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Introduction 2AbstractIn the multi-armed bandit problem, a gambler must decide which armof K non-identical slot machines to play in a sequence of trials so as tomaximize his reward. This classical problem has received much attentionbecause of the simplemodel it provides of the trade-o� between exploration(trying out each arm to �nd the best one) and exploitation (playing thearm believed to give the best payo�). Past solutions for the bandit problemhave almost always relied on assumptions about the statistics of the slotmachines.In this work, we make no statistical assumptions whatsoever aboutthe nature of the process generating the payo�s of the slot machines. Wegive a solution to the bandit problem in which an adversary, rather thana well-behaved stochastic process, has complete control over the payo�s.In a sequence of T plays, we prove that the expected per-round payo�of our algorithm approaches that of the best arm at the rate O(T�1=2),and we give an improved rate of convergence when the best arm has fairlylow payo�. We also prove a general matching lower bound on the bestpossible performance of any algorithm in our setting. In addition, weconsider a setting in which the player has a team of \experts" advisinghim on which arm to play; here, we give a strategy that will guaranteeexpected payo� close to that of the best expert. Finally, we apply ourresult to the problem of learning to play an unknown repeated matrixgame against an all-powerful adversary.1 IntroductionIn the well studied multi-armed bandit problem, originally proposed by Rob-bins [16], a gambler must choose which of K slot machines to play. At eachtime step, he pulls the arm of one of the machines and receives a reward orpayo� (possibly zero or negative). The gambler's purpose is to maximize histotal reward over a sequence of trials. Since each arm is assumed to have a dif-ferent distribution of rewards, the goal is to �nd the arm with the best expectedreturn as early as possible, and then to keep gambling using that arm.The problem is a classical example of the trade-o� between exploration andexploitation. On the one hand, if the gambler plays exclusively on the machinethat he thinks is best (\exploitation"), he may fail to discover that one ofthe other arms actually has a higher average return. On the other hand, ifhe spends too much time trying out all the machines and gathering statistics(\exploration"), he may fail to play the best arm often enough to get a hightotal return.As a more practically motivated example, consider the task of repeatedlychoosing a route for transmitting packets between two points in a communica-tion network. Suppose there are K possible routes and the transmission cost isreported back to the sender. Then the problem can be seen as that of selectinga route for each packet so that the total cost of transmitting a large set ofpackets would not be much larger than the cost incurred by sending all of themon the single best route.In the past, the bandit problem has almost always been studied with the aidof statistical assumptions on the process generating the rewards for each arm.



Introduction 3In the gambling example, for instance, it might be natural to assume that thedistribution of rewards for each arm is Gaussian and time-invariant. However,it is likely that the costs associated with each route in the routing examplecannot be modeled by a stationary distribution, so a more sophisticated setof statistical assumptions would be required. In general, it may be di�cult orimpossible to determine the right statistical assumptions for a given domain,and some domains may be inherently adversarial in nature so that no suchassumptions are appropriate.In this paper, we present a variant of the bandit problem in which no sta-tistical assumptions are made about the generation of rewards. In our model,the reward associated with each arm is determined at each time step by anadversary with unbounded computational power rather than by some benignstochastic process. We only assume that the rewards are chosen from a boundedrange. The performance of any player is measured in terms of regret, i.e., theexpected di�erence between the total reward scored by the player and the totalreward scored by the best arm.At �rst it may seem impossible that the player should stand a chance againstsuch a powerful opponent. Indeed, a deterministic player will fare very badlyagainst an adversary who assigns low payo� to the chosen arm and high payo�to all the other arms. However, in this paper we present a very e�cient, ran-domized player algorithm that performs well against any adversary. We provethat the di�erence between the expected gain of our algorithm and the expectedgain of the best out ofK arms is at mostO(pTK logK), where T is the numberof time steps. Note that the average per-time-step regret approaches zero at therate O(1=pT ). We also present more re�ned bounds in which the dependenceon T is replaced by the total reward of the best arm (or an assumed upperbound thereof).Our worst-case bounds may appear weaker than the bounds proved usingstatistical assumptions, such as those shown by Lai and Robbins [12] of theform O(logT ). However, when comparing our results to those in the statisticsliterature, it is important to point out an important di�erence in the asymptoticquanti�cation. In the work of Lai and Robbins the assumption is that thedistribution of rewards that is associated with each arm is �xed as the totalnumber of iterations T increases to in�nity. In contrast, our bounds hold forany �nite T , and, by the generality of our model, these bounds are applicablewhen the payo�s are randomly (or adversarially) chosen in a manner that doesdepend on T . It is this quanti�cation order, and not the adversarial nature ofour framework, which is the cause for the apparent gap. We prove this pointby showing that, for any algorithm for the K-arm bandit problem and for anyT there exists a set of K reward distributions such that the expected regret ofthe algorithm when playing against such arms for T iterations is lower boundedby 
(pKT).We can also show that the per-sequence regret is well behaved. More pre-cisely, we show that our algorithm can guarantee that the actual (rather thanexpected) di�erence between its gain and the gain of the best arm on any runis upper bounded by O(T 2=3(K lnK)1=3) with high probability. This bound isweaker than the bound on the expected regret. It is not clear whether or not



Introduction 4this bound can be improved to have a dependence of O(pT ) on the number oftrials.A non-stochastic bandit problem was also considered by Gittins [9] andIshikida and Varaiya [11]. However, their version of the bandit problem is verydi�erent from ours: they assume that the player can compute ahead of timeexactly what payo�s will be received from each arm, and their problem is thusone of optimization, rather than exploration and exploitation.Our algorithm is based in part on an algorithm presented by Freund andSchapire [6, 7], which in turn is a variant of Littlestone and Warmuth's [13]weighted majority algorithm, and Vovk's [17] aggregating strategies. In thesetting analyzed by Freund and Schapire (which we call here the full informationgame), the player on each trial scores the reward of the chosen arm, but gainsaccess to the rewards associated with all of the arms (not just the one that waschosen).In some situations, picking the same action at all trials might not be the beststrategy. For example, in the packet routing problem it might be that no singleroute is good for the whole duration of the message, but switching betweenroutes from time to time can yield better performance. We give a variantof our algorithm which combines the choices of N strategies (or \experts"),each of which recommends one of the K actions at each iteration. We showthat the regret with respect to the best strategy is O(pTK lnN). Note thatthe dependence on the number of strategies is only logarithmic, and thereforethe bound is quite reasonable even when the player is combining a very largenumber of strategies.The adversarial bandit problem is closely related to the problem of learningto play an unknown repeated matrix game. In this setting, a player withoutprior knowledge of the game matrix is playing the game repeatedly against anadversary with complete knowledge of the game and unbounded computationalpower. It is well known that matrix games have an associated value which isthe best possible expected payo� when playing the game against an adversary.If the matrix is known, then a randomized strategy that achieves the value ofthe game can be computed (say, using a linear-programming algorithm) andemployed by the player. The case where the matrix is entirely unknown waspreviously considered by Ba~nos [1] and Megiddo [14], who proposed two di�erentstrategies whose per-round payo� converges to the game value. Both of thesealgorithms are extremely ine�cient. For the same problem, we show that byusing our algorithm the player achieves an expected per-round payo� in Trounds which e�ciently approaches the value of the game at the rate O(T�1=2).This convergence is much faster than that achieved by Ba~nos and Megiddo.Our paper is organized as follows. In Section 2, we give the formal de�nitionof the problem. In Section 3, we describe Freund and Schapire's algorithm forthe full information game and state its performance. In Section 4, we describeour basic algorithm for the partial information game and prove the bound on theexpected regret. In Section 5, we prove a bound on the regret of our algorithmon \typical" sequences. In Section 6, we show how to adaptively tune theparameters of the algorithm when no prior knowledge (such as the length ofthe game) is available. In Section 7, we give a lower bound on the regret su�ered



Notation and terminology 5by any algorithm for the partial information game. In Section 8, we show howto modify the algorithm to use expert advice. Finally, in Section 9, we describethe application of our algorithm to repeated matrix games.2 Notation and terminologyWe formalize the bandit problem as a game between a player choosing actionsand an adversary choosing the rewards associated with each action. The gameis parameterized by the number K of possible actions, where each action isdenoted by an integer i, 1 � i � K. We will assume that all the rewards belongto the unit interval [0; 1]. The generalization to rewards in [a; b] for arbitrarya < b is straightforward.The game is played in a sequence of trials t = 1; 2; : : : ; T . We distinguishtwo variants: the partial information game, which captures the adversarialmulti-armed bandit problem; and the full information game, which is essentiallyequivalent to the framework studied by Freund and Schapire [6]. On each trialt of the full information game:1. The adversary selects a vector x(t) 2 [0; 1]K of current rewards. The ithcomponent xi(t) is interpreted as the reward associated with action i attrial t.2. Without knowledge of the adversary's choice, the player chooses an ac-tion by picking a number it 2 f1; 2; : : : ; Kg and scores the correspondingreward xit(t).3. The player observes the entire vector x(t) of current rewards.The partial information game corresponds to the above description of the fullinformation game but with step 3 replaced by:30. The player observes only the reward xit(t) for the chosen action it.LetGA :=PTt=1 xit(t) be the total reward of player A choosing actions i1; i2; : : : ; iT .We formally de�ne an adversary as a deterministic1 function mapping thepast history of play i1; : : : ; it�1 to the current reward vector x(t). As a specialcase, we say that an adversary is oblivious if it is independent of the player'sactions, i.e., if the reward at trial t is a function of t only. All of our results,which are proved for a nonoblivious adversary, hold for an oblivious adversaryas well.1There is no loss of generality in assuming that the adversary is deterministic. To see this,assume that the adversary maps past histories to distributions over the values of x(t). Thisde�nes a stochastic strategy for the adversary for the T step game, which is equivalent to adistribution over all deterministic adversarial strategies for the T step game. Assume thatA is any player algorithm and that B is the worst-case stochastic strategy for the adversaryplaying against A. The stated equivalence implies that there is a deterministic adversarialstrategy ~B against which the gain of A is at most as large as the gain of A against B. (Thesame argument can easily be made for other measures of performance, such as the regret,which is de�ned shortly.)



The full information game 6As our player algorithms will be randomized, �xing an adversary and aplayer algorithm de�nes a probability distribution over the set f1; : : : ; KgT ofsequences of T actions. All the probabilities and expectations considered inthis paper will be with respect to this distribution. For an oblivious adversary,the rewards are �xed quantities with respect to this distribution, but for anonoblivious adversary, each reward xi(t) is a random variable de�ned on theset f1; : : : ; Kgt�1 of player actions up to trial t � 1. We will not use explicitnotation to represent this dependence, but will refer to it in the text whenappropriate.The measure of the performance of our algorithm is the regret, which is thedi�erence between the total reward of the algorithm GA and the total rewardof the best action. We shall mostly be concerned with the expected regret ofthe algorithm. Formally, we de�ne the expected total reward of algorithm A byE[GA] := Ei1;:::;iT " TXt=1 xit(t)# ;the expected total reward of the best action byEGmax := max1�j�K Ei1;:::;iT " TXt=1 xj(t)# ;and the expected regret of algorithm A by RA := EGmax�E[GA]: This de�nitionis easiest to interpret for an oblivious adversary since, in this case, EGmax trulymeasures what could have been gained had the best action been played forthe entire sequence. However, for a nonoblivious adversary, the de�nition ofregret is a bit strange: It still compares the total reward of the algorithm to thesum of rewards that were associated with taking some action j on all iterations;however, had action j actually been taken, the rewards chosen by the adversarywould have been di�erent than those actually generated since the variable xj(t)depends on the past history of plays i1; : : : ; it�1. Although the de�nition of RAlooks di�cult to interpret in this case, in Section 9 we prove that our bounds onthe regret for a nonoblivious adversary can also be used to derive an interestingresult in the context of repeated matrix games.We shall also give a bound that holds with high probability on the actualregret of the algorithm, i.e., on the actual di�erence between the gain of thealgorithm and the gain of the best action:maxj TXt=1 xj(t)�GA:3 The full information gameIn this section, we describe an algorithm, called Hedge, for the full informationgame which will also be used as a building block in the design of our algorithmfor the partial information game. The version of Hedge presented here is a



The full information game 7Algorithm HedgeParameter: A real number � > 0.Initialization: Set Gi(0) := 0 for i = 1; : : : ; K.Repeat for t = 1; 2; : : : until game ends1. Choose action it according to the distribution p(t), wherepi(t) = exp(�Gi(t� 1))PKj=1 exp(�Gj(t � 1)) :2. Receive the reward vector x(t) and score gain xit(t).3. Set Gi(t) := Gi(t� 1) + xi(t) for i = 1; : : : ; K.Figure 1 Algorithm Hedge for the full information game.variant2 of the algorithm introduced by Freund and Schapire [6] which itselfis a direct generalization of Littlestone and Warmuth's Weighted Majority [13]algorithm.Hedge is described in Figure 1. The main idea is simply to choose actioni at time t with probability proportional to exp (�Gi(t� 1)), where � > 0 isa parameter and Gi(t) = Ptt0=1 xi(t0) is the total reward scored by action iup through trial t. Thus, actions yielding high rewards quickly gain a highprobability of being chosen.Since we allow for rewards larger than 1, proving bounds forHedge is morecomplex than for Freund and Schapire's original algorithm. The following isan extension of Freund and Schapire's Theorem 2. Here and throughout thispaper, we make use of the function �M (x) which is de�ned for M 6= 0 to be�M(x) := eMx � 1�MxM2 :Theorem 3.1 For � > 0, and for any sequence of reward vectors x(1); : : : ;x(T )with xi(t) 2 [0;M ], M > 0, the probability vectors p(t) computed by Hedgesatisfy TXt=1 KXi=1 pi(t)xi(t) � TXt=1 xj(t)� lnK� � �M(�)� TXt=1 KXi=1 pi(t)xi(t)2for all actions j = 1; : : : ; K.2These modi�cations enable Hedge to handle gains (rewards in [0;M ]) rather than losses(rewards in [�1; 0]). Note that we also allow rewards larger than 1. These changes arenecessary to use Hedge as a building block in the partial information game.



The full information game 8In the special case that M = 1, we can replace PTt=1PKi=1 pi(t)xi(t)2 withits upper bound PTt=1PKi=1 pi(t)xi(t) to get the following lower bound on thegain of Hedge.Corollary 3.2 For � > 0, and for any sequence of reward vectors x(1); : : : ;x(T )with xi(t) 2 [0; 1], the probability vectors p(t) computed by Hedge satisfyTXt=1 p(t) � x(t) � �maxjPTt=1 xj(t)� lnKe� � 1 :Note that p(t) �x(t) = Eit [xit(t) j i1; : : : ; it�1], so this corollary immediatelyimplies the lower bound:E[GHedge] = E" TXt=1 xit(t)# = E" TXt=1 p(t) � x(t)#� �E hmaxjPTt=1 xj(t)i� lnKe� � 1� �EGmax� lnKe� � 1 :In particular, it can be shown that if we choose � = ln(1 +p2(lnK)=T) thenHedge su�ers regret at most p2T lnK in the full information game, i.e.,E[GHedge] � EGmax�p2T lnK:To prove Theorem 3.1, we will use the following inequality.Lemma 3.3 For all � > 0, for all M 6= 0 and for all x �M :e�x � 1 + �x+�M (�)x2:Proof. It su�ces to show that the functionf(x) := ex � 1� xx2is nondecreasing since the inequality f(�x) � f(�M) immediately implies thelemma. (We can make f continuous with continuous derivatives by de�ningf(0) = 1=2.) We need to show that the �rst derivative f 0(x) � 0, for which itis su�cient to show thatg(x) := x3f 0(x)ex + 1 = x� 2�ex � 1ex + 1�is nonnegative for positive x and nonpositive for negative x. This can be provedby noting that g(0) = 0 and that g's �rst derivativeg0(x) = �ex � 1ex + 1�2is obviously nonnegative. 2



The partial information game 9Proof of Theorem 3.1. Let Wt = PKi=1 exp (�Gi(t� 1)). By de�nition ofthe algorithm, we �nd that, for all 1 � t � T ,Wt+1Wt = KXi=1 exp (�Gi(t � 1)) exp (�xi(t))Wt= KXi=1 pi(t) exp (�xi(t))� 1 + � KXi=1 pi(t)xi(t) + �M(�) KXi=1 pi(t)xi(t)2using Lemma 3.3. Taking logarithms and summing over t = 1; : : : ; T yieldsln WT+1W1 = TXt=1 ln Wt+1Wt� TXt=1 ln 1 + � KXi=1 pi(t)xi(t) + �M (�) KXi=1 pi(t)xi(t)2!� � TXt=1 KXi=1 pi(t)xi(t) + �M(�) TXt=1 KXi=1 pi(t)xi(t)2 (1)since 1 + x � ex for all x. Observing that W1 = K and, for any j, WT+1 �exp (�Gj(T )), we get ln WT+1W1 � �Gj(T )� lnK : (2)Combining Equations (1) and (2) and rearranging we obtain the statement ofthe theorem. 24 The partial information gameIn this section, we move to the analysis of the partial information game. Wepresent an algorithm Exp3 that runs the algorithm Hedge of Section 3 as asubroutine. (Exp3 stands for \Exponential-weight algorithm for Explorationand Exploitation.")The algorithm is described in Figure 2. On each trial t, Exp3 receivesthe distribution vector p(t) from Hedge and selects an action it according tothe distribution p̂(t) which is a mixture of p(t) and the uniform distribution.Intuitively, mixing in the uniform distribution is done to make sure that thealgorithm tries out all K actions and gets good estimates of the rewards foreach. Otherwise, the algorithm might miss a good action because the initialrewards it observes for this action are low and large rewards that occur laterare not observed because the action is not selected.After Exp3 receives the reward xit(t) associated with the chosen action,it generates a simulated reward vector x̂(t) for Hedge. As Hedge requiresfull information, all components of this vector must be �lled in, even for the



The partial information game 10Algorithm Exp3Parameters: Reals � > 0 and  2 (0; 1]Initialization: Initialize Hedge(�).Repeat for t = 1; 2; : : : until game ends1. Get the distribution p(t) from Hedge.2. Select action it to be j with probability p̂j(t) = (1� )pj(t) + K .3. Receive reward xit(t) 2 [0; 1].4. Feed the simulated reward vector x̂(t) back to Hedge, where x̂j(t) =( xit(t)p̂it(t) if j = it0 otherwise.Figure 2 Algorithm Exp3 for the partial information game.actions that were not selected. For the chosen action it, we set the simulatedreward x̂it(t) to xit(t)=p̂it(t). Dividing the actual gain by the probability thatthe action was chosen compensates the reward of actions that are unlikely to bechosen. The other actions all receive a simulated reward of zero. This choice ofsimulated rewards guarantees that the expected simulated gain associated withany �xed action j is equal to the actual gain of the action; that is, Eit [x̂j(t) ji1; : : : ; it�1] = xj(t).We now give the �rst main theorem of this paper, which bounds the regretof algorithm Exp3.Theorem 4.1 For � > 0 and  2 (0; 1], the expected gain of algorithm Exp3is at leastE[GExp3] � EGmax� � + K�K=(�)� �EGmax� 1� � lnK :To understand this theorem, it is helpful to consider a simpler bound which canbe obtained by an appropriate choice of the parameters  and �:Corollary 4.2 Assume that g � EGmax and that algorithm Exp3 is run withinput parameters � = =K and = min(1;s K lnK(e� 1)g) :Then the expected regret of algorithm Exp3 is at mostRExp3 � 2pe� 1pgK lnK � 2:63pgK lnK:



The partial information game 11Proof. If g � (K lnK)=(e � 1), then the bound is trivial since the expectedregret cannot be more than g. Otherwise, by Theorem 4.1, the expected regretis at most � + K�K=(�)� � g + lnK� = 2pe� 1pgK lnK: 2To apply Corollary 4.2, it is necessary that an upper bound g on EGmax beavailable for tuning � and . For example, if the number of trials T is knownin advance then, since no action can have payo� greater than 1 on any trial, wecan use g = T as an upper bound. In Section 6, we give a technique that doesnot require prior knowledge of such an upper bound.If the rewards xi(t) are in the range [a; b], a < b, then Exp3 can be usedafter the rewards have been translated and rescaled to the range [0; 1]. ApplyingCorollary 4.2 with g = T gives the bound (b � a)2pe � 1pTK lnK) on theregret. For instance, this is applicable to a standard loss model where the\rewards" fall in the range [�1; 0].Proof of Theorem 4.1. By the de�nition of the algorithm, we have thatx̂i(t) � 1=p̂i(t) � K=. Thus we �nd, by Theorem 3.1, that for all actionsj = 1; : : : ; KTXt=1 KXi=1 pi(t)x̂i(t) � TXt=1 x̂j(t)� lnK� � �K=(�)� TXt=1 KXi=1 pi(t)x̂i(t)2 :Since KXi=1 pi(t)x̂i(t) = pit(t)xit(t)p̂it(t) � xit(t)1�  (3)and KXi=1 pi(t)x̂i(t)2 = pit(t)xit(t)p̂it(t) x̂it(t) � x̂it(t)1�  ; (4)we get that for all actions j = 1; : : : ; KGExp3 = TXt=1 xit(t) � (1� ) TXt=1 x̂j(t)� 1� � lnK � �K=(�)� TXt=1 x̂it(t) : (5)Note that x̂it(t) = KXi=1 x̂i(t): (6)We next take the expectation of Equation (5) with respect to the distributionof hi1; : : : ; iTi. For the expected value of x̂j(t), we have:E[x̂j(t)] = Ei1;:::;it�1 [Eit [x̂j(t) j i1; : : : ; it�1]]= Ei1;:::;it�1 �p̂j(t) � xj(t)p̂j(t) + (1� p̂j(t)) � 0�= E[xj(t)]: (7)



A bound on the regret that holds with high probability 12Combining Equations (5), (6) and (7), we �nd thatE[GExp3] � (1� ) TXt=1 E[xj(t)]� 1� � lnK � �K=(�)� TXt=1 KXi=1 E[xi(t)] :Since maxjPTt=1E[xj(t)] = EGmax and PTt=1PKi=1E[xi(t)] � K EGmax weobtain the inequality in the statement of the theorem. 25 A bound on the regret that holds with high probabilityIn the last section, we showed that algorithm Exp3 with appropriately setparameters can guarantee an expected regret of at most O(pgK lnK). In thecase that the adversarial strategy is oblivious (i.e., when the rewards associatedwith each action are chosen without regard to the player's past actions), wecompare the expected gain of the player to EGmax, which, in this case, is theactual gain of the best action. However, if the adversary is not oblivious, ournotion of expected regret can be very weak.Consider, for example, a rather benign but nonoblivious adversary whichassigns reward 0 to all actions on the �rst round, and then, on all future rounds,assigns reward 1 to action i1 (i.e., to whichever action was played by the playeron the �rst round), and 0 to all other actions. In this case, assuming the playerchooses the �rst action uniformly at random (as do all algorithms considered inthis paper), the expected total gain of any action is (T�1)=K. This means thatthe bound that we get fromCorollary 4.2 in this case will guarantee only that theexpected gain of the algorithm is not much smaller than EGmax = (T � 1)=K.This is a very weak guarantee since, in each run, there is one action whoseactual gain is T � 1. On the other hand, Exp3 would clearly perform muchbetter than promised in this simple case. Clearly, we need a bound that relatesthe player's gain to the actual gain of the best action in the same run.In this section, we prove such a bound for Exp3. Speci�cally, let us de�nethe random variable Gi = TXt=1 xi(t)to be the actual total gain of action i, and letGmax = maxi Gibe the actual total gain of the best action i. The main result of this section is aproof of a bound which holds with high probability relating the player's actualgain GExp3 to Gmax.We show that the dependence of the di�erence Gmax�GExp3 as a functionof T is O(T 2=3) with high probability for an appropriate setting of Exp3'sparameters. This dependence is su�cient to show that the average per-trialgain of the algorithm approaches that of the best action as T ! 1. However,the dependence is signi�cantly worse than the O(pT ) dependence of the boundon the expected regret proved in Theorem 4.1. It is an open question whether



A bound on the regret that holds with high probability 13the gap between the bounds is real or can be closed by this or some otheralgorithm.For notational convenience, let us also de�ne the random variablesĜi = TXt=1 x̂i(t)and Ĝmax = maxi Ĝi:The heart of the proof of the result in this section is an upper bound thatholds with high probability on the deviation of Ĝi from Gi for any action i.The main di�culty in proving such a bound is that the gains associated witha single action in di�erent trials are not independent of each other, but maybe dependent through the decisions made by the adversary. However, usingmartingale theory, we can prove the following lemma:Lemma 5.1 Let � > 0 and � > 0. Then with probability at least 1 � �, forevery action i, Ĝi � �1� K�1(�)� �Gi � ln(K=�)� :Proof. Given in Appendix A. 2Using this lemma, we can prove the main result of this section:Theorem 5.2 Let � > 0,  2 (0; 1], � > 0 and � > 0. Then with probability atleast 1� �, the gain of algorithm Exp3 is at leastGExp3 � Gmax � � + K�K=(�)� + K�1(�)� �Gmax� 1� � lnK � ln(K=�)� :Proof. Note �rst thatTXt=1 x̂it(t) = TXt=1 KXi=1 x̂i(t) = KXi=1 Ĝi � KĜmax:Combining with Equation (5) givesGExp3 � maxj �(1� )Ĝj � 1� � lnK � K�K=(�)� Ĝmax�= �1�  � K�K=(�)� � Ĝmax� 1� � lnK� �1�  � K�K=(�)� � Ĝi � 1� � lnKfor all i.



Guessing the maximal reward 14Next, we apply Lemma 5.1 which implies that, with probability at least1� �, for all actions i,GExp3 � �1�  � K�K=(�)� ���1� K�1(�)� �Gi � ln(K=�)� �� 1� � lnK� Gi � � + K�K=(�)� + K�1(�)� �Gi � ln(K=�)� � 1� � lnK:Choosing i to be the best action gives the result. 2To interpret this result we give the following simple corollary.Corollary 5.3 Let � > 0. Assume that g � Gmax and that algorithm Exp3 isrun with input parameters � = =K and = min(1;�K ln(K=�)b2g �1=3)where b = (e� 1)=2. Then with probability at least 1� � the regret of algorithmExp3 is at mostRExp3 � (b4=3+ 4b1=3)g2=3(K ln(K=�))1=3 � 4:62 g2=3(K ln(K=�))1=3:Proof. We assume that g � b�2K ln(K=�) since otherwise the bound followsfrom the trivial fact that the regret is at most g. We apply Theorem 5.2 setting� = � (ln(K=�))2bKg2 �1=3 :Given our assumed lower bound on g, we have that � � 1 which implies that�1(�) � �2. Plugging into the bound in Theorem 5.2, this implies a bound onregret of b2=3g1=3K lnK(K ln(K=�))1=3 + 4(bg2K ln(K=�))1=3:The result now follows by upper bounding K lnK in the �rst term by (K ln(K=�))2=3(gb2)1=3using our assumed lower bound on g. 2As g = T is an upper bound that holds for any sequence, we get that thedependence of the regret of the algorithm on T is O(T 2=3).6 Guessing the maximal rewardIn Section 4, we showed that algorithm Exp3 yields a regret of O(pgK lnK)whenever an upper bound g on the total expected reward EGmax of the bestaction is known in advance. In this section, we describe an algorithm Exp3:1which does not require prior knowledge of a bound on EGmax and whose regret isat most O(pEGmaxK lnK). Along the same lines, the bounds of Corollary 5.3can be achieved without prior knowledge about Gmax.



Guessing the maximal reward 15Algorithm Exp3:1Initialization: Let t = 0, c = K lnKe � 1 , and Ĝi(0) = 0 for i = 1; : : : ; KRepeat for r = 0; 1; 2; : : : until game ends1. Let Sr = t+ 1 and gr = c 4r.2. Restart Exp3 choosing  and � as in Corollary 4.2 (with g = gr),namely,  = r = 2�r and � = �r = r=K.3. While maxi Ĝi(t) � gr �K=r do:(a) t := t+ 1(b) Let p̂(t) and it be the distribution and random action chosen byExp3.(c) Compute x̂(t) from p̂(t) and observed reward xit(t) as in Figure 2.(d) Ĝi(t) = Ĝi(t� 1) + x̂i(t) for i = 1; : : : ; K.4. Let Tr = tFigure 3 Algorithm Exp3:1 for the partial information game when a boundon EGmax is not known.Our algorithm Exp3:1, described in Figure 3, proceeds in epochs, whereeach epoch consists of a sequence of trials. We use r = 0; 1; 2; : : : to index theepochs. On epoch r, the algorithm \guesses" a bound gr for the total rewardof the best action. It then uses this guess to tune the parameters � and  ofExp3, restarting Exp3 at the beginning of each epoch. As usual, we use t todenote the current time step.3 Exp3:1 maintains an estimateĜi(t) = tXt0=1 x̂i(t0)of the total reward of each action i. Since E[x̂i(t)] = E[xi(t)], this estimate willbe unbiased in the sense thatE[Ĝi(t)] = E" tXt0=1xi(t0)#for all i and t. Using these estimates, the algorithm detects (approximately)when the actual gain of some action has advanced beyond gr. When this hap-pens, the algorithm goes on to the next epoch, restarting Exp3 with a largerbound on the maximal gain.3Note that, in general, this t may di�er from the \local variable" t used by Exp3 whichwe now regard as a subroutine. Throughout this section, we will only use t to refer to thetotal number of trials as in Figure 3.



Guessing the maximal reward 16The performance of the algorithm is characterized by the following theoremwhich is the main result of this section.Theorem 6.1 The regret su�ered by algorithm Exp3:1 is at mostRExp3:1 � 8pe� 1pEGmaxK lnK + 8(e� 1)K + 2K lnK� 10:5pEGmaxK lnK + 13:8K + 2K lnK:The proof of the theorem is divided into two lemmas. The �rst boundsthe regret su�ered on each epoch, and the second bounds the total number ofepochs.As usual, we use T to denote the total number of time steps (i.e., the �nalvalue of t). We also de�ne the following random variables: Let R be the totalnumber of epochs (i.e., the �nal value of r). As in the �gure, Sr and Tr denotethe �rst and last time steps completed on epoch r (where, for convenience, wede�ne TR = T ). Thus, epoch r consists of trials Sr; Sr + 1; : : : ; Tr. Note that,in degenerate cases, some epochs may be empty in which case Sr = Tr+ 1. LetĜmax(t) = maxi Ĝi(t) and let Ĝmax = Ĝmax(T ).Lemma 6.2 For any action j and for every epoch r, the gain of Exp3:1 duringepoch r is lower bounded byTrXt=Sr xit(t) � TrXt=Sr x̂j(t)� 2pe � 1pgrK lnK:Proof. If Sr > Tr (so that no trials occur on epoch r), then the lemmaholds trivially since both summations will be equal to zero. Assume then thatSr � Tr. Let g = gr,  = r and � = �r. We use Equation (5) from the proofof Theorem 4.1:TrXt=Sr xit(t) � (1� ) TrXt=Sr x̂j(t)� 1� � lnK � �K=(�)� TrXt=Sr x̂it(t)= TrXt=Sr x̂j(t)�  TrXt=Sr x̂j(t)� �K=(�)� TrXt=Sr KXi=1 x̂i(t)� (1� ) lnK�� TrXt=Sr x̂j(t)�  TrXt=1 x̂j(t)� �K=(�)� KXi=1 TrXt=1 x̂i(t)� (1� ) lnK� :From the de�nition of the termination condition and since Sr � Tr, we knowthat Ĝi(Tr� 1) � g�K=. Since x̂i(t) � K= (by Exp3's choice of p̂(t)), thisimplies that Ĝi(Tr) � g for all i. Thus,TrXt=Sr xit(t) � TrXt=Sr x̂j(t)� g� + K�K=(�)� �� (1� ) lnK� :By our choices for � and , we get the statement of the lemma. 2



Guessing the maximal reward 17The next lemma gives an implicit upper bound on the number of epochs R.Lemma 6.3 The number of epochs R satis�es2R�1 � Kc +s Ĝmaxc + 12 :Proof. If R = 0, then the bound holds trivially. So assume R � 1. Letz = 2R�1. Because epoch R� 1 was completed, by the termination condition,Ĝmax � Ĝmax(TR�1) > gR�1 � KR�1 = c 4R�1 �K 2R�1 = cz2 �Kz: (8)Suppose the claim of the lemma is false. Then z > K=c+qĜmax=c. Since thefunction cx2 �Kx is increasing for x > K=(2c), this implies thatcz2 �Kz > c0@Kc +sĜmaxc 1A2 �K0@Kc +s Ĝmaxc 1A = KsĜmaxc + Ĝmax;contradicting Equation 8. 2Proof of Theorem 6.1. Using the lemmas, we have thatGExp3:1 = TXt=1 xit(t) = RXr=0 TrXt=Sr xit(t)� maxj RXr=0 TrXt=Sr x̂j(t)� 2pe� 1pgrK lnK!= maxj Ĝj(T )� 2K lnK RXr=0 2r= Ĝmax � 2K lnK(2R+1 � 1)� Ĝmax + 2K lnK � 8K lnK0@Kc +s Ĝmaxc + 121A= Ĝmax � 2K lnK � 8(e� 1)K � 8pe� 1qĜmaxK lnK:(9)Here, we used Lemma 6.2 for the �rst inequality and Lemma 6.3 for the secondinequality. The other steps follow from de�nitions and simple algebra.Let f(x) = x � apx � b for x � 0 where a = 8pe� 1pK lnK and b =2K lnK + 8(e� 1)K. Taking expectations of both sides of Equation (9) givesE[GExp3:1] � E[f(Ĝmax)]: (10)Since the second derivative of f is positive for x > 0, f is convex so that, byJensen's inequality, E[f(Ĝmax)] � f(E[Ĝmax]): (11)



A lower bound 18Note that,E[Ĝmax] = E �maxj Ĝj(T )� � maxj E[Ĝj(T )] = maxj E" TXt=1 xj(t)# = EGmax:The function f is increasing if and only if x > a2=4. Therefore, if EGmax > a2=4then f(E[Ĝmax]) � f(EGmax). Combined with Equations (10) and (11), thisgives that E[GExp3:1] � f(EGmax) which is equivalent to the statement of thetheorem. On the other hand, if EGmax � a2=4 then, because f is nonincreasingon [0; a2=4], f(EGmax) � f(0) = �b � 0 � E[GExp3:1]so the theorem follows trivially in this case as well. 27 A lower boundIn this section, we state an information-theoretic lower bound on the regret ofany player, i.e., a lower bound that holds even if the player has unboundedcomputational power. More precisely, we show that there exists an adversarialstrategy for choosing the rewards such that the expected regret of any playeralgorithm is 
(pTK). Observe that this does not match the upper bound forour algorithms Exp3 and Exp3:1 (see Corollary 4.2 and Theorem 6.1); it isan open problem to close this gap.The adversarial strategy we use in our proof is oblivious to the algorithm; itsimply assigns the rewards at random according to some distribution, similar toa standard statistical model for the bandit problem. The choice of distributiondepends on the number of actions K and the number of iterations T . Thisdependence of the distribution on T is the reason that our lower bound doesnot contradict the upper bounds of the form O(logT ) which appear in thestatistics literature [12]. There, the distribution over the rewards is �xed asT !1.For the full information game, matching upper and lower bounds of the form� �pT logK� were already known [3, 6]. Our lower bound shows that for thepartial information game the dependence on the number of actions increasesconsiderably. Speci�cally, our lower bound implies that no upper bound ispossible of the form O(T�(logK)�) where 0 � � < 1, � > 0.Theorem 7.1 For any number of actions K � 2 and any number of iterationsT , there exists a distribution over the rewards assigned to di�erent actions suchthat the expected regret of any algorithm is at least120 minfpKT; Tg:The proof is given in Appendix B.The lower bound on the expected regret implies, of course, that for anyalgorithm there is a particular choice of rewards that will cause the regret tobe larger than this expected value.



Combining the advice of many experts 198 Combining the advice of many expertsUp to this point, we have considered a bandit problem in which the player'sgoal is to achieve a payo� close to that of the best single action. In a moregeneral setting, the player may have a set of strategies for choosing the bestaction. These strategies might select di�erent actions at di�erent iterations.The strategies can be computations performed by the player or they can beexternal advice given to the player by \experts." We will use the more generalterm \expert" (borrowed from Cesa-Bianchi et al. [3]) because we place norestrictions on the generation of the advice. The player's goal in this case is tocombine the advice of the experts in such a way that its total reward is closeto that of the best expert (rather than the best single action).For example, consider the packet-routing problem. In this case there mightbe several routing strategies, each based on di�erent assumptions regardingnetwork load distribution and using di�erent data to estimate current load.Each of these strategies might suggest di�erent routes at di�erent times, andeach might be better in di�erent situations. In this case, we would like tohave an algorithm for combining these strategies which, for each set of packets,performs almost as well as the strategy that was best for that set.Formally, at each trial t, we assume that the player, prior to choosing anaction, is provided with a set of N probability vectors �j(t) 2 [0; 1]K, j =1; : : : ; N , PKi=1 �ji (t) = 1. We interpret �j(t) as the advice of expert j ontrial t, where the ith component �ji (t) represents the recommended probabilityof playing action i. (As a special case, the distribution can be concentratedon a single action, which represents a deterministic recommendation.) If theadversary chooses payo� vector x(t), then the expected reward for expert j(with respect to the chosen probability vector �j(t)) is simply �j(t) � x(t). Inanalogy of EGmax, we de�neE ~Gmax := max1�j�N Ei1;:::;iT " TXt=1 �j(t) � x(t)# ;so that the regret ~RA := E[GA] � E ~Gmax measures the expected di�erencebetween the player's total reward and the total reward of the best expert.Our results hold for any �nite set of experts. Formally, we regard each �j(t)as a random variable which is an arbitrary function of the random sequence ofplays i1; : : : ; it�1 (just like the adversary's payo� vector x(t)). This de�nitionallows for experts whose advice depends on the entire past history as observedby the player, as well as other side information which may be available.We could at this point view each expert as a \meta-action" in a higher-levelbandit problem with payo� vector de�ned at trial t as (�1(t) � x(t); : : : ; �N (t) �x(t)). We could then immediately apply Corollary 4.2 to obtain a bound ofO(pgN logN) on the player's regret relative to the best expert (where g isan upper bound on E ~Gmax). However, this bound is quite weak if the playeris combining many experts (i.e., if N is very large). We show below that thealgorithm Exp3 from Section 4 can be modi�ed yielding a regret term of the



Combining the advice of many experts 20Algorithm Exp4Parameters: Reals � > 0 and  2 [0; 1]Initialization: Initialize Hedge (with K replaced by N)Repeat for t = 1; 2; : : : until game ends1. Get the distribution q(t) 2 [0; 1]N from Hedge.2. Get advice vectors �j(t) 2 [0; 1]K, and let p(t) :=PNj=1 qj(t)�j(t).3. Select action it to be j with probability p̂j(t) = (1� )pj(t) + =K.4. Receive reward xit(t) 2 [0; 1].5. Compute the simulated reward vector x̂(t) asx̂j(t) = ( xit(t)p̂it(t) if j = it0 otherwise.6. Feed the vector ŷ(t) 2 [0; K=]N to Hedge where ŷj(t) := �j(t) � x̂(t).Figure 4 Algorithm Exp4 for using expert advice in the partial informationgame.form O(pgK logN). This bound is very reasonable when the number of actionsis small, but the number of experts is quite large (even exponential).Our algorithm Exp4 is shown in Figure 4, and is only a slightly modi�edversion of Exp3. (Exp4 stands for \Exponential-weight algorithm for Explo-ration and Exploitation using Expert advice.") As before, we use Hedge as asubroutine, but we now apply Hedge to a problem of dimension N rather thanK. At trial t, we receive a probability vector q(t) from Hedge which repre-sents a distribution over strategies. We compute the vector p(t) as a weightedaverage (with respect to q(t)) of the strategy vectors �j(t). The vector p̂(t)is then computed as before using p(t), and an action it is chosen randomly.We de�ne the vector x̂(t) 2 [0; K=]K as before, and we �nally feed the vec-tor ŷ(t) 2 [0; K=]N to Hedge where ŷj(t) := �j(t) � x̂(t). Let us also de�ney(t) 2 [0; 1]N to be the vector with components corresponding to the gains ofthe experts: yj(t) := �j(t) � x(t).The simplest possible expert is one which always assigns uniform weight toall actions so that �i(t) = 1=K on each round t. We call this the uniform expert.To prove our results, we need to assume that the uniform expert is included inthe family of experts.4 Clearly, the uniform expert can always be added to anygiven family of experts at the very small expense of increasing N by one.4In fact, we can use a slightly weaker su�cient condition, namely, that the uniform expertis included in the convex hull of the family of experts, i.e., that there exists nonnegativenumbers �1; : : : ; �N with PNj=1 �j = 1 such that, for all t and all i,PNj=1 �j�ji (t) = 1=K.



Combining the advice of many experts 21Theorem 8.1 For � > 0 and  2 (0; 1], and for any family of experts whichincludes the uniform expert, the expected gain of algorithm Exp4 is at leastE[GExp4] � E ~Gmax� � + K�K=(�)� �E ~Gmax� 1� � lnN :Proof. We prove this theorem along the lines of the proof of Theorem 4.1. ByTheorem 3.1, for all experts j = 1; : : : ; N ,TXt=1 q(t) � ŷ(t) � TXt=1 ŷj(t)� lnN� � �K=(�)� TXt=1 NXj=1 qj(t)ŷj(t)2 :Now q(t) � ŷ(t) = NXj=1 qj(t)�j(t) � x̂(t) = p(t) � x̂(t) � xit(t)1� by Equation (3). Also, similar to Equation (4),NXj=1 qj(t)ŷj(t)2 = NXj=1 qj(t)(�jit(t)x̂it(t))2 � x̂it(t)2 NXj=1 qj(t)�jit(t) = pit(t)x̂it(t)2 � x̂it(t)1�  :Therefore, using Equation (6), for all experts j,GExp4 = TXt=1 xit(t) � (1� ) TXt=1 ŷj(t)� 1� � lnN � �K=(�)� TXt=1 KXi=1 x̂i(t):As before, we take expectations of both sides of this inequality. Note thatE[ŷj(t)] = E" KXi=1 p̂i(t)�ji (t)xi(t)p̂i(t)# = E ��j(t) � x(t)� = E[yj(t)]:Further,1KE" TXt=1 KXi=1 x̂i(t)# = E" TXt=1 1K KXi=1 xi(t)# � maxj E" TXt=1 yj(t)# = E ~Gmaxsince we have assumed that the uniform expert is included in the family of ex-perts. Combining these facts immediately implies the statement of the theorem.2Analogous versions of the other main results of this paper can be proved inwhich occurrences of lnK are replaced by lnN . For Corollary 4.2, this is imme-diate using Theorem 8.1, yielding a bound on regret of at most 2pe � 1pgK lnN .For the analog of Lemma 5.1, we need to prove a bound on the di�erence be-tween Pt yj(t) and Pt ŷj(t) for each expert j which can be done exactly asbefore replacing �=K with �=N in the proof. The analogs of Theorems 5.2and 6.1 can be proved as before where we again need to assume that the uni-form expert is included in the family of experts. The analog of Corollary 5.3 isstraightforward.



Nearly optimal play of an unknown repeated game 229 Nearly optimal play of an unknown repeated gameThe bandit problem considered up to this point is closely related to the prob-lem of playing an unknown repeated game against an adversary of unboundedcomputational power. In this latter setting, a game is de�ned by an n � mmatrixM. On each trial t, the player (also called the row player) chooses a rowi of the matrix. At the same time, the adversary (or column player) choosesa column j. The player then receives the payo� Mij . In repeated play, theplayer's goal is to maximize its expected total payo� over a sequence of plays.Suppose in some trial the player chooses its next move i randomly accordingto a probability distribution on rows represented by a (column) vector p 2[0; 1]n, and the adversary similarly chooses according to a probability vectorq 2 [0; 1]m. Then the expected payo� is pTMq. Von Neumann's celebratedminimax theorem states thatmaxp minq pTMq = minq maxp pTMq ;where maximum and minimum are taken over the (compact) set of all distribu-tion vectors p and q. The quantity v de�ned by the above equation is called thevalue of the game with matrixM. In words, this says that there exists a mixed(randomized) strategy p for the row player that guarantees expected payo� atleast v, regardless of the column player's action. Moreover, this payo� is op-timal in the sense that the column player can choose a mixed strategy whoseexpected payo� is at most v, regardless of the row player's action. Thus, ifthe player knows the matrix M, it can compute a strategy (for instance, usinglinear programming) that is certain to bring an expected optimal payo� notsmaller than v on each trial.Suppose now that the game M is entirely unknown to the player. To beprecise, assume the player knows only the number of rows of the matrix and abound on the magnitude of the entries of M. The main result of this sectionis a proof based on the results in Section 4 showing that the player can playin such a manner that its payo� per trial will rapidly converge to the optimalmaximin payo� v. This result holds even when the adversary knows the gameM and also knows the (randomized) strategy being used by the player.The problem of learning to play a repeated game when the player gets tosee the whole column of rewards associated with the choice of the adversarycorresponds to our full-information game. This problem was studied by Han-nan [10], Blackwell [2] and more recently by Foster and Vohra [5], Fudenbergand Levin [8] and Freund and Schapire [7]. The problem of learning to playwhen the player gets to see only the single element of the matrix associated withhis choice and the choice of the adversary corresponds to the partial informationgame which is our emphasis here. This problem was previously considered byBa~nos [1] and Megiddo [14]. However, these previously proposed strategies areextremely ine�cient. Not only is our strategy simpler and much more e�cient,but we also are able to prove much faster rates of convergence.In fact, the application of our earlier algorithms to this problem is entirelystraightforward. The player's actions are now identi�ed with the rows of the



Nearly optimal play of an unknown repeated game 23matrix and are chosen randomly on each trial according to algorithm Exp3,where we tune � and  as in Corollary 4.2 with g = T , where T is the totalnumber of epochs of play.5 The payo� vector x(t) is simply M�jt, the jt-thcolumn of M chosen by the adversary on trial t.Theorem 9.1 Let M be an unknown game matrix in [a; b]n�m with value v.Suppose the player, knowing only a, b and n, uses the algorithm sketched aboveagainst any adversary for T trials. Then the player's expected payo� per trialis at least v � 2(b� a)r(e� 1)n lnnT :Proof. We assume that [a; b] = [0; 1]; the extension to the general case isstraightforward. By Corollary 4.2, we haveE" TXt=1Mitjt# = E" TXt=1 xit(t)#� maxi E" TXt=1 xi(t)#� 2p(e� 1)Tn lnn:Let p be a maxmin strategy for the row player such thatv = maxp minq pTMq = minq pTMq;and let q(t) be a distribution vector whose jt-th component is 1. Thenmaxi E" TXt=1 xi(t)# � nXi=1 piE" TXt=1 xi(t)# = E" TXt=1 p � x(t)# = E" TXt=1 pTMq(t)# � vTsince pTMq � v for all q.Thus, the player's expected payo� is at leastvT � 2p(e� 1)Tn lnn:Dividing by T to get the average per-trial payo� gives the result. 2Note that the theorem is independent of the number of columns of M and,with appropriate assumptions, the theorem can be easily generalized to adver-saries with an in�nite number of strategies. If the matrix M is very large andall entries are small, then, even if M is known to the player, our algorithm maybe an e�cient alternative to linear programming.The generality of the theorem also allows us to handle games in which theoutcome for given plays i and j is a random variable (rather than a constantMij). Finally, as pointed out by Megiddo [14], such a result is valid for non-cooperative, multi-person games; the average per-trial payo� of any player usingthis strategy will converge rapidly to the maximin payo� of the one-shot game.5If T is not known in advance, the methods developed in Section 6 can be applied.
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Proof Of Theorem 7.1 26The second inequality follows from the fact that Eit [x̂(t) j i1; : : : ; it�1] = x(t)and thatEit [(x(t)� x̂(t))2 j i1; : : : ; it�1] = Eit [x̂(t)2 j i1; : : : ; it�1]� x(t)2� Eit [x̂(t)2 j i1; : : : ; it�1]� K Eit [x̂(t) j i1; : : : ; it�1] = K x(t):The last line uses the fact that 0 � x̂(t) � K=.Combining Equations (13) and (14) gives thatEit [Zt j i1; : : : ; it�1] � Zt�1(i.e., that the Zt's forms a supermartingale), and soE[Zt] � E[Zt�1] � 1by inductive hypothesis. This completes the proof. 2B Proof Of Theorem 7.1We construct the random distribution of rewards as follows. First, before playbegins, one action I is chosen uniformly at random to be the \good" action.The T rewards xI(t) associated with the good action are chosen independentlyat random to be 1 with probability 1=2 + � and 0 otherwise for some small,�xed constant � 2 (0; 1=2] to be chosen later in the proof. The rewards xj(t)associated with the other actions j 6= I are chosen independently at random tobe 0 or 1 with equal odds. Then the expected reward of the best action is atleast (1=2 + �)T . The main part of the proof below is a derivation of an upperbound on the expected gain of any algorithm for this distribution of rewards.We write P�f�g to denote probability with respect to this random choice ofrewards, and we also write Pif�g to denote probability conditioned on i beingthe good action: Pif�g = P�f� j I = ig. Finally, we write Punif f�g to denoteprobability with respect to a uniformly random choice of rewards for all actions(including the good action). Analogous expectation notation E� [�], Ei [�] andEunif [�] will also be used.Let A be the player strategy. Let rt = xit(t) be a random variable denotingthe reward received at time t, and let rt denote the sequence of rewards receivedup through trial t: rt = hr1; : : : ; rti. For shorthand, r = rT is the entiresequence of rewards.Any randomized playing strategy is equivalent to an a-priori random choicefrom the set of all deterministic strategies. Thus, because the adversary strategywe have de�ned is oblivious to the actions of the player, it su�ces to prove anupper bound on the expected gain of any deterministic straregy (this is notcrucial for the proof but simpli�es the notation). Therefore, we can formallyregard the algorithm A as a �xed function which, at each step t, maps thereward history rt�1 to its next action it.



Proof Of Theorem 7.1 27As usual, GA = PTt=1 rt denotes the total reward of the algorithm, andGmax = maxjPTt=1 xj(t) is the total reward of the best action. Note that,because we here assume an oblivious strategy, Gmax and EGmax are the same.Let Ni be a random variable denoting the number of times action i is cho-sen by A. Our �rst lemma bounds the di�erence between expectations whenmeasured using Ei [�] or Eunif [�].Lemma B.1 Let f : f0; 1gT ! [0;M ] be any function de�ned on reward se-quences r. Then for any action i,Ei [f(r)] � Eunif [f(r)] + M2 q�Eunif [Ni] ln(1� 4�2):Proof. We apply standard methods that can be found, for instance, in Coverand Thomas [4]. For any distributions P and Q, letkP�Qk1 := Xr2f0;1gT jPfrg �Qfrgjbe the variational distance, and letKL (P k Q) := Xr2f0;1gT Pfrg lg�PfrgQfrg�be the Kullback-Liebler divergence or relative entropy between the two distri-butions. (We use lg to denote log2.) We also use the notationKL �Pfrt j rt�1g k Qfrt j rt�1g� := Xrt2f0;1gtPfrtg lg�Pfrt j rt�1gQfrt j rt�1g�for the conditional relative entropy of rt given rt�1. Finally, for p; q 2 [0; 1], weuse KL (p k q) := p lg�pq� + (1� p) lg�1� p1� q�as shorthand for the relative entropy between two Bernoulli random variableswith parameters p and q.We have thatEi [f(r)]� Eunif [f(r)] = Xr f(r)(Pifrg �Punif frg)� Xr:Pifrg�Punif frg f(r)(Pifrg � Punif frg)� M Xr:Pifrg�Punif frg(Pifrg � Punif frg)= M2 kPi � Punif k1: (15)Also, Cover and Thomas's Lemma 12.6.1 states thatkPunif � Pik21 � (2 ln 2)KL (Punif k Pi): (16)



Proof Of Theorem 7.1 28The \chain rule for relative entropy" (Cover and Thomas's Theorem 2.5.3) givesthatKL (Punif k Pi) = TXt=1 KL �Punif frt j rt�1g k Pifrt j rt�1g�= TXt=1 �Punif fit 6= ig KL �12 k 12�+Punif fit = ig KL �12 k 12 + ���= TXt=1 Punif fit = ig ��12 lg(1� 4�2)�= Eunif [Ni] ��12 lg(1� 4�2)� : (17)The second equality can be seen as follows: Regardless of the past history ofrewards rt�1, the conditional probability distribution Punif frt j rt�1g on thenext reward rt is uniform on f0; 1g. The conditional distribution Pifrt j rt�1gis also easily computed: Given rt�1, the next action it is �xed by A. If thisaction is not the good action i, then the conditional distribution is uniform onf0; 1g; otherwise, if it = i, then rt is 1 with probability 1=2+ � and 0 otherwise.The lemma now follows by combining Equations (15), (16) and (17). 2We are now ready to prove the theorem. Speci�cally, we show the following:Theorem B.2 For any player strategy A, and for the distribution on rewardsdescribed above, the expected regret of algorithm A is lower bounded by:E� [Gmax �GA] � � T � TK � T2r� TK ln(1� 4�2)! :Proof. If action i is chosen to be the good action, then clearly the expectedpayo� at time t is 1=2 + � if it = i and 1=2 if it 6= i:Ei [rt] = �12 + ��Pifit = ig+ 12Pifit 6= ig= 12 + � Pifit = ig:Thus, the expected gain of algorithm A isEi [GA] = TXt=1 Ei [rt] = T2 + � Ei [Ni] : (18)Next, we apply Lemma B.1 toNi, which is a function of the reward sequencer since the actions of player strategy A are determined by the past rewards.Clearly, Ni 2 [0; T ]. Thus,Ei [Ni] � Eunif [Ni] + T2q�Eunif [Ni] ln(1� 4�2)



Proof Of Theorem 7.1 29and so KXi=1 Ei [Ni] � KXi=1 �Eunif [Ni] + T2q�Eunif [Ni] ln(1� 4�2)�� T + T2p�TK ln(1� 4�2)using the fact thatPKi=1Eunif [Ni] = T , which implies thatPKi=1pEunif [Ni] �pTK. Therefore, combining with Equation (18),E� [GA] = 1K KXi=1 Ei [GA] � T2 + � TK + T2r� TK ln(1� 4�2)! :The expected gain of the best action is at least the expected gain of the goodaction, so E� [Gmax] � T (1=2+�). Thus, we get that the regret is lower boundedby the bound given in the statement of the theorem. 2For small �, the bound given in Theorem B.2 is of the order� T�� T�2r TK! :Choosing � = cpK=T for some small constant c, gives a lower bound of
(pKT ). Speci�cally, the lower bound given in Theorem 7.1 is obtained fromTheorem B.2 by choosing � = (1=4)minfpK=T; 1g and using the inequality� ln(1� x) � (4 ln(4=3))x for x 2 [0; 1=4].


