the allocation rule a attains qi with resources y if: 

IDxO C[ft(w, 0)]d4td/,d' y, (3.8) 
DxO 

for all t _ O. 
In the rest of the paper we focus exclusively on allocation rules. The next two results, 

which state that there exists an allocation u that attains qf Ec M with resources y if and 
only if there exists an allocation rule a that attains ai with resources y, are presented to 
justify this focus. 

Lemma 3.1. Let qi E M and suppose the allocation u attains if with resources y. Then 
there is an allocation rule aJ that attains if with resources y. 

Lemma 3.2. Let if E M. Suppose the allocation rule a attains f' with resources y and 
that u is the utility plan generated by a. Then u is an allocation, and u attains if with 
resources y. 



ATKESON & LUCAS ON EFFICIENT DISTRIBUTION 433 

The proofs of these two lemmas are given in the Appendix. The proof of Lemma 
3.1 uses the fact that the set of utility plans satisfying the constraints (3.2) and (3.3) is 
convex, which in turn depends on our assumption that the taste shocks affect consumer 
utility multiplicatively. The proof of Lemma 3.2 involves proving that temporary incentive 
compatibility (3.7) implies incentive compatibility in the sense of (3.3) and that the 
constraint (3.6) requiring that the allocation rule deliver to every consumer w the expected 
utility he is entitled to is equivalent to same corresponding constraint (3.3) for allocations. 

4. A BELLMAN EQUATION FOR EFFICIENT ALLOCATIONS 

For any utility distribution fr E M, define the value Sp*(fr) to be the infimum of the set of 
endowment levels y that have the property that there exists an allocation u that attains 
qf with resources y. Roughly, Sp*(fr) is the minimum cost (as a constant, perpetual, 
endowment flow) of attaining fr. If the distribution fr cannot be attained with any finite 
resource level, we say that Sc*(qf) = +0?. Hence (p*: M -> R u {+oo}. We call an allocation 
efficient if it attains a distribution qi with resources p*(f). 

Recall from (3.8) that an allocation rule o- = {f, g}%t= attains a given distribution 
of expected utilities fr with resources y only if the current resource cost is less than or 
equal to y in all periods t. We can restate this condition in a recursive fashion by saying 
that an allocation rule o- attains a given distribution of expected utilities fr with resources 
y only if both the total consumption JDXO C[fo(w, 0)]dgdq, allocated in time t = 0 is less 
than or equal to y and the allocation rule o-' that is the continuation of o- from period 
t = 1 on also attains, with resources y, the distribution of utilities 4f, = Sg0f that arises at 
the beginning of period of t = 1 from the reassignment of entitlements w according to 
go. Then, from the definition of the function S>*, the minimum resources needed to attain 
a distibution fr contingent on choices of functions fo and go assigning utilities in the 
current period and entitlements to utility in the future is given by 

max If C[fo(w, 0)]dxdq,, (p*(Sgoq) Dx(3 
Thus, the problem of finding the minimum resources required to attain the distribution 
+ E M is simply the problem of minimizing this quantity over choices of functions f and 
g subject to constraints (3.6) and (3.7). 

This line of argument suggests that Sp* should satisfy the functional equation: 

For all f E M, 

Sf(ri) 
= inffgeB max {f C[f(w, 

0)]dtkd(r, (P(Sg(f)} (4.1) 
DxO 

where B is the set of functions f, g: D x 0 -> D x D such thatf (-, O)and g(-, 0) are Borel 
measurable and such that for all w E D, 

w = f (1 -P/)f (w, 0)0 +f83g(w, 0)]dH; (4.2) 

and, for all we D and 0,z eE 0, 

(1 -p,)f(w, 0)0 +,lg(w, 0)?_ (1 -p,)f (w, z)0 +,lg(w, z). (4.3) 

In the remainder of this section, we demonstrate that cp* satisfies this Bellman equation 
(Lemma 4.1) and propose an iterative method for solving this equation (Lemma 4.2). 
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It is useful to define an operator T on the space of candidate resource cost functions. 
Let X be the set of all functions Sp: M R+ u {+oo}, and define the operator T: X -> X by: 

Problem T: 

(Ts)(qfr)=inffgeB max{{ C[f(w, O)]ddiJ, (P(Sgqj)}. (4.4) 
DxE3 

Then solutions to the Bellman equation (4.1) are fixed points of the operator T 

Lemma 4.1. Sp* is a fixed point of T 

Proof. We show first that Sp* - Ts*, then that Sp* ?- Tp*. 
Suppose that for some + e M, p*(4) > ( T<p*)(4f). Then there is some (f?, go) e B 

and a 8 > 0 such that 

Sp*(4fi) - max X Cjf(w, 0)]djxdq, (p*(Sgo)}> 8. 
DxOJ 

Let frl = Sgoq,. Since >*(qf) > Sc*(qr), S>*(qf) must be finite. Then by the definition of (p* 
and Lemma 3.2, there is an allocation rule al1 = {f', g1j}t=0 that attains ifl with resources 

* *(ij) + (8/2). Define the allocation rule oa = j,?, g?},%0 by setting (J0, g') = (fo, go) 
and (Art+1,go+1)=( fl,g,) for t-'0. Then 0.0 attains fr with resources sp*(q)-(3/2),a 
contradiction. This proves Sp* ? Tp*. 

Now suppose that for some fr E M there is a 8 > 0 such that for all (f, g) E B 

max {f C[f(w, O)]dtd(P, gp*(Sgi)} - (p*(q)> 8. 
Dxf3 

If S0*(qp) = +??, this is impossible. If Sp*(fr) is finite, then by the definition of q,* and 
Lemma 3.2 there is an allocation rule oO = {f?, g?}lt0 that attains i/ with resources less 
than Sp*(fr) + (8/2). Let qfl = Sgooq. Construct an allocation rule a' = {f', gl}t=o by setting 
(ft, gl) =(f't+l, go 1) for all t _ 0. The rule al attains qfr with resources (p*(f) + (8/2). 
Thus S>*(p r)?,*(,+)+(8/2), from which it follows that 

max {J C[Jo(w, 0)]dgdf, Sp*(Sgoofr)} _*(J) 8 

a contradiction. This proves p*?- Ts*, and completes the proof of the Lemma. 

The next result is our main tool for constructing g.*. 

Lemma 4.2. Suppose there are functions (p, (pc and (p such that for all frEe M, (i) 
~Pc -( p Pa and (ii) limOo T) pa = liMn, = T p. Then 'p = 'p 

Proof. The operator T is monotone, so by (i), 

T Sc =-- T f *T =< TP. 

for all n. By Lemma 4.1, Tn'p*= =P*. Then the result follows from (ii). 

In applying Lemma 4.2, economically natural candidates for the bounding functions 
'Pa and 'Pc are suggested by the work of Thomas and Worrall (1990). For the upper 
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bound, consider the autarkic allocation that provides each consumer with the constant 
consumption level that yields him the expected utility w. Recalling the normalization 
E(0) = 1, this requires C(w) units of goods each period. Then integrating with respect 
to a utility distribution qf E M gives the total resource cost: 

'Pa(f) = T c(w)dii. (4.5) 
D 

Since an autarky allocation is incentive compatible, pa(fr) p*(q) for all fr E M. 
For the lower bound, consider utility plans that use a constant level of total resources 

and attain a given distribution fr by completely insuring each agent w against idiosyncratic 
risk. Such an allocation will evidently be constant with respect to time: u,(w, 0') = u(w, 0,) 
for some fixed function u. Call this function uc(w, 0). This function must solve the 
problem: 

minu C[u(w, 0)]dqfdg 
Dxf3 

subject to: 

f Ou(w, 0)dg = w (4.6) 

for all w E D. 
The first-order conditions for this convex problem are (4.6) and: 

C'[u(w, 0)] =A(w)0 (4.7) 

for all w E D, 0 Ez 0. (That is, for each w, equate marginal utilities of consumption across 
all shock values.) Solving (4.6) and (4.7) for A(w) and uc(w, 0) and integrating with 
respect to , and fr gives: 

sQc(qf) TD C[uc(w, 0)]ddqd4. (4.8) 
DxE3 

(Note that if the variance of 0 is zero, the functions (pa, and (Pc defined by (4.5) and (4.8) 
are the same.) Since any feasible, incentive compatible allocation is feasible for the 
problem solved by the allocation uc(w, 0), Spc(J) Sp>*(qJ) for all fr. In the next section, 
we apply Lemma 4.2 to three examples with these choices of the bounding functions qpc 
and 'pa. 

Of course, our objective is to construct efficient allocation rules-allocation rules 
that attain the infimum in (4.1). Finding a solution 'p* to (4.1) is only a means to that 
end. We cannot show the existence of efficient allocation rules at the level of generality 
of this section. We address and resolve the issue of existence of efficient allocation rules 
in the examples that we consider in Section 5. 

5. SOME EXAMPLES SOLVED 

In this section, the results of Sections 3 and 4 and will be used to construct the efficient 
allocations in three cases in which current period utility takes either the logarithmic form 
V(c) = log (c), the constant relative risk aversion (CRRA) form V(c) = y-}c', y < 1, y $ 0, 
or the constant absolute risk aversion (CARA) form V(c) = -exp (- yc), y > 0. In all of 
these cases, we use Lemma 4.2 to construct the efficient allocation of resources. The 
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outline of our solution method is the same in all three cases: the procedure in each case 
differs only in the details. The method is best explained in the case of logarithmic utility 
first, with proofs and the details of the other cases left to the appendix. 

In the case of logarithmic utility, the set D of utility values is all of R, and the 
inverse, resource requirement function is C(u) = exp (u). In this case, the bounding 
functions 'ps, and Sp, defined in (4.5) and (4.8) are given by: 

'P.a(tr)= NO exp (w)dqf. (5.1) D 
and: 

'Pjqi) = exp {-E[O log (0)]} exp (w)dqi. (5.2) D 
To apply Lemma 4.2, we will repeatedly apply the operator T defined in section 4 

by (4.4) to these two functions. This application is facilitated by noticing that both 'ps, 

and 'p, take the form of a constant a (say) times the moment JD C(w)dqi of the distribution 
fr. We will refer to these constants later, so define a,a = 1 and a, = exp {-E [ 0 log (0)]}. 
It turns out in the logarithmic utility case that when T is applied to a function 'p of the 
form a JD C(w)dqi, the functions f and g that minimize the right-hand side of (4.4) take 
the formf(w, 0)=r(0; a)+w,g(w, 0)=h(0; a)+w and that T('p) takes the same form 
as 'p-a constant +$(a), say, times the same moment JD C(w)df. In this case then, the 
problem of finding the fixed point of the operator T is reduced to the problem of finding 
the fixed point of the function 4: R+ -> R+ and the form of the functions r and h. This 
reduced problem is greatly simplified by the fact that the definition of +(a) and the 
choices of r and h are independent of both the individual entitlement w and the distribution 
of entitlements f. Thus, in the case of logarithmic utility, the problem of providing 
incentives (choosing r and h and finding a* = (a*)) is separable from the problem of 
delivering entitlements w to each consumer and can be solved as a relatively simple static 
incentive problem. 

To be more specific, we show, in the logarithmic utility case, that the functions 
r(0; a), h(0;a), and +(a) are defined by the following problem. 

Problem P: 

(a) = minrh max exp (r(0))dg, af exp (h(0))d/i4, 

where r and h are functions (n-vectors) r, h: 0 -> R such that: 

I (1 - 8) Or(O) +j8h (0) ]dSu = O, (5.3) 

and: 

(1 -p8)Or(O) +?ph(0)-(1 -p8)Or(z) +?ph(z), all 0, zE O. (5.4) 

We develop the connection between Problem P and the Bellman equation in a series of 
lemmas, the proofs of which are given in the Appendix, part 2. 

Lemma 5.1. For any a>0, the minimum in Problem P is attained by a unique 
(r0(0; a), h'(0, a)). 
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The next result shows that Problem P has the desired relationship to Problem T. 

Lemma 5.2. Let 4 be defined by Problem P and for any a > 0 let the minimum be 
attained by r(O; a), h(O; a). Let p(4fr)= a JD exp (w)dqi and let Tbe the operator defined 
by (4.4). Then 

(TSp)(ifr)= q(a)J exp(w)dq, D 
and the right-hand side of (4.4) is attained by the pair (f, g) = (r(O; a) + w, h(0; a) + w). 

The essential aspects of the proof of this lemma are as follows. First, it is clear that 
when functions f and g take the form f(w, 0) = r(0) + w, g(w, 0) = h(0) + w, then f and 
g satisfy the incentive constraints (4.2) and (4.3) if and only if r and h satisfy the incentive 
constraints (5.3) and (5.4). Next, observe that when f and g take the form f(w, 0) = 

r(O; a)+ w, g(w, 0) = h(0; a)+ w and Sp takes the form a JD C(w)dqi, then the right-hand 
side of equation (4.4) evaluated at the proposed form for f and g can be written as 

max exp (r(0))d,, a{ exp (h(0))dl}({ C(w)dq) 

When this expression is evaluated at the solution to Problem P (r0(0; a), h0(0; a)), it is 
clearly equal to +(a) JDC (w)d11. To show that T(qp) = +(a)JDC (w)dql when tp(4f) = 
a JD C(w)dqf, all that remains to be proved is that the functions f(w, 0) = r0(0; a) + w 
and go(w, 0) = h0(0; a) + w attain the infimum on the right-hand side of the operator T 
as defined in (4.4). Details are given in the Appendix. 

Once it is established that T(qp) = 4 (a)JD C(w)dqi when So = a JD C(W)+q the evalu- 
ation of limn ?, TOi, i = a, c is straightforward. We do this in Lemma 5.3. 

Lemma 5.3. Thefunction o defined in Problem Phas a uniquefixed point a* E[ac, aa] 

and limn .,p n(ai) = a* for i = c, a. 

Once we find the fixed point a* of the function 0 and the corresponding solution 
to Problem P (r0(0; a*), h0(0; a*)), we construct the efficient allocation rule a* = {f, gI} 
byg(w, 0) = r0(0; a*) + w, g*(w, 0) = h0(0; a*) + w. As a final technical matter, we verify 
that oT* satisfies the boundedness condition (3.5). This condition is verified in Section 6. 

This same approach can be used to solve (4.4) with either CRRA or CARA utility. 
In the CRRA case, utility is given by V(c) = y-c'y, y < 1, y $ 0, and the inverse, resource 
requirement function is given by C(u) = (yu)1//. The bounding functions take the form: 

N2aWf)J (yw) llydq D 

fpj() = LE(01/(1Y))Y(1Y)/YJ (yw)'1Ydqi, D 
so again they take the form a JD C(w)d/i. As in the log case, we exploit the fact that, 
when applying T to functions of the form a times a moment of NJ, the functions that 
minimize the right-hand side of the operator T take a simple form. In this case, 
f?(w, 0) = r0(0; a)lwl, and go(w, 0) = h0(0; a)lwl, where (r?, ho) solve a static Problem P, 
and T(qp) is a function equal to +(a) times the same moment JD C(w)d/i. The Problem 
P that defines the function 4 in this case is: 

Problem P: 

k(a) = minr,hmaxlJ ( Ir(0)) dA, a J (l h (0)) dp4, 
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subject to: 

[01-P/)0r(0) +/h(0)]dgu=_ l 

and: 

(1 -83)0r(O)+13h(O)' (1 -83)0r(z)+/3h(z), all 0, ze 0. 

In the CARA case, with utility given by V(c) = -exp(-yc), y > 0, D = (-oo, 0), and 
the inverse, resource requirement function by C(u) = -y-1 log(-u), the bounding func- 
tions qC', and pc defined in (4.5) and (4.8) are given by: 

(p.(NO) = -1D log(-w)dtf, D 

Pc(if) = y-'E[log (0)] - ID log (-w) dhf, 

so that these functions are now additive in a and the moment JD C(w)d4f. (It is a familiar 
fact that in order to exploit the conveniences of this particular functional form one must 
let consumption assume any real value-negative as well as positive.) 

The resource-cost-minimizing choices of f and g take the form f(w, 0) = -r(0; a) w, 
g?(w, 0) = -h(0; a) w, and the static problem that defines the candidate function 0 in 
this case is: 

Problem P: 

?(a) = minr,h max {-y '| log [-r(0)]dg, y-la - y-' log [-h(0)]dL}, 

subject to: 

{ [(1 -/3)0r(0) + Plh(0)]d,u = -1, 

and: 

(1-p8)0r(O)+p8h(O)?> (i-p8)0r(z)+p8h(z), a110,zcE. 

In the Appendix, we adapt the statements and the proofs of Lemmas 5.1-5.3, stated above 
for the case of logarithmic utility, to cover CRRA and CARA cases. 

There are two features of all of these examples that make possible the factorization 
of the solution to our Bellman equation into a resource cost associated with providing 
incentives (a*) and a resource cost associated with delivering the utility entitlements 
(JD C(w)dqf). The first feature of the problem that we use is the linearity of the incentive 
constraints (4.2) and (4.3). Because the incentive constraints are linear in current and 
future utility, utility assignments f(w, 0), g(w, 0) that are incentive compatible for any 
given entitlement w can be scaled up or down in an additive or multiplicative fashion to 
be made incentive compatible for any other entitlement w'. The second, and special, 
feature of the examples that we study is that the resource requirement function C satisfies 
a separability property that can be described as follows. In each example that we study, 
there exists a function F: D -> R such that the resource cost ofproviding utility uw E D 
(or u + w E D) can be factored into parts F(u)C(w) (or F(u)+ C(w)) for any choice of 
u and w. Thus when we scale utility assignments f(w, 0), g(w, 0) up or down in an 
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additive or multiplicative fashion, we also scale resource requirements up or down in an 
additive or multiplicative fashion. By assuming that the taste shocks are i.i.d., we assume 
that w and 0 are independent, so we can integrate over the cost of the basic utility 
assignment F(u) and the cost of the scale factors C(w) separately. These conditions are 
also satisfied in the case of linear utility (so C is linear), and in the case in which utility 
is given by V(c) = log (c -5) or V(c) = y-'(c - 8)I with fixed y (so C(u) = exp (u) +8 
or C(u) = yu " +8), so we suspect that the list of examples that we have supplied is not 
complete. On the other hand, it is clear that there are utility functions such that (4.4) 
cannot be solved by this method. 

6. EFFICIENT ALLOCATIONS WITH TWO SHOCK VALUES 

In the previous section we showed that when utility takes suitable parametric forms, 
solutions to the Bellman equation defined by (4.1) can be constructed from solutions to 
the static incentive problem we called Problem P. In this section, we verify that the 
efficient allocation rules we have constructed satisfy the boundedness condition (3.5) and 
develop some other properties of these rules. 

In the case of logarithmic utility, we demonstrated that the minimum on the right-hand 
side of the Bellman equation (4.1) is attained by a pair of functions of the form 
f(w, 0)=r(0)+w and g(w, 0)=h(0)+w that assign current and future utility to agents 
entitled to w and reporting 0. These functions are independent of the distribution of 
entitlements to expected utilities qi. From these functions, we construct the efficient 
allocation rule o- = {ft(w, 0), gt(w, 0)}'t=, where f, =f and gt = g for all t _ 0. Using this 
form for g, the solution of the difference equation describing the evolution of individual 
entitlements to utility is 

wt(wo, 0t1) = w0+t-10 h(0j). 

The utility allocated to the individual consumer under the efficient allocation is thus given 
by 

ut(wo, Ot) =ft(wt(wo, Ot-1), ot) = w0+YL'0 h(0S)+ r(0t), (6.1) 

and consumption allocated to that individual is given by 

ct(wo, Ot) = C[ut(wo, Ot)] exp (w0)Hl` exp (h(0j)) exp (r(0t)). (6.2) 

It is clear from these expressions that the allocation obtained in this way from the solution 
to Problem P in the logarithmic utility case satisfies the boundedness condition (3.5). We 
will prove that (3.5) is satisfied in the cases of CRRA and CARA utility in Lemma 6.1 
later in this section after we impose the assumption that there are only two possible values 
of the taste shock 0. 

Equation (6.1) implies that the variance of the cross-sectional distribution of utility 
(the logarithm of consumption) is given by 

Var (ut(wo, 0t)) = Var (w) + (t - 1) var (h(0)) +Var (r(0)). 

Hence, the degree of inequality in the cross sectional distribution of wealth-measured 
in utils-grows without bound when resources are efficiently allocated. This finding is 
striking but certainly not unexpected in view of the results of Green (1987), Taub (1990a), 
Phelan and Townsend (1991), and Thomas and Worrall (1990). 
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The equivalent expression for the efficient evolution of individual utility (6.1) in the 
cases of CRRA and CARA utility is given by 

ut(wo, 01) = IwoVl` h(0J I r(0t). 

In these cases, it is the variance of the distribution of the logarithm of utility that grows 
without bound. 

One consequence of the fact that agents have concave utility functions and that their 
expected utility wt (or the log of w,) follows a random walk is that each consumer's 
expected utility level converges to the minimum level in D with probability one. In the 
logarithmic utility case, this can be seen from the definition of the fixed point a* = (a*). 
For a* to be a fixed point of 0, it must be the case that J0 C[h(0; a *)]dp. = 1, and since 
C(x) = exp (x) is convex, le h(0; a*)d, <0, so that {wt} drifts toward -oo. The same 
conclusion holds for the other examples. Thomas and Worrall (1990), Proposition 3, 
prove this result more generally in a closely related context. 

In the remainder of this section, we characterize the solutions to Problem P for the 
case of two shock values, 01> 02>0, with probabilities Al and 92. We verify the 
boundedness condition (3.5) for CRRA and CARA utility only in this case. We also 
explore the nature of the solution to Problem P in the case of logarithmic utility. Since 
the notation for Problem P differs slightly between the CRRA and the CARA cases (a 
enters multiplicatively in the former and additively in the latter) we deal here with the 
CRRA case, treating the essentially identical CARA case in side remarks. 

We begin by reformulating Problem P (in the logarithmic utility case) as a problem 
of choosing (r, h) to minimize J0 exp {r( 0)}dli, subject to incentive constraints (5.3), (5.4), 
and the constraint that 

3 exp (r(0))d,jt - aj exp (h(0))dg. 

This reformulation is justified by the fact that the minimizing choices of r and h in 
Problem P equate lo exp {r(0)}dp. and a J< exp {h(0)}dpu. This fact can be proved for 
all the example utility functions we consider using the line of proof for Lemma A.3 in 
the appendix. Thus Problem P, as specialized to the two shock case, can be restated: 

Problem P: 

+(a) = minrh Ei=1,2 /LiC(ri) 

subject to: 

Ei=l, 2 gi[C(ri) - aC(hi)] = 0, (6.3) 

Ei=1,2 4i[(I -p ) Oiri+ +hi] = K, (6.4) 

(1-,l/)01ri +,8h1 ' (1 -, )0lr2+ph2, (6.5) 

(1 -,3) 02 r2 +,8h2'::- (1 -,8) 02 r, +8hl 1 (6.6) 

where ri = r(0i) and hi = h(0i), i = 1, 2, and where the function C and the constant K 
varies with the case under study. 
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We associate the multipliers A 5, 8 and v with the constraints (6.3)-(6.6) respectively, 
requiring the latter two to be non-negative. The first-order conditions are then: 

(1 -A)pl1C'(r1) = ~(l-p)p10O +8(l -p)01- V(1 -/3)02, (6.7) 

(1 -1k)2C'(r2) = _(1-)A202-'6(1 -,)01+ VO 1-8)02, (6.8) 

AapA1 C'(h1) = 5/3A1 + 863- vfl, (6.9) 

AaA2C'(h2) = 032 - 683 + v, (6.10) 

together with the complementary slackness conditions. (For the CARA case, conditions 
(6.7)-(6.10) hold with a = 1.) 

In all cases, we have extablished that Problem P is solved by unique values 
(r1, r2, h1, h2), given a, and that a = + (a) has a unique solution. We can construct this 
solution by calculating the unique solution (r1, r2, h1, h2, A, 4, 8, v, a) to the nine equations 
given by (6.4), (6.7)-(6.10), the complementary slackness conditions associated with 
(6.5)-(6.6), and the equation a = +(a). Numerically, this is an inexpensive enterprise, 
and indeed would be so with many more than two shock values. Here, we summarize 
the main qualitative features of the solution in a lemma. 

Lemma 6.1. Let (r1, r2, h1, h2) solve Problem P. Then r > r2 and h, < h2. The 
constraint (6.6) is binding, and (6.5) is slack. In the CRRA case with y $ 0, 

_p1< hi < h2 <,8-1 

In the CARA case, 

-f3l<hi. 

Remark. In the CRRA and CARA utility cases, the boundedness condition (3.5) 
is an immediate consequence of the bounds on hi given above. 

Proof The two incentive constraints together imply (01 - 02)(r1 - r2) ' 0, with 
equality if and only if both are binding. Since 01 > 02, this implies r, ' r2 and hence 
h, _ h2, with equality if and only if both constraints bind. 

Suppose, contrary to the lemma, that both incentive constraints bind, so the multipliers 
8 and v are both positive, r, = r2, and h, = h2. Then (6.9), (6.10) and the fact that C' is 
strictly increasing imply that v = 8 > 0. Then (6.7), (6.8) and the fact that 01 > 02 imply 
that C'(rl)> C'(r2) contradicting the fact that r, = r2. Hence at most one of these 
multipliers is positive, which proves that r, > r2 and h, < h2- 

Now if h1 < h2, (6.9) and (6.10) imply that (8 - v) < 0. Since only one can be positive, 
we conclude that 8 = 0 and v > 0. Thus 

(1 -1,3)02r2+j3h2 = (18-3)02r, +13h, (6.11) 

must also hold at the optimum. 
To verify the bounds on the hi in the CRRA case, note that (6.11) and the total 

utility constraint together imply: 

(1 - 8) r, +j8Xhl =-. (6.12) 

When y> 0, the lower bound obviously holds. Then (6.11) and (6.12) imply: 

/3h2 = 1 - (1 -13)(01r, + 02r2) < 1, 
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where the strict inequality is implied by r1> r2 0. When y <0, the upper bound is 
obvious and (6.12) implies 

ph1 = -1 - (1 -f3)rl > -1, 

where the inequality is implied by the fact that r, < 0. 
In the CARA case, (6.12) is replaced by: 

(1-p8)rr +,8h =-1. (6.13) 

Since the minimum in Problem P cannot be attained with r, = 0, the condition p8h1 > -1 
clearly holds. || 

The conclusion in Lemma 6.1 that the only incentive constraints that bind at the 
optimum are those comparing an agent's utility when he reports his true shock to the 
utility he would get if he reported the next higher value can be proved for the general 
case of N shock values. See Thomas and Worrall (1990), Lemma 4. 

In all of the cases considered, then, efficient allocation rules, and hence efficient 
allocations, can be constructed using the Bellman equation defined in Section 4. The 
solutions all have the property that the consumer with the low 0 value-a low urgency 
to consume-is just indifferent between revealing his true situation and pretending he is 
more eager to consume than he really is. That is to say, if the efficient allocation were 
to provide any more insurance against a high taste shock, people with low shocks would 
submit false claims. Put yet a third way, following Green, a constraint must be placed 
on consumers' ability to borrow to finance high current consumption. 

7. DECENTRALIZING EFFICIENT ALLOCATIONS 

To what extent is it possible to use competitive exchange to achieve the efficient allocations 
we have calculated in the examples of Section 5, or the allocations more generally defined 
in Sections 3 and 4? In this section, we show how prices can be used to decentralize the 
overall planning problem into component planning problems. This decentralization 
provides a connection between the efficiency problem addressed in this paper and the 
principal-agent problem studied by Green and others. Then we discuss the possibilities 
for decentralizing the efficient allocation using unmonitored trading of securities among 
individual consumers. 

To define what we mean by the "component planning problem," consider a planner 
responsible for allocating resources only to those who are initially entitled to expected 
utility w0. He assigns an allocation of utility (specific to w0) u(wo) = {u(wo, 0')}=O, 

Ut t+ --> D. He does so in such a way as to minimize the value of the total resources 
he allocates, with resources at each date valued at prices determined by the sequence 
q = {qt}'t=O, qt e (0, 1). The objective for this planner is: 

v(wo) = min1u,(W,.)1 (1 - qo)f C[u0(w0, 0)]dA 

+t=l (1 - qt)f.2- qS|L C[u,(wO, 0t)]d/L'+ (7.1) 
05t+l 

subject to the incentive constraints (3.2) and (3.3). It is as if consumers are grouped by 
their initial w0 values, with each group represented by its own social planner or principal, 
and then these planners trade in claims to current and future resources among themselves 
at prices {qtj. 
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The next result provides one connection between these component planning problems 
(7.1) and the problem of finding efficient allocations. 

Theorem 1. Suppose there exists an allocation u = {u,(wo, Ot)}t=O, prices q = q, 
a distribution of utility qi0, and resources y such that 

(i) at prices q, for all woe D, u(wo) solves (7.1) subject to (3.2) and (3.3); 
(ii) for all t, JDxOt+1 Ciut(wo, Ot)]dAt+1dfio=y. 

(iii) jt=1(1 - qt)flt-o q, <+00. 

Then the allocation u attains qi0 with resources y and y = sp*(qo). 

Proof. That u attains /io with resources y is immediate. We prove that u is efficient 
by contradiction. Suppose that y > *(pfIo). Then there exists some other allocation ui 
which attains /io with resources y < y. Thus, by (ii), 

| C[t(woq Ot)]dl-tt+1ddRo < C[ut(woq 0t)]d1it+1dqio 
Dxo f+1 DXO'+l 

for all t, with the difference between these two quantities being at least y -9. Then, 

(1 qo) TDX w C[ io(wo, O)]dlf'o+ E=i (1 - qt)Hlt- qsf C[ it(wo,0 t)]dl'' dqfo < 
DxO 0fn+1 

(-qo)f C[juo(wo 0)]dadqio + t =1 (1- qt)f t-' qsf C[ut(wo, 0t)]d1att+1dqfo< +co 
DxEl 05t+1 

with the last inequality following from (iii). This contradicts the fact (i) that u(w0) solves 
(7.1) for each w0. 11 

Theorem 1 is an analogue to the first theorem of welfare economics, with conditions 
(i)-(iii) defining the counterpart to a competitive equilibrium. Condition (i) requires 
quantities to be optimal (cost-minimizing) for each w, given prices; condition (ii) is market 
clearing; and condition (iii) is a boundedness condition on prices. 

Theorem 1 is helpful in relating our approach to that taken by Green, (1987), Taub 
(1990b), Phelan and Townsend (1991), and others who have formulated the allocation 
problem as one involving a single, risk-neutral principal dealing one-on-one with a 
continuum of agents. In these formulations, the principal is given an objective function 
that corresponds to (7.1), but with a constant price qt = q for all t that is simply assigned 
to him. These authors then show that (7.1) (with constant prices) can be solved with a 
Bellman equation of the form 

v(w) = minr,h f {(l - q)C(r(O)) + qv(h(0))}dA 

subject to: 

w X [(1 -O)r(0)0+8h(0)]d1; 

and 

(1 - /3)r(0)0+f3h(0) _ (1 - /)r(z)O+ /h(z), 

for all 0, z e 0. Green, and Townsend and Phelan assign q = ,f to the principal. For some 
preferences (for example, logarithmic) this will clear markets in the sense of condition 
(ii) of Theorem 1; for others (for example, the CARA preferences used in Green's paper) 
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it will not. Taub leaves q free, but constant, and then varies it to satisfy (ii). He uses 
linear utility, an instance of CRRA preferences, so the price associated with efficiency is 
in fact constant and this procedure works. This procedure of varying the constant price 
to clear markets would also work in Green's framework (since his income shock model 
with CARA utility maps exactly into the model with multiplicative taste shocks). In 
general, though, this procedure will not work because it fails to recognize the potential 
dependence of q on the distribution 'fo. 

In the examples that we have studied in Section 5 and 6, the prices that decentralize 
the efficient allocation can be found from the solution to Problem P. In particular, we 
show that this problem is equivalent to the problem of minimizing current resource use 
(Jo exp (r(O))dA in the case of logarithmic utility) subject to the incentive constraints 
(5.3), (5.4) and the resource constraint 

f exp (r(O))dg '? a4 exp (h(0))dg. 

It is straightforward to show that the Lagrange multiplier A on this constraint serves to 
define prices q = {q}to, qt =A for all t, that decentralize the efficient allocation into 

component planning problems in the sense of (7.1). 
The foregoing discussion involved the possibilities for decentralizing the economy's 

overall planning problem into component planning problems, one for each level of 
expected utility entitlements. It leaves open the question of whether decentralization can 
proceed further, with efficient allocations exhibited as some kind of market equilibrium 
with a particular set of securities or intermediation arrangements. We address this issue 
next. 

One sense in which it must be possible to decentralize further is the following. Let 
titles to current and future endowment streams be allocated across agents, and imagine 
that every agent deposits all of his claims with a zero-profit intermediary that thereafter 
acts exactly as the central planner of earlier sections. Since there are many households, 
we can imagine that there are many such intermediaries, so this arrangement could be 
viewed as competitive. The difficulty with using such an equilibrium as a model of 
observed market arrangements stems from the capability to monitor individual wealth 
positions granted to this intermediary, relative to the capabilities of actual financial 
institutions. The question we ask next, then, is whether the efficient allocation can be 
supported by private intermediation if households are permitted to engage in unmonitored 
trading of ordinary securities. 

The specific security we introduce is a one-period real bond, entitling the holder to 
one unit of goods tomorrow. Let the equilibrium price, today, of such a bond be Q(if). 
We consider the situation of an individual household that is entitled to w units of expected 
utility under its arrangement with the intermediary (planner), that has realized the shock 
0, and that holds a real bond when the economy is in the state qi. Now if (f, g) are 
efficient and if this allocation is consistent with unmonitored bond trading, it must be 
the case that at the market clearing price Q(qi) every household chooses to report 0 
truthfully, and that no household chooses to use the bond market to trade away from 
the efficient allocation. If so, then the familiar condition: 

Q(4f) V'[C(f( w, 0, OM))] 0 = ,BJ V'[C(f(g(w, 0, f), 0', Sgo))] 0'd,ti' (7.4) 

must hold for all (if, w, 0). That is to say, all households' marginal rates of substitution 
would be equated to the equilibrium bond price. 
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In the last section we presented first-order conditions (6.7)-(6.10) that characterize 
the functions f and g, so to see if (7.4) holds we can just solve these equations and inspect 
the result. We do this for the logarithmic case only. In this case, neitherf nor g depends 
on the distribution if. Consumption is given by c(w, 0) = C[f(w, 0)]. The marginal utility 
function is: 

V'[c(w, 0)] = 

exp (w) exp (r(0))' 

The expected marginal utility of tomorrow's consumption is: 

E{V'[c(g(w, 0), 0']}= exp (w) exp (h(0)) {exp (r(0'))} 

Hence for (7.4) to hold, it must be the case that 

01 exp (h(0,)) 02 exp (h(02)) 
(7.5) 

exp (r(01)) exp (r(02)) 

To check (7.5) in this logarithmic case, we solve the first-order conditions (6.7)-(6.10). 
When C(x) = exp (x), the multipliers A and 5 on the constraints (6.3) and (6.4) are equal 
to , and a respectively, and (6.7)-(6.10) can be simplified to: 

r, =log (a)+log (0,)+log [1 +( ) aj (7.6) 

r2 =log (a) +log(02) +[109 
1 + 1(7.) 

h, = log [1 (ui ) aj] (7.8) 

h2 = lg[10 + (7)9a 

From these equations (7.6)-(7.9), we see that (7.5) can hold only if the multiplier ( equals 
zero, which is to say, only at the full-information allocation. 

Allen (1985) addresses the related question of whether any insurance is possible if, 
ex ante, consumers can trade sure claims to future consumption before their unobserved 
idiosyncratic shocks are realized. He argues that, in this instance, no insurance is possible 
since the incomplete information insurance problem here reduces to a static incentive 
problem in which consumers, independently of their taste shock realizations, all choose 
the shock reporting strategy that maximizes the discounted present value of transfers 
received and then trade consumption claims to achieve the desired time path for consump- 
tion, much as they would in a pure credit decentralization of this economy. 

8. CONCLUSIONS 

Within a specific dynamic setting with private information we have defined efficiency in 
a way that respects the information structure, proved that if efficiency can be achieved 
it can be achieved through a recursive allocation rule, developed a Bellman equation for 
efficient allocation rules, and used this Bellman equation to construct such rules under 
specific parametric assumptions on preferences. In all of the cases we study, efficient 
allocations have the features found by Green (1987) for the CARA case, by Taub (1990b) 
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for the case of linear utility, and by Phelan and Townsend (1991) in numerical results: 
consumer wealth positions follow random walks, with inequality growing over time 
without bound. As found by Thomas and Worrall (1990), ever-increasing dispersion of 
utility combined with concave utility implies that average utility continually decreases. 
The efficient allocation delivers an ever-increasing fraction of resources to an ever- 
diminishing fraction of society's population. 

Our applications to specific cases rest very much on the nature of the parametric 
preference families studied. Roughly speaking, we restrict attention to preferences that 
have the property that a specific moment of the utility distribution suffices to determine 
resource allocation. In these cases, if we know how best to allocate risk among consumers 
at any one wealth level, we can scale this allocation to suit any wealth level, and hence 
any wealth distribution. Thus we obtain a theory of distribution applicable to situations 
where distribution does not matter allocatively. But the Bellman equation we propose is 
much more general (though our derivation rests on the multiplicative character of the 
privately observed shocks). It will be interesting to see whether it can be applied to 
situations in which changes in the wealth distribution feed back on the nature of risk- 
pooling opportunities. 

When equilibrium in our setting is calculated under some incomplete market struc- 
tures-such as the cash-in-advance monetary system used in Lucas (1978)-in invariant 
distribution of wealth is found, as contrasted to the growing inequality found here. 
Similarly, Taub (1990) finds an invariant distribution when a lower bound is imposed on 
utility. These results are not to be interpreted as an advantage of monetary or credit- 
constrained equilibria, but rather as evidence of their inefficiency. The growing inequality 
we find is not a pathology, but a normative prescription of the model. 

If we think of the infinite-lived agents in this economy as a dynastic family with 
successive generations, however, the prescription of growing inequality highlights a feature 
of our notion of efficiency that surely merits further examination. In our formulation, 
the welfare of any member of future generation is the sole responsibility of his currently 
living progenitor, and the latter is granted an unlimited right to borrow against the 
entitlements of his heirs to satisfy his current consumption needs. If one were to re-examine 
the efficiency question in an overlapping generations framework with some minimum 
placed on the welfare of future generations, then it seems likely that efficient wealth 
distributions would converge to some distribution with finite dispersion, rather than 
exhibit the ever-growing dispersion implied by our notion of efficiency. In such a setting, 
the prescription of growing inequality for society as a whole would transpose into a 
prescription of growing inequality within each cohort, and the variance of the function 
h(O), shown in Section 8 to govern the rate of inequality growth in our model, would be 
a main determinant of the (finite) variance of wealth across all individuals. 

APPENDIX 

Part I: Proofs of Lemmas 3.1 and 3.2 

In order to establish the two lemmas, we need to relate incentive compatibility in the sense of (3.3) to temporary 
incentive compatibility as defined in (3.7). This requires some additional notation. 

Under a given plan u, a consumer has the opportunity to re-think his reporting strategy at any date r _ 1, 
after he has already submitted reports Z^r = (ZO . . . , Zr-i) in the preceding r periods. To consider his incentives 
for reporting truthfully, we need a notation for describing his options at any date r. Let z = {z,( 'O)}= cz Z 
denote his reporting strategy from date r onwards. Then the utility he will be assigned by the plan u at date 
r + t will be 

Ur+t[WO, (ZO. * Zr- i, Z00(1), ZI(Or, O0+1). Zt(Or. * Or+,))] 
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where the first r co-ordinates of his reports through period r + t are arbitrary numbers in E and the last t+ 1 
are functions of the shocks he actually receives from period r through period r + t. We use (9,, z) to refer to 
an r-vector of given past reports followed by the reporting strategy z, and write the agent's utility assignment 
at r+ t as Ur+[w0, (9,, zt(Ot))], where z = (z0, . ., z,). Define the expected, discounted utility from period r 
on by: 

UrW Zr Z)==( 3 o 
u+[wo, (Z'r z (e ))]0,dg`. UJ[W0, u, (, , z)] = 1P)l,= Ur+t[0 9,z(~)Od.t1 

These functions Ur: D x Sx r x Z - D satisfy: 

UJ[wo, U, (9r, z)] = {(1 P)Ur[WO, (9r, Z0(O))]0+/3Ur+1[Wo, U, (9r, zOO), z'(0))]}d/t, (A.1) 

for r-0, where z'(0) denotes the continuation {z,(0t)},=1 of the reporting plan z = {z,(0')},=, with the first 
coordinate of each history O' equal to 0. We now provide a preliminary result that will help in linking the two 
incentive compatibility requirements (3.3) and (3.7). 

Lemma A.1. A plan u satisfies the constraint (3.3) [for all w c D and all z E Z, U(w, u, z*) ? U(w, u, z)] 
if and only if it satisfies: 

(1-3)ur[w [W, (,,Z r)]00+3Ur+,[W, u (Zr 0 z*)] (1 -3)ur[W, (Zr 0)]0+3Ur+[W, u, (Zr 0, z)] (A.2) 

for all w c D, all r_ O, all 9z 0E rall reporting strategies z, and all 0, 0 c 0. 

Condition (A.2) requires that for all past reports 9^ and for all reporting strategies that might be adopted from 
next period on, the agent is induced to report his shock 0 truthfully in the current period. 

Proof. Condition (3.3) is a special case of (A.2), so the sufficiency of (A.2) is immediate. 
The proof of necessity is by contradiction. Assume that (3.3) holds but that for some date r _ 1, some 

w c D, and some sequence of taste shock reports 9,, the inequality (A.2) fails to hold. Use z to denote the 
taste-shock reporting strategy from date r onwards that dominates truth telling z* in these circumstances. Then 
for some 0, 

(I 3)Ur1W, Uzr 0)10+P3Vr+J[W U, Uzr 0, Z)] 

< (If) )ur[W, )r] OU(0)10+[wUr+(W, U, zr * o(0) ] l] 
where z' is the continuation of the strategy z after 0 has been realized. We will use z to construct a reporting 
strategy z which begins at date 0 and satisfies U(w, u, z) > U(w, u, z*), thus contradicting (3.3). 

Define the reporting strategy z as follows: (1) for t < r, let f,(0') = z*(0,) = 0, for all O'c Ot?I; (2) for 
t_ r, continue with truth-telling unless the shock history (9,, 0) has been realized; (3) if the history (9,, 0) has 
occurred, adopt the reporting strategy z from date r onwards. The strategy z yields the same utilities as does 
z* in the first r -1 periods, and the same utilities from t on provided Or? Z(9r, 0) If Or =U(9r, 0), z yields 
a strictly higher expected utility from date r on, conditional on this event. Since all shocks have positive 
probability, this event occurs with positive probability. Thus U(w, u, z)> U(w, u, z*), which is the desired 
contradiction. 11 

Under a given allocation u, two agents may arrive at date t with different initial entitlements w0 and wi' 

and different shock histories O`-I and ot-1 yet be entitled to the same expected utility from date t on, as 
defined by the function U,. In general, these two agents need not receive the same current utility u, even if 
they receive the same shock 0,. Obviously, such an allocation u cannot be reproduced for all agents by an 
allocation rule. It would be useful, therefore, to be able to restrict attention to allocations u that have the 
following identical treatment property: 

for all t_ 0,all wo,wieED, and all 01 0-tc 0t' 

U,[wO, u, (0t1, Z*)] = U-[i, u, (Ot, Z*)] (A.3) 

implies 
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and 

Ut+|[wo, u, (914 0, z*)] = U,+?[ w,, u, (6w', 6, Z*)] 

for all 6 E 0. The next result justifies restricting attention to allocations with this property. 

Lemma A.2. Let /, e M and suppose the allocation u attains if with resources y. Then there is an allocation 
u' that satisfies (A.3) and also attains 4i with resources y. 

Proof Let if e M be given and suppose that u attains 4i with resources y. If u does not satisfy (A.3), let 
t be the first date at which it fails to do so. Define the sets H,(w), w E D, by: 

H,(w) = {(wo, 06'') c D x 0': U,[wo, u, (0'', z*)] = w), 

so that H, defines a partition of D x 0'. Let P' denote the conditional distribution of (wo, 6'-') given 
(wo, 6t-') HI,(w). For all A O')EH, (w), all s 0 O, and all sequences of reports z' for periods t through 
t+s, define u?+, as the average: 

Ut+s WO , 
(0t_I, ZS))] U,+s[wo, (0t-', zs))]dPW . 

Define the coordinates of the utility plan u' as equal to those of u for dates t- 1 and earlier, and equal to u,+s 
for s0> O. Then u' satisfies (3.2) and (3.3), so u' is an allocation. Since the function C is convex, the allocation 
u' also satisfies (3.4). Clearly the allocation u' satisfies (A.3) for all s - t. Continuing the construction through 
all dates t completes the proof of the Lemma. 11 

We remark that this proof uses the convexity of the set of plans satisfying (3.2) and (3.3) to ensure that 
the constructed plan u' is an allocation. This is the only point in the argument of Section 3 at which we use 
the assumption that the taste shocks 6 enter multiplicatively. If the incentive constraints did not define a convex 
set, one would need to define allocations and allocation rules as measures, as do Phelan and Townsend (1991). 
We have not yet pursued this line of generalization. 

We now proceed with the proof of Lemmas 3.1 and 3.2. 

Proof of Lemma 3.1. Let ii c M be given and suppose that u attains 4i with resources y. In view of 
Lemma A.2, we may take u to have the property (A.3). If a set H,(w) is empty, let f(w, 6) = g,(w, 0) = w. If 
not, for U,[wo, u, (06-', z*)] = w, define (f, g,) by: 

f(w, 6) = u,[wo, (6t-', 0)] 

g,(w, 0) = U,?,[wo, u, (6t-', 0, Z*)]. 

That these functions satisfy (3.6) and (3.7) follows from (3.3) and (3.4), applying Lemma A.1 and (A.2). The 
boundedness property (3.5) follows from (3.1). Hence or = {(f,, g,)} is an allocation rule. 

It remains to verify that (3.8) holds for all t. Let {/,} be the sequence of distributions on D defined 
recursively from i10 by ifi,+ = Sg,tt, with the functions g, defined as above. We next use an induction to show 
that for any integrable function F: D - R, 

I F(w)d4f,, =1 F[U,(wo, u, (6'-', z*))]diod,is'. (A.4) 

For t = 0, (A.4) follows from (3.2). Suppose (A.4) holds for t. Then 

| F(w)dtf,+, f F[g,(w, 0)]d4idi, 

= ID|e' {J| F[g,(U,(wo, u, (t-l', z*)), 0)]d}dodA' 

=| J~X~~'F[U,+ (w0, u, (6', z*)), 0,)]dfi0ddp+l', 
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where the first equality is implied by the definition of the sequence {I/i}, the second by the induction hypothesis, 
and the third by the definition of the function g,. This proves (A.4). 

To verify (3.8), then, we apply (A.4) to the function F(w) = Jo C[f,(w, 0)]dli and use the definition offt: 

J C[ft(w, O)]dgdqi, = | C[f( Ut(wo, u, (O"i, z*)), 0t)]dqI0dg,+I 
DXi3 DX(31+1 

= | C[tu(wo, (O-I, Ot))]dq/0dgt+1 

This proves Lemma 3.1. || 

Proof of Lemma 3.2. Suppose the allocation rule af = {ft, gt} attains qi with resources y. Let u be generated 
by a, so that u c S. We need to show that u satisfies (3.2)-(3.4). 

To verify (3.2), we will show that: 

for all t ?_O, wo E D, and 0t-I E 0t, 

W(wo, OfI) = Uf(wo, u, OfI, z*). (A.5) 

Then (3.2) will be the statement (A.5) for t = 0. 

To prove (A.5), note first that for all t, wo, 0f1, (3.6) implies: 

Wf(W0, Of-I)= {(1 - ) u[ Wo, (0-f, 0)]0+f3w+ I[ Wo, (0OfI 0,)]}dg, 

while (A.1) implies: 

Uj[W, u, Of, z*] = |{(1 -3)uJ[W0, (0-f, 0)]0+PUf+1[W0, u, (0O1, 0, z*)]}dg, 

Subtracting gives: 

IWf(Wo, Of-I) UI[Wo, u, 0f- Z*]3 sup6,po IWft+?[WO, (0f1- 0)]- U1+I[W0, u, (01 0,l Z*)]I- 

Since this inequality holds for all t and (wo, 0fI), we have: 

sup(w, orl) I wf(WO, 0f-I) - Uf[W0, u, 0f, Z*]I _ f3S sup(W0, 0+S-1 ) 1W+S[WO, 0f+s I]-Uf+S[WO, U, (Ot?sI, z*)]I 

(A.6) 

for all s, t. Then (3.1) and (3.5) imply that as s ->oo the right-hand side of the inequality (A.6) goes to zero, 
which establishes (A.5), and hence (3.2) as well. 

Next, we show that the temporary incentive compatibility condition (3.7) implies the incentive compatibility 
condition (3.3). In fact, we verify that (3.7) implies (A.2), which by Lemma A.1 implies (3.3). We will prove 
(A.2) first for reporting strategies z that differ from the truth-telling strategy z* only in the first period, then 
use an induction to prove (A.2) for strategies z that equal z* after N periods, and finally verify (A.2) for all 
strategies z. 

From (3.7) and (A.5) we have, for any woE D, r'0, , and reporting history Zr: 

(1-0)Ur[W ,(r, 0)]O0+1Ur+[WO, U,(_r 0 Z*)]-(1I 3)Ur[WO, (Zr, 0)]0+ Ur+I[WO, U, (Zr, OZ)], 

- (A.7) 

for all 0, 0 c 0. Now let zN denote a reporting strategy that is arbitrary for N periods, followed by truth-telling 
thereafter. As an induction hypothesis, assume that for some value of N and for all wo, r, and Zr E Or?I 

(1 f3)Ur[WO, (Zr 0)]0+3Ur+1[WO, U, (Zr 0 Z*)]-(1 -3)Ur[WO, (Zr 0)]0+3Ur+[WO, U, (Zr, 0, Z)] 

(A.8) 

for all ZN and all 0, 0cz. For N=0, this is (A.7). We wish to show that (A.8) holds at N+1. From (A.1), 

Ur[wo, U, (Zr, 0, z )] = L {(1-_)Ur+[W0, (Zr, 0, Z0 ())]O+Ur+2[ WO, U, (9r , z (0), z )]}dij 
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where z"'1(0) denotes the first coordinate of the reporting strategy zN+I and zN denotes its continuation. 
Thus ZN, involves truth-telling after N periods. By the induction hypothesis (A.8), the integrand on the right 
is maximized by setting ZoN+1(0) = 0 and ZN, = z*. Hence: 

Ur+i[W0 U(Zr, 0, {(1P-i)Ur+i[wo,(Zr, 0,0)]0+f3 Ur+2[WO, U(r 0, 0,Z*)]}dI 

= Ur+1[W0 U, (Zr 0, z)] 

for all 0. It follows that: 

(1- )Ur[W0, (,Zr 0)]0+38Ur+1[W0, U, (eZr, 6 z )] 

? (1-f)Ur[[wO ,Zr 0)(]0+3Ur+[W0, U, (Zr 0 z*)] 

_ (1- (A)Ur[W0(r 0)]0+P8Ur+[W0 U, (Ar 0, Z*)] 

where the last inequality follows from (A.7). This proves (A.8) for all N. 
It remains to be shown that there are no reporting strategies that have infinitely many false reports that 

violate (A.2). But if there were, the boundedness condition (3.1) implies that some strategy ZN with N sufficiently 
large but finite would also violate (A.2), contradicting (A.8). This completes the proof that (A.2) holds, and 
hence that (3.3) holds. 

Finally, the proof that (3.4) holds is an application of (A.4), used as in the proof of Lemma 3.1. This 
completes the proof of Lemma 3.2. 11 

Part 2: Proofs of Lemma 5.1, 5.2, 5.3 and 6.1 

Proof of Lemma 5.1. (Logarithmic Utility) First, we show that the minimizing choice of r, h must be in 
a non-empty, compact subset of the constraint set defined by (5.3) and (5.4). The objective in Problem P is 
continuous, so this step establishes the existence of minimizing choices of ro, ho. Then we show that for these 
choices 

exp {r0(0)}dp. = a exp {h0(0)}d/l. (A.9) 

This second step establishes that Problem P is equivalent to a problem of minimizing a strictly convex objective, 
and thus that the minimizing choice of ro, ho is unique. 

The subset of R2n defined by (5.3) and (5.4) is not compact, but the minimization in Problem P can be 
confined to a compact set as follows. Let (r*, h*) be any choice satisfying (5.3)-(5.4), and consider the set 
A c R defined by (5.3), (5.4) and the two inequalities Je exp {r(0)}dg_ttcJef exp {r*(0)}dd, and Jo exp {h(O)}du c 
fe exp {h*(0)}d)u. Clearly a minimum in Problem P must be attained in A. The set A is evidently closed and 
the co-ordinates of points in A are bounded above. Then (5.3) and the assumption that all 0 values have 
positive probability implies that all co-ordinates are also bounded below. Hence A is compact and there is a 
point (r?, ho) that attains the minimum in Problem P. 

To verify the equality (A.9), note that for any constant a, the point (r0(0)+a, h0(0)-[(1-,13)/13]a) 
satisfies (5.3) and (5.4). If equality does not hold, the constant a can be chosen (positive or negative) to yield 
a lower value to the objective function, contradicting the optimality of (r?, ho). The uniqueness of the minimizing 
value in Problem P now follows from the strict convexity of exp {u}. 11 

Proof of Lemma 5.1. (CRRA case with y<O and CARA case). The proof of Lemma 5.1 in the CRRA 
utility case with y < 0 and in the CARA utility case is the same as in the logarithmic case. 

In the case of CRRA utility with y > 0, the proof needs to be modified as follows. 

Proof of Lemma 5.1. (CRRA case y>O). In the CRRA case with y>0, since D=[0,oo) and each 0 
occurs with positive probability, the constraint set defined by (5.3) and (5.4) is bounded both below and above, 
and is thus compact. But, since we must admit the possibility that r(0) or h(0) is equal to zero for some 0, 
we cannot use the method above to verify the obvious analogue to (A.9). In this case, the following method 
may be used to verify this equation. 

Assume, contrary to (A.9), that (r?, ho) satisfy the incentive constraints (5.3) and (5.4) and that 
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Let T(0) = 0, h(0) = 1/13, so that (f, h) satisfy the incentive constraints (5.3) and (5.4). Define rA = 
(1-A)r?+Ar, hA=(1-A)ho+Ah for Ac[0, 1]. Since the incentive constraints (5.3) and (5.4) are convex, these 
functions also satisfy the incentive constraints. For any value of A C (0, 1), we have 

i [r?(0)1'1Idg > [r ( 0) ]'/ du. 

By continuity, for sufficiently small values of A, we have 

[ [ro (0) 11yli >y a [hA(0)]'1Yd1i. 

Thus, (r?, ho) cannot minimize the objective in Problem P. This proves in the CRRA case with y > 0, that the 
obvious analogue to (A.9) holds at the choice of (r?, ho) that minimize the objective in Problem P. 

To prove Lemma 5.2, we require the following lemma. 

Lemma A.3. (Logarithmic Utility Case). Let C(u) = exp (u), D = (-oo, oo), and qp(41) = a JD C(w)dqi < 
+oo. Iff? (w, 0) and go(w, 0) attain the minimum in (4.4) given a, then 

Q Cf(w, 0)]d1idq = at C[g(w, 0)]dtLdq,. (A.1I0) 

Proof: (Logarithmic Utility Case). To verify the equality (A.10), note that, for any constant a, the point 
(f?(w, 0) + a, go(w, 0) -[(1- f3)/f3]a] satisfies (4.2) and (4.3). If equality (A.I0) does not hold, the constant a 
can be chosen (positive or negative) to yield a lower value to the objective function (4.4), contradicting the 
optimality of (f?, g). 11 

Proof ofLemma A.3 (CRRA utility case y > O). In this case D = [0, oo). Since we must admit the possibility 
that f(w, 0) or go(w, 0) is equal to zero for some (w, 0), we cannot use the method above to verify (A.1O). In 
this case, the same method used to verify (A.9) may be used to verify (A.10).1I 

Proof of Lemma A.3 (CRRA utility case y > O) and CARA utility. In this case D = (-oo, 0). In the case 
of CARA utility, since the function C bounded neither above nor below, we must add the assumption that we 
consider only distributions qi which satisfy ID C(w)dqiI < +00. Since we must admit the possibility that, for 
some 0 E 0 sup,f?(w, 0) = 0 or sup,, go(w, 0) = 0, we cannot use the methods above to verify (A.10). 

In this case, we verify that, in fact, there must exist some set Do c D with p(DO) > 0 such that for all 
0 c 0, sup fo( w, 0) < 0 and sup go( w, 0) < 0, where the suprema are taken over w c Do. After having argued 
this, we then can observe that, for any constant a, the point f, g with f(w, 0) =f?(w, 0), g(w, 0) = go(w, 0) for 
w c D-Do, and f (w, 0) =fo(w, 0) + a, g(w, 0) = go(w, 0) - [(1 -/3)//3]a for w c Do satisfies (4.2) and (4.3). If 
equality (A.10) does not hold, since qi(D) > 0, the constant a can be chosen (positive or negative) to yield a 
lower value to the objective function (4.4), contradicting the optimality of (fO, go). 

We verify that there must exist some set Do c D, qi/(DO) > 0, such that, for all 0 cz , supf? (w, 0) < 0 and 
sup go(w, 0) < 0, where the suprema are taken over w c Do as follows. Suppose the contrary, i.e. that for all 
Do _ D with ip(DO) > 0, for some 0 c 0, sup fo(w, 0) = 0 or sup go(w, 0) = 0, where the suprema are taken over 
w c Do. Define the function mo: D x 0 - D x O by 

m?(w, 0) = max [fo(w, 0), go(w, 0)] 

and m: D e D by m(w) = maxo,6, mo(w, 0). Define an increasing set of functions mn D - D by mn(w) = m(w) 

if m (w) -/ n and mn (w) =1/ n otherwise. Let Dn CD be the set of w for which m (w) 1/ n. Our hypothesis 
implies that p(Dn) = 0. Thus, JD mn(w)dqi = I/n, for all n, and then, in the limit, 

| m(w)di = 0. (A.11) 

We now proceed to prove our result by contradicting (A.ll). For each 0 CZ , let AO c D be that set of w C D 
such thatf(w, 0)?g(w, 0). Since IJDC(w)dqil<+oo, we have that the two terms in (A.10) are finite. 

J Clm(w, 0)]dq,= C[f?(w, 0)]dI+j C[g?(w, 0)]dip<+oo 
D ~ ~ ~~~A D-A 
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for all 0 c 0. Since 0 is finite and each 0 occurs with positive probability, we have that JD C[m(w)]d < +oo. 
By Jensen's inequality, JDm(w) d,<O, which contradicts (A.11), and we are done. 11 

Proof of Lemma 5.2. (Logarithmic utility). As a consequence of Lemma A.3, we may rewrite Problem T 
when Cp(f) = afDC (w)d4 as 

minfg C[f(w, 0)d/.d4 DX0 
subject to the incentive constraints (4.2), (4.3), and the constraint 

J C[f(w, 0)]dtdqi fa{ C[g(w, 0)]dgd4/. (A.12) 

Sufficient conditions for (f g) to solve this Problem T are that there exist a number A > 0 such that, for each 
w c D, f, g minimizes 

{(1 -A)C[f(w, 0)] + AaC[g(w, Offldg 

subject to the incentive constraints (4.2), and (4.3), and such that 

At l C[f(w, 0)]dp_dif -a C[g(w, 0)]dlid/ } =0. 

By (A.9), the values of (r?, ho) that solve Problem P (in the logarithmic utility case) minimize Jo exp (r(0))dg 
subject to the incentive constraints (5.3), (5.4), and the constraint that 

exp (r(0))d,_ aj exp (h(0))dg. 

Then, by Lemma 5.1 and the Kuhn-Tucker Theorem, there exists a A-' 0 such that ro, ho minimizes 

f{(1-A) exp (r(0))+Aa exp (h(0))}dg 

subject to the incentive constraints (5.3), and (5.4), and satisfies 

Al{exp (r(0)) - a exp (h(0))}dg.t = 0. 

It is clear that A > 0. It follows that A and the functions (f?, go) defined in the hypothesis of the lemma satisfy 
sufficient conditions to solve Problem T. (The proof is similar in the cases of CRRA and CARA utility.) 11 

Proof of Lemma 5.3. The function +(a) is continuous by the Theorem of the Maximum. We verify that 

k(a,) ' a_ and k(1) 1. This plus the continuity of k will ensure the existence of a fixed point of k in [a,, 1]. 
The constant functions r(0) = h(0) = 0 are feasible for Problem P, and for a = 1 they yield the value 1. 

Hence 4(1)-' 1. 
For any value of a, the solution +(a) to Problem P must be greater than or equal to the solution of the 

same minimum problem with the incentive constraints (5.4) discarded. The solution of this latter problem in 
the logarithmic utility case is readily calculated to be attained at: 

exp (r(0)) = AO and exp (h(0))=-, 
a 

where A = ap exp { -(1 -f3)E[0 log (0)]}. Inserting either solution into the objective function yields +(a) _ A. 
At a = ac, this inequality is: 

0(ac)?- exp { -,fE[0 log (0)]} exp { - (1 -,f)E[0 log (0)]} = a,. 

The proof of this point is similar in the cases of CRRA and CARA utility. 
We can verify that the fixed point of k in the interval [ac, aa] is unique by the following argument. Let 

a'> a and apply the result from Lemma (6.1) that at the choice of (r?, ho) which solve Problem P, 

+(a) = | exp [r(0; a)]dpg = aJ exp [h(0; a)]dpg 
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(in the logarithmic utility case) to obtain: 

OW) - +(a) = a' exp [h(o; a')]d, -a { exp [h(o; a)]dg 

?(a'-a) a 
a 

since (r0(O; a), h0(O; a)) is feasible for Problem P at a'. Moreover, the inequality must hold strictly since the 
minimum at a' is unique. Hence 4 has at most one fixed point. 11 
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