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1. INTRODUCTION

In models of learning, it is recognized that the path of play displays some
conspicuous patterns when players use simple rules in assessing their
opponents' behavior. If the players themselves become aware of such pat-
terns, they may want to utilize them in an attempt to better assess their
opponents' behavior. This paper formulates a simple two-person model of
learning that allows such pattern recognition and discusses its implications.
In particular, it focuses on the convergence of players' beliefs to a mixed
Nash equilibrium of a game.

Consider the learning process of two myopic players who repeatedly play
the game of matching pennies as depicted in Fig. 1. Suppose that both
players use fictitious play to assess their opponents' behavior. Namely, each
player maximizes the current-period payoff with the assumption that the
opponent's next mixed action is given by the empirical frequency of the
opponent's past pure action choices.
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Figure 1

We know from the theorem by Robinson [11]1 that the sequence of
each player's beliefs converges to 0.5H+0.5T, which corresponds to the
Nash equilibrium of the game. Figure 2 illustrates the locus of converging
beliefs as a spiral around the Nash equilibrium point. When beliefs follow
such a systematic path, however, the players' action choices also exhibit
some regularity: For example, suppose player 1 plays H in some period.
This implies that he believed that 2 was at least as likely to play H as T
in that period. If he in fact observes 2 playing H, then, player 1 never
switches from H to T next period since his belief has been reinforced by his
current observation. Similarly, player 2 never switches from T to H having
observed 1 playing H. If players become aware of such regularity in the
opponent's action choices, however, will they still be willing to stick to fic-
titious play? It is natural to expect that player 2, for instance, tries to take
advantage of (H, H) this period by playing T next period.

Our formulation incorporates this type of reasoning into learning. More
specifically, players in our model form their beliefs by analyzing history in
the following manner: Let a pattern be any finite string of action profiles.
Player i looks at the history up to the last period of play, and examines
each pattern that appears in the tail of the current history. For example, if
the current history is given by

((T, T ), (T, H), ..., (H, H), (H, T)),

player i first looks at the one-length pattern (H, T), then the two-length
pattern ((H, H), (H, T )), and so on. For each one of those patterns, player
i counts the number of its occurrences in the entire history, and he
recognizes the pattern if the number exceeds his subjective threshold level.
When he does not recognize any pattern, his belief is set equal to the over-
all empirical frequency as in fictitious play. When he recognizes some pat-
terns, on the other hand, he chooses one of them according to his subjec-
tive criterion and uses it in the following manner: he looks at the
opponent's pure action choice immediately after each occurrence of the

445LEARNING IN NORMAL FORM GAMES

1 See also Gale [4].
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Fig. 2. Fictitious play in matching pennies. A sample path of beliefs and the corresponding
action choices (in parentheses).

pattern, and calculates the empirical frequency conditional on the pattern.
His new belief is then set equal to a convex combination of the overall and
conditional empirical frequencies. The weight used in the convex combina-
tion generally depends on history. Therefore, when we define a player's
assessment rule to be a mapping that assigns a belief to each finite history,
each assessment rule in our model is characterized by such parameters as
the threshold number for the repetition of each pattern, the choice rule
when more than one pattern is recognized, and the weight to be used in the
convex combination given each history.

One important aspect of the current formulation is that adjustments
based on patterns are not once and for all. Namely, if players adjust their
beliefs based on some pattern, this adjustment itself may cause a skewed
empirical distribution when conditioned on some other (possibly more
complex) patterns. For example, in the game of matching pennies above,
suppose that players begin to recognize only one-length patterns, and that
their beliefs are set equal to the empirical frequencies conditional on those
one-length patterns.2 Suppose further that the two-length tail of the current
history (in periods t&1 and t) is given by ((H, T ), (H, T)). It can be seen
that player 2 will always play T following this two-length pattern as long
as his assessment is based on patterns of length one: Since player 2 is using
one-length patterns, his assessment for period t was given by the empirical
frequency conditional on (H, T ). The fact that he played T in period t
indicates that he placed more weight on player 1's H conditional on (H, T ).

446 MASAKI AOYAGI

2 Namely, the convex combination between the overall and conditional frequencies is such
that the latter gets the whole weight.
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Since player 1 in fact played H in period t, player 2 now places even more
weight on 1's playing H conditional on (H, T ). Since the pattern (H, T ) is
to be used again in period t+1, player 2 must play T in period t+1.
Although player 1 cannot detect such regularity when he uses only one-
length patterns, he will become aware of it as soon as he begins to
recognize two-length patterns. Similar adjustments will repeatedly take
place for longer patterns as long as those patterns are recognizable for
players.

In that players use empirical frequencies of some form, our model may
be viewed as a generalization of fictitious play. First introduced by Brown
[1], fictitious play and its generalization have been extensively studied as
models of learning in recent years. Robinson [11] proves that fictitious
play converges to a Nash equilibrium in any zero-sum games. Miyasawa
[9] proves the same in 2_2 games. Krishna [6] and Monderer and
Shapley [10] further provide the convergence result in supermodular
games and potential games, respectively. Fudenberg and Kreps [2] extend
the idea of fictitious play to allow players to conduct experiments in exten-
sive-form stage-games.

Apart from the issue raised in this paper, it is also known that fictitious
play has a few problems as a learning process. Shapley [12] constructs a
3_3 game with a unique mixed equilibrium such that fictitious play ends
up in the limit cycle around the Nash equilibrium point (given a certain
pair of initial actions).3 Jordan [5] makes a similar observation in a three-
person version of matching pennies with a unique mixed equilibrium. For
a class of assessment rules that includes fictitious play,4 he shows that any
such process ends up in the limit cycle around the Nash equilibrium point
given generic initial beliefs.

Another problem with fictitious play is that the joint empirical frequency
may never approach a (mixed) Nash equilibrium even when the marginal
frequency converges to it. Fudenberg and Kreps [3] and Jordan [5] both
make this observation.5 Fudenberg and Kreps [3] take a more rigorous
interpretation of convergence to a mixed equilibrium, and propose the use
of convergence in mixed actions as opposed to convergence in marginal
empirical frequencies. With this notion of convergence, they show that
(1) a strategy profile which is not a Nash equilibrium is unstable,
and (2) for any mixed equilibrium, there exist assessment rules and players'
behavioral rules that make the equilibrium stable, both under the
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3 Note that Shapley's [12] limit cycle exhibits patterns similar to the ones described above
since it is generated by fictitious play.

4 The assessment rules that (1) are functions of the overall empirical frequency only, and (2)
asymptotically approximate the overall frequency at a uniform rate (over all the frequencies).
Some Bayesian learning process as well as fictitious play falls in this category.

5 See Section 6.
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conditions that the assessment rules are asymptotically empirical and that
players are asymptotically myopic.6

The paper proceeds as follows: In the next section, we develop the basic
notation used in the analysis. We define the notion of stability in Section 3.
Roughly, a (mixed) action profile is stable if players' beliefs converge to the
profile with probability one. When assessment rules are adaptive as defined
in Section 3, it is shown that a stable profile (if any) must be a Nash equi-
librium profile. Since our assessment rules will turn out to be adaptive,
the question then is whether a given Nash equilibrium is stable or not.
Section 5 takes up this major question of the paper.

Section 4 formally describes the assessment rule proposed above. It also
presents some results which indicate that the proposed rule actually
recognizes patterns. In particular, it is shown (under some conditions on
the parameters) that when the opponent biases his action today on the
most recent history of some given length,7 the player using the proposed
assessment rule asymptotically predicts the opponent's next move.

In Section 5, we examine the stability of Nash equilibrium. When a Nash
equilibrium is strict (and hence pure), it is readily verified that it is stable
provided that initial beliefs lie in its small neighborhood. Therefore, our
main interest is in the stability of a mixed Nash equilibrium. For this
purpose, we will look at two particularly simple specifications of the choice
between the overall and conditional empirical frequencies:8 In our first
specification, a player uses the conditional empirical frequency only if the
discrepancy between the two frequencies exceeds some fixed level. He uses
the overall frequency otherwise. We will refer to this rule as discontinuous
adjustment. In our second specification, a player uses the conditional
frequency whenever possible. We will refer to this rule as conditional
fictitious play.

Under discontinuous adjustment, it is shown that a mixed Nash equi-
librium in a wide class of games is unstable provided that players can
recognize one-length patterns. This result is based on the following logic:
for a mixed Nash equilibrium to be stable, a player cannot repeatedly
switch between the overall and conditional frequencies since that implies a
``jump'' of his belief over the discrepancy between the two frequencies. After
some point in time, hence, he must use only one of the two frequencies. If
the player uses only the overall frequency, his beliefs display the same
systematic movement as in regular fictitious play. This makes his action
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6 An assessment rule is ``asymptotically empirical'' if the belief is set asymptotically equal to
the overall frequency. A player is ``asymptotically myopic'' if it asymptotically chooses a
myopic best response to his belief.

7 This assumption is purely hypothetical. In the following sections, we will analyze the
process when both players use the proposed assessment rules.

8 Namely, the weight used in the convex combination takes the form (0, 1) or (1, 0).
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choices predictable, causing the opponent's belief to jump. On the other hand,
if the player uses only the conditional frequency and if his beliefs converge, it
is shown that the overall frequency must converge to the same point. This
contradicts the presumption that there exists a discrepancy between the two
frequencies when the players use the conditional frequency.

Under conditional fictitious play, on the other hand, it is shown that any
unique (pure or mixed) Nash equilibrium in a zero-sum game is stable,
provided that there exists an upper bound on the length of patterns that
players can recognize, and that the assessment rules are asymptotically sym-
metric in the sense that the two players use patterns of the same length
asymptotically.9 The intuition behind this result is as follows: since there
exists a limit on the length of recognizable patterns, we can pick some
(random) time T such that after T the players use only those patterns that
are used infinitely often. Furthermore, since the assessment rules are
asymptotically symmetric, we can suppose that the two players use the
same patterns after T. Therefore, the set of periods after T can be parti-
tioned into subsequences of periods depending on which pattern is used.
Let w be one of the patterns used infinitely often, and take a subsequence
of periods in which w is used. Since the beliefs are set equal to the empirical
frequency conditional on w in those periods, the corresponding sub-
sequence of beliefs converges when regular fictitious play converges. This is
true for any such subsequence, and since the Nash equilibrium is unique by
assumption, every subsequence converges to the same point. It follows that
the entire sequence of beliefs converges as well.

Section 6 discusses some issues that arise from our analysis. All the
proofs are relegated to the Appendix.

2. THE MODEL OF REPEATED PLAY

Two players repeatedly play a normal-form game G=(A1_A2 ,
(?1 , ?2)), where Ai is the finite set of player i 's actions, and ?i : A1_A2 � R
is player i 's payoff function. Let A=A1_A2 be the set of action profiles.
We assume that each player knows the opponent's action set. Let Mi be the
set of probability distributions over Ai and M=M1_M2 . As usual, we
identify Mi with the set of player i 's mixed actions mi and extend the payoff
functions ?i over M. With slight abuse of notation, we use ai # Ai to denote
the degenerate mixed action that places probability one on the pure action
ai . Player j 's belief *j is an element of Mi ( j{i). The interpretation is that
player j 's belief represents his point estimate about player i 's next mixed
action.

449LEARNING IN NORMAL FORM GAMES

9 See Section 5 for a more accurate description.
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Let Ht=At be the set of t-length histories (t=0, 1, ..., �) and
H=�t # N Ht (N=[1, 2, . . .]) be the set of (non-null) finite histories. We
identify H0 with the singleton set [,]. For h # H �, let ht, t$=(at, ..., at$) be
the (t$&t+1)-length partial history of h, and let ht=h1, t. Also, given
h, h$ # H, let hh$ # H be the history obtained by appending h$ after h.

Player i 's assessment rule is a mapping zi : H0 _ H � Mj . Namely, it is a
function used by player i in determining his belief after each history of play.
Also, player i 's behavioral rule is a mapping xi : H0 _ H � Mi . It specifies
which (mixed) action to take after each history. Throughout, we assume
that each player's behavioral rule xi is myopic in the sense that xi (h) #
Bi (zi (h)) for each h # H 0 _ H, where Bi : Mj � Mi is the best response
correspondence defined by Bi (mj)=arg maxm$i # Mi ?i (m$i , mj).

Although assessment rules are deterministic, there is generally a
stochastic element in the model since behavioral rules may entail mixed
actions when players are indifferent between two or more pure actions. For
this reason, we need to consider the probability space (0, P). Each | # 0
corresponds to a sequence of particular realizations of those mixed actions,
and hence corresponds to a particular realization of an infinite history. The
probability distribution P over 0 is induced by the assessment rules (z1 , z2)
and the behavioral rules (x1 , x2). In this sense, each history is a random
variable, and so is player i 's belief after period t, *t

i=zi (ht) # Mj .
10

3. POINTS OF CONVERGENCE, NASH EQUILIBRIUM,
AND STABILITY

There can be at least three notions of convergence in the present
framework: convergence in beliefs, in mixed actions, and in empirical
frequencies. Given the myopia of players, convergence in mixed actions (to
a mixed Nash equilibrium) is a much stronger notion than that in beliefs
as the former requires the latter. In matching pennies, for example, players
will not mix between H and T unless their beliefs attach the same
weight to H and T by the opponents. Our discussion focuses mainly on
convergence in beliefs. We will discuss its connection to convergence in
empirical frequencies under some circumstances.

As a first step, we relate the Nash equilibrium to a point of convergence
in beliefs. We begin with the property on assessment rules which stipulates
that when a player does not observe some pure actions of his opponent for
a long period of time, then he begins to think that those pure actions are
not to be played at all.

450 MASAKI AOYAGI

10 For the same reason, any variable with the superscript t should be regarded as a random
variable in what follows.
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Figure 3

Definition. An assessment rule zi of player i is adaptive if the following
is true: For any Kj /Aj and h=(a1, a2, . . .) # H �, if there exists a time
Th<� such that at

j # Kj for all t�Th , then limt � � *t
i(Kj)=1.

The definition follows that of Milgrom and Roberts [8].11 Note that it
is a path-by-path property. Proposition 1 states that if both players' assessment
rules are adaptive, then any point of convergence in beliefs corresponds to
a Nash equilibrium of the game G.

Proposition 1. Suppose the assessment rules z1 and z2 are adaptive. If,
for a (mixed ) action profile m # M, limt � �(*t

2 , *t
1)=m along some sample

path, then m is a Nash equilibrium of G.

As Milgrom and Roberts [8] and Fudenberg and Kreps [3] note, the
result is rather straightforward when the limit is a pure action profile. The
proposition guarantees its validity for a mixed action profile in two-person
games.12

It is not difficult to see that the converse of Proposition 1 is not true.
Namely, a sequence of beliefs may converge to a Nash equilibrium even
when players attach positive weight on some unobserved actions. For
example, in the game of Fig. 3, suppose (*t

2 , *t
1)=((0.5+t&1) L+

(0.5&t&1) R, (0.5+t&1) U+(0.5&t&1) D) and (at
1 , at

2)=(U, L) for t # N.
Although adaptiveness is violated, the limit profile m=(0.5U+0.5D,
0.5L+0.5R) is a mixed Nash equilibrium of G.

Our analysis in Section 5 focuses on the stability of a Nash equilibrium
as defined below. Stability is a stronger concept of convergence than that
used in Proposition 1 since it requires convergence with probability one as
opposed to along some path.

Definition. Given the assessment rules zi and the behavioral rules xi

(i=1, 2), a (mixed) action profile m # M is stable if P(limt � �(*t
2 , *t

1)=m)=1.

451LEARNING IN NORMAL FORM GAMES

11 The definition of ``adaptiveness'' by Milgrom and Roberts [8] is in fact the combination of
our definition and the myopia of the players.

12 Fudenberg and Kreps [3, Proposition 4.2] prove that the limit is a (mixed) Nash equilibrium
when assessment rules are ``asymptotically empirical'' instead of ``adaptive.'' Our statement is
stronger since any asymptotically empirical rule is adaptive but not vice versa.
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By Proposition 1, every stable point (if any) is a Nash equilibrium of the
game G when the assessment rules z1 and z2 are both adaptive.

4. ASSESSMENT RULES WITH PATTERN RECOGNITION

We now formulate assessment rules that incorporate the idea of pattern
recognition as motivated in the introduction.

To begin with, a pattern is defined to be any element of the set of finite
histories, H. Each player is interested in the patterns that appear in the
``tail'' of the current history: Suppose the current history is given by h # H t

(t # N). For every positive integer n�t, players look at the pattern w of
length n which coincides with the tail ht&n+1, t of h. We say that the pattern
w is recognized by player i at h if the number of times w appears in the
history h exceeds player i 's threshold level.

To formalize the ideas, we first need to specify the way players count the
number of appearances of some pattern w # Hn in h # H t. This number is
given by

R(h, w)= :
t

{=n

/w(h{&n+1, {),

where the function /w : Hn � [0, 1] is defined by /w(h)=1 if h=w and
/w(h)=0 otherwise. We denote the number of appearances of the n-length
``tail pattern'' w=ht&n+1, t by r(h, n) (=R(h, w)). For instance,
r(h2t, 1)=t, r(h2t, 2)=t and so on if h2t=(a, b, a, b, ..., a, b, a, b) for some
a, b # A. Also, if h2t=(a, a, ..., a) for some a # A, then r(h2t, 2) is 2t&1
rather than t. This is appropriate if the opponent bases his action on bounded
memory of length two, since then his action after one (a, a) will be exactly
the same as after the overlapping (a, a).13

The threshold levels of player i are given by ki (n) # [2, 3, ..., �]. Given
those numbers, we say that player i recognizes a pattern at history h if

r(h, n)�ki (n). (1)

The interpretation is that the pattern w appears sufficiently many times in
the history so that it begins to draw attention of player i.14 For simplicity,

452 MASAKI AOYAGI

13 See Proposition 2.
14 Hence, when ki (n)=� for some n # N, player i does not recognize any patterns of

length n.
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we assume that the threshold level depends only on the length of patterns
and not on the patterns themselves.

In general, there may be more than one n that satisfies (1) at history h.
In those circumstances, player i selects the number Ni (h) such that

Ni (h) # [n # N: r(h, n)�ki (n)] (2)

to decide on the particular pattern that is actually used. Namely, player i
uses w=ht&Ni(h)+1, t when forming his belief at history h as described
below. We generally do not impose any restriction on the choice made in
(2). One possibility is that player 1 takes the maximum number. See
Example 1 below for this point. If there exists no n # N for which (1) is
satisfied, then Ni (h)=0.

Whenever the history h # Ht (t�1) is such that Ni (h)>0, player i faces
two modes of empirical frequencies: One is the overall empirical frequency
f t

i # Mj defined by

f t
i(aj)=

�ai # Ai
R(h, a)

t
(aj # Aj),

and the other is the empirical frequency conditional on the pattern gt
i # Mj

defined by

gt
i(aj)=

�ai # Ai
R(h, wa)

r(h, n)
(aj # Aj),

where a=(ai , aj), w=ht&n+1, t, and n=Ni (h). For convenience, define
gt

i =f t
i when Ni (h)=0. In other words, the overall empirical frequency is

the usual empirical frequency as used in fictitious play, while the empirical
frequency conditional on the pattern represents the proportion of the
opponent's pure actions observed immediately after the occurrences of the
pattern in question.

Example 1. Let a=(a1 , a2), b=(b1 , b2), c=(c1 , c2) # A. Consider the
history

period
observation

1
a

2
b

3
c

} } }
} } }

3t&5
a

3t&4
b

3t&3
c

3t&2
a

3t&1
b

3t
c

3t+1
?

.

If ki (n)<� for some n # N, the empirical frequency conditional on the
pattern, g3t

i , indicates that aj is far more likely in period 3t+1 than bj or
cj . This is independent of the choice made in (2): Ni (h3t)=1, 2, . . . will all
give rise to the same conditional empirical frequency.

453LEARNING IN NORMAL FORM GAMES
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Suppose instead that the history is given by

period
observation

1
b

2
a

3
b

} } }
} } }

3t&5
b

3t&4
a

3t&3
b

3t&2
b

3t&1
a

3t
b

3t+1
?

.

Suppose ki (1), ki (2)<�. If player i uses patterns of length 1 rather than
those of length 2 in (2), he may still think neither aj nor bj is very unlikely
in period 3t+1. This is because the empirical frequency conditional on just
b attaches the same weight on aj and bj (and when compared with the
overall frequency, it might even suggest bj is unlikely). On the other hand,
if he uses patterns of length 2, he will find that aj is extremely unlikely as
it has never been played after (a, b). The same is true if player i refers to
longer patterns. This example shows that choosing the shortest pattern in
(2) sometimes leads to a very unintuitive prediction.

Players take a convex combination of f t
i and gt

i in order to determine
their beliefs at history h # Ht

*t
i =;i (h) gt

i+(1&;i (h)) f t
i , (3)

where ;i # [0, 1] is the weight which generally depends on the history h.
It is easy to verify that any assessment rule satisfying (3) is adaptive. We

provide below some general properties of assessment rules described by (3).
It is, however, very difficult to draw conclusions about the stability of a
Nash equilibrium for general weight functions ;i . For this reason, we need
to restrict the functional forms of ;i in our analysis of the stability of mixed
equilibria in Section 5. Note that if ;i (h)=0 for all h, then (3) just reduces
to regular fictitious play, while if ;i (h)=1 for all h, (3) implies conditional
fictitious play in which players only look at the empirical frequency condi-
tional on the pattern whenever possible. We will analyze this rule in
Section 5. In the rest of this section, we present some properties of the
learning rule (3) which indicate that it actually recognizes patterns.

We first show that when player i 's assessment rule satisfies (3) (together
with some other conditions), he will asymptotically detect the opponent 's
action choice based on finite memory. To be more precise, given
s # [0, 1, . . .], player j 's behavioral rule xj : H0 _ H � Mj has s-bounded
recall if xj (h$)=xj (hh$) for each h$ # Hs and h # H0 _ H. Namely, a
(mixed) action specified in each period depends only on the on the history
during the past s periods.15 A behavioral rule has bounded recall if it has
s-bounded recall for some s # [0, 1, . . .].

454 MASAKI AOYAGI

15 Note that our definition of bounded recall is more general than the usual definition:
s-bounded recall is usually defined to be memory consisting only of the opponent's actions in
the past s periods whereas according to the definition used here, it may include one's own past
actions. See, for example, Lehrer [7].



File: 642J 217412 . By:BV . Date:28:08:96 . Time:16:08 LOP8M. V8.0. Page 01:01
Codes: 3197 Signs: 2535 . Length: 45 pic 0 pts, 190 mm

Definition. Given =�0, player j 's behavioral rule xj : H0 _ H � Mj is
=-asymptotically detected by player i if P(lim supt � � &*t

i&xj (ht)&�=)=1.
In particular, it is asymptotically detected if it is 0-asymptotically detected.

Note that the definition does not require that player i asymptotically
(=)-correctly forecast each contingent action specified by xj . Rather it
requires that player i asymptotically detect player j 's behavioral rule along
the path of play.

The following proposition states that using the assessment rule as defined
in (3), player i =-asymptotically detects any m-bounded recall behavioral
rule of player j, provided that the following conditions are satisfied:
(a) player i actually uses patterns of length m or longer whenever possible
(Conditions (i) and (ii) in Proposition 2); (b) the threshold number for
iterations ki (s) grows large when the pattern length s becomes large
(Condition (iii)); (c) beliefs *t

i are always set within = of the conditional
empirical frequency gt

i (Condition (iv)). Condition (b) above ensures that
player i uses samples of ever increasing size over time to calculate the
conditional empirical frequency gt

i . This is necessary for player i to ignore
any spurious patterns in the long-run. As a special case of (b), it is possible
that player i does not use any pattern of length n$ or greater for some
n$>m, i.e., ki (s)=� for every s�n$.

Proposition 2. Let m # N be an arbitrary number. Suppose player i 's
assessment rule satisfies (3) and

(i) ki (m)<�;

(ii) Ni (h)�m whenever r(h; m)�ki (m) in (2);

(iii) lims � � ki (s)=�;

(iv) ;t
i =1 if dt

i =&gt
i &f t

i &>= for some =�0.

Then any m-bounded recall behavioral rule xj of player j is =-asymptotically
detected by player i. If, in addition, ki (s)<� for each s # N, any bounded
recall behavioral rule of player j is =-asymptotically detected by player i.

As a special case of the definition of asymptotic detection, we say that
player i 's assessment rule zi is consistent if it asymptotically detects any
(pure or mixed) 0-bounded recall behavioral rule of player j. The following
is a Corollary to Proposition 2 which identifies the condition under which
the assessment rule is consistent. In comparison with Proposition 2,
Conditions (i) and (ii) are no longer necessary since no matter what condi-
tional or overall frequency player i may use, he will detect xj since it is now
history-independent. Condition (iv) is also unnecessary: under Condition
(iii), player i uses samples of ever increasing size over time to calculate
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either the conditional frequency gt
i or the overall frequency f t

i . The frequen-
cies gt

i and f t
i will hence be almost surely the same in the limit when xj is

history independent.

Corollary 2.1. If lims � � ki (s)=�, then player i 's assessment rule zi

satisfying (3) is consistent.

On the other hand, when ki (s) 's are uniformly bounded by some
constant (i.e., when condition (iii) is not satisfied), consistency may be
violated as seen in the following example.

Example 2. Suppose player j plays the mixed action mj every period
independently of history. Suppose ki (s) is equal to, say, 53 for all s # N and
;i (h)=1 for all h # H. Suppose also that the selection criterion in (2) is to
choose the maximum number always. Consistency requires that for any
$>0, there be a random time T after which player i 's belief stays in the
$-neighborhood of mj . Suppose mj (aj)=1�2 for some aj # Aj . No matter
how large T might be, there is a pattern longer than T that player i
recognizes after T. When he recognizes such a pattern for the first time, his
belief *t

i is such that *t
i(aj)=l�53 for some l=0, 1, ..., 53 for any aj # Aj , and

hence it cannot be in the $-neighborhood of mj if $ is small enough. Player
i hence catches spurious patterns even though the opponent 's behavioral
rule is history-independent.

5. STABILITY OF NASH EQUILIBRIUM

We begin with the stability property of a strict Nash equilibrium. When
the game G has a strict Nash equilibrium a # A, it is stable under (3) given
that the initial beliefs are in the small neighborhood of a. The result is
straightforward and patterns emerging in this case are rather trivial as
imagined: they consist exclusively of a.

Proposition 3. Suppose the assessment rules z1 and z2 satisfy (3). Any
strict Nash equilibrium a # A of the game G is stable provided that (z2(h0),
z1(h0)) is close enough to a.

The stability of a mixed Nash equilibrium is far more difficult to analyze.
In fact, it is no longer possible to proceed with a general weight function
;i . We will below postulate two simple forms for ;i and discuss their
implications. In particular, we will look at the case where players make a
zero�one choice between the two frequencies.
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5.1. Discontinuous Adjustment

We first study the weight function ;i which depends on the distance
dt

i =&gt
i &f t

i & between the overall and conditional empirical frequencies as
follows: take the overall frequency if the distance is not so large, but take
the conditional frequency otherwise. Formally,

;t
i=0 if dt

i �}i and ;t
i=1 if dt

i>}i , (4)

where }i is a positive constant. Therefore, the assessment rule is discon-
tinuous at dt

i =}i . One interpretation of such an assessment rule is that
players are rather cautious in using the conditional empirical frequency
when it is in the small neighborhood of the overall frequency. Since such
assessment rules always set beliefs within }i of the conditional empirical
frequency as required in Proposition 2, they will }i -asymptotically detect
the oppenent 's m-bounded recall behavioral rule if (a) player i actually uses
patterns of length m or longer whenever possible, and (b) player i uses
sufficiently many observations to calculate the conditional empirical
frequency gt

i after sufficiently long patterns (i.e., Conditions (i)�(iii) of
Proposition 2).

When the players' assessment rules are given by (3) with the weight
function as specified in (4), we find that a mixed Nash equilibrium in a
wide class of games is unstable, provided that }i>0 is small enough.16 Let
ci (mi)=[ai # Ai : mi (ai)>0] denote the support of the mixed action
mi # Mi .

Proposition 4. Suppose the assessment rules zi (i=1, 2) are discon-
tinuous at }i (i.e., they satisfy (3) when the weight function is as in (4)), they
recognize one length patterns (i.e., ki (1)<�), and there exists an upper-
bound on the length of recognizable patterns (i.e., ki (s)=� for every s�n
for some n # N). When }i>0 (i=1, 2) are sufficiently small, no mixed Nash
equilibrium m # M of the game G is stable provided that for either i=1 or
2 and j{i,

(i) for every a # c1(m1)_c2(m2), there exists a$i # ci (mi) such that
?i (a$i , aj)<?i (a), or

(ii) there exists ai # ci (mi) such that for every aj # cj (mj), there exists
a$i # ci (mi) such that ?i (a$i , aj)<?i (a).17
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16 Note that the rule just reduces to fictitious play when }i is sufficiently large.
17 Cases (i) and (ii) do not exhaust all the possibilities of instability. Condition (i) states

that for each pure action profile in the support of m, either player 1 or 2 has an inferior
response within the support. Condition (ii) states that either player 1 or 2 has a pure action
in the support that is not the worst response to the opponent's any pure action in the support.
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Figure 4

The intuition behind this result is as follows: Condition (i) or (ii) in the
proposition implies that action a$i is never played after a=(ai , aj) as long
as the players use the overall empirical frequency for assessment. Therefore,
it is impossible for the players to use only the overall frequency for a long
time since such a systematic movement will make the discrepancy between
the two frequencies f t

j and gt
j significant. However, if player j switches from

f t
j to gt

j when the discrepancy is large, his belief will ``jump'' by a significant
amount. The only possibility then is that the players exclusively use the
conditional frequencies after some time on. However, if their beliefs
converge in this case, then it is shown that the overall empirical frequency
must also converge to the same point. Thus, the players must return to the
overall frequency, which is a contradiction.

When the game G is 2_2 with no pure Nash equilibrium, Condition (i)
of Proposition 4 is satisfied. The game of ``Rock�Paper�Scissors'' in Fig. 4
is another example which satisfies Condition (i) of the proposition. (In its
unique Nash equilibrium, each player plays each pure action with
probability 1�3.)

5.2. Conditional Fictitious Play

We next consider the weight function ;i constantly equal to one:

;i (h)=1 for all h # H. (5)

As previously noted, (5) implies that player i uses the conditional empirical
frequency whenever possible. Unlike in the case of discontinuous adjust-
ment, conditional fictitious play as defined in (5) implies the stability of
any unique equilibrium in any zero-sum games. In order to obtain the
stability result, however, we further need a condition which guarantees that
the level of pattern recognition by the two players is asymptotically the
same. More specifically, we assume that the two assessment rules are
asymptotically symmetric in the following sense:

P( lim
t � �

N t
1= lim

t � �
N t

2)=1. (6)
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The condition (6) requires two things: (a) the length of patterns used by
player i converges to some limit (i=1, 2) along almost every sample
path,18 and (b) those limits are the same for the two players with probabil-
ity one. With the upper bound of the length of recognizable patterns, an
alternative interpretation of (6) is that the set of patterns used infinitely
often is the same for the two players, and consists of the patterns of the
same length along almost every sample path. This condition will be
satisfied if, for example, the maximum length of recognizable patterns is the
same for both players and they asymptotically choose the longest patterns
in (2). In general, Proposition 5 is true for any games for which the follow-
ing statement is true about regular fictitious play:

Fictitious play with any initial weight converges to a Nash equilibrium.

(*)

Here ``initial weight'' refers to the hypothetical empirical frequencies that
the players have prior to the game. For example, if the initial weight is 2�3
for H and 1�3 for T in matching pennies, the belief is updated to (3�4, 1�4)
when the first ``real'' observation is H. Gale [4] demonstrates that
(*) is in fact true for zero-sum games.19 We hence obtain the following
proposition.

Proposition 5. Suppose that the assessment rules z1 and z2 are asymp-
totically symmetric (6), that they always use the conditional frequency (i.e.,
they satisfy (3) with the weight function as in (5)), and that there exists an
upper-bound on the length of recognizable patterns (i.e., ki (s)=� for each
s�n for some n # N). If the game G is zero-sum with a unique ( pure or
mixed) Nash equilibrium m # M, then m is stable.

The intuition behind this result is as follows: Given the upper bound on
the length of patterns that players can recognize, consider the (random) set
W of patterns that are used infinitely often, and the random time T such
that the players only use patterns in W after T. By (6), W is common for
the two players, and it consists of patterns of the same length along
(almost) every sample path. This implies that the set of periods after T can
be partitioned into subsequences depending on the patterns used by the
players. Take any pattern w in W and consider the subsequence of periods

459LEARNING IN NORMAL FORM GAMES

18 Note that the limit does not have to be constant across sample paths.
19 See Lemma 7.4 on p. 253, which proves the convergence of fictitious play with arbitrary

initial weight in the symmetrization of any zero-sum game. The correspondence between
fictitious play with positive initial weight in a zero-sum game and that in its symmetrization
can be established along the line of the discussion on p. 251�252. Although we suspect that
(*) is valid for other classes of games in which fictitious play with zero initial weight
converges, we have not confirmed this.
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in which w is used. In this subsequence, players set their beliefs equal to the
empirical frequency conditional on w. Since the action profiles following w
may be different from those generated by fictitious play before time T, the
beliefs in the subsequence may still be different from those in fictitious play
with zero initial weight even after T. It is clear, however, that they instead
correspond to the beliefs generated by fictitious play with some positive
initial weight. The convergence of this subsequence of beliefs is hence
guaranteed by (*). Since the Nash equilibrium is unique, every sub-
sequence converges to the same point, ensuring the convergence of the
entire sequence.

To understand one role of (6), consider the following example. Let
a, b, c # A and suppose that player i asymptotically uses pattern ac when
the two-length tail of the current history is ac, but uses pattern c when it
is bc. This violates (6) since N t

i does not converge, and hence stability is no
longer guaranteed (at least) by the argument above: while the beliefs after
bc depend on the empirical frequencies conditional on patterns ac and bc
since they both end with c, the action profiles after ac are determined quite
independently of those after bc. Hence the beliefs after bc will behave very
differently from those in any fictitious play.

The following corollary concerns the empirical frequency of the process.
It readily follows from Proposition 5 and Proposition A1 in the Appendix
which states that, when there exists an upper-bound on the length of
patterns that player i can recognize, the overall frequency f t

i converges to
mj if the conditional frequency gt

i converges to mj .

Corollary 5.1. Suppose the assessment rules z1 and z2 satisfy the
conditions of Proposition 5. If the game G is zero-sum with a unique Nash
equilibrium m # M, then the marginal empirical frequencies converge to the
Nash equilibrium, i.e., P(limt � � gt

i=mj)=P(limt � � f t
i=mj)=1 (i=1, 2,

j{i).

6. DISCUSSIONS

The paper raises a few open questions.
First, we continue our discussion on the stability of a mixed equilibrium

under conditional fictitious play from the last section. We provide some
examples below which indicate that convergence is unlikely when the two
players asymptotically use patterns of different length (i.e., (6) is violated).

Example 3. Consider the game of matching pennies in Fig. 1. Suppose
player 1 's assessment rule z1 is characterized by
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(i) k1(1)<�, k1(s)=� for s�2,

(ii) ;1(h)=1 for all h # H 0 _ H,

and player 2's assessment rule is characterized by

(iii) k2(s)=� for s�1.

Namely, player 1 uses conditional fictitious play based only on one-
length patterns, while player 2 recognizes no patterns and follows regular
fictitious play. Note that Condition (6) is violated. We will show that
player 1 's belief never converges to the Nash equilibrium value 0.5H+
0.5T.

Note first that player 2 always plays H (resp. T ) after the combination
(T, H) (resp. (H, T)). (This is based on the discussion in the Introduction.)
When player 1 recognizes one-length patterns, hence, his belief will be such
that

*t
1(H)={0

1
if at=(H, T );
if at=(T, H).

It follows that 1 's belief does not converge when the combination (H, T )
or (T, H) appears infinitely often. If it is to converge, hence, the history
must consist only of (H, H) and (T, T ) after some time on.

Recalling again the discussion in the introduction, we next note that
player 1 always plays H (resp. T) after the two-length pattern ((H, H),
(H, H)) (resp. ((T, T ), (T, T )). This implies that (H, H) and (T, T ) must
alternate every other period (asymptotically) if they are the only combina-
tions to appear in the history after some time on as required in the
previous step. In this case, however, player 1 's beliefs cannot converge as
they will be asymptotically approximated by

*t
1(H)={0

1
if at=(H, H);
if at=(T, T ).

We have therefore excluded the possibility that 1 's beliefs converge.

Although Example 3 deals with a rather special case where player 2
recognizes no patterns, we expect that 1's beliefs do not converge in matching
pennies whenever he asymptotically uses longer patterns than 2. Figure 5
presents one such evidence. It describes the result of a simulation of condi-
tional fictitious play in matching pennies when player 1 recognizes one-
and two-length patterns, whereas player 2 recognizes only one-length
patterns.20 Figure 5a depicts the movement of beliefs in periods 1 through

461LEARNING IN NORMAL FORM GAMES
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Figure 5
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10,000 whereas Fig. 5b extracts periods 9,001 through 10,000. As seen,
while player 2 's beliefs are concentrated around 0.5 in the last 1000
periods, player 1 's beliefs still oscillate between 0 and 1 in those periods.
These observations lead us to the following conjecture:

When the two players asymptotically use patterns of different length (i.e.,
(6) is violated) a mixed Nash equilibrium is unstable in a wide class of
games including matching pennies. In particular, when player 1 asymptoti-
cally uses longer patterns than player 2, although player 2 's beliefs
converge to a Nash equilibrium value, player 1 's beliefs diverge.

The second open question concerns the discontinuity in the stability
property of a mixed equilibrium between two different formulations: In
discontinuous adjustment, a mixed Nash equilibrium is unstable under the
conditions of Proposition 4 for any small }i>0 in (4). When }i=0, on the
other hand, we have conditional fictitious play under which a unique mixed
Nash equilibrium is stable under the conditions of Proposition 5. For
example, take the game of matching pennies. Since this game satisfies the
conditions of both Propositions 4 and 5, its Nash equilibrium is unstable
for any }i>0 but stable for }i=0 (i=1, 2). A possible resolution of this
discontinuity may be to let }i>0 depend on the length of history. If }i

approaches zero as t � �, we may obtain convergence even under discon-
tinuous adjustment since the size of jumps of beliefs may be smaller in the
distant future.21

Another important question concerns the behavior of beliefs when there
is no upper bound on the length of patterns that a player can recognize.
Suppose players use conditional fictitious play. Example 2 shows that
conditional fictitious play does not generally satisfy consistency when
ki (s) 's are uniformly bounded by some constant. This suggests that it is
rather hopeless to obtain the stability of a mixed Nash equilibrium when
there is such a bound. Therefore, we need to have ki (s) grow indefinitely
as s � � for convergence to take place. It is not clear, however, whether
this condition suffices or not. The main difficulty in proving convergence is
to locate the belief when a new pattern begins to be used. Namely,
whenever a new pattern of length s begins to be used, the corresponding
belief is set equal to one of the points on the lattice whose coarseness is
given by 1�(ki (s)&1). If this point is always the closest one to mj , then the
belief will also get sufficiently close to mj as ki (s) grows indefinitely.
However, we do not know if this is the case. We provide below a rather
weak result which states that given any small neighborhood of a Nash
equilibrium, if ki (s) 's grow rapidly enough as s � �, beliefs fall in the
neighborhood infinitely often.
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Proposition 6. Suppose that the assessment rules z1 and z2 are
asymptotically symmetric (6), that they always use the conditional frequency
(i.e., they satisfy (3) with the weight function as in (5)), and that the
behavioral rules x1 and x2 are both pure. Suppose further that the game G
is zero-sum with a unique ( pure or mixed ) Nash equilibrium m # M. Then for
any =>0, there exists a function q: N � N such that if k1(s)=k2(s)�q(s)
for all s # N, then P(lim inft � � &*t

i&mj&<=)=1.

The logic behind this result is as follows: Since we would have con-
vergence if ki (s)=� for all s�n, beliefs will come into the =-neighborhood
of m if we take the time until the patterns of length n+1 begin to be used
long enough. This can be done by taking ki (n+1) large enough. This is
true for any n # N, hence follows the result. We need the players' behavioral
rules to be pure to have a deterministic function q which sets the lower-
bound on the rate of increase for the parameters ki 's. It may seem
contradictory at first that while convergence is obtained without any
condition on the rate of increase of ki in Proposition 2 (and Corollary 2.1),
only something weaker is established in Proposition 6 even with such a
condition. The difference, however, derives from the fact that while the
opponent's actions are stationary (conditional on history of some length)
in Proposition 2, they are not in Proposition 6.

Finally, as mentioned in the Introduction, one problematic feature of
fictitious play is that even when the marginal frequency of each player 's
actions converges to a Nash equilibrium, the joint frequency of action
profiles may converge to something else.22 Learning with pattern recogni-
tion is not free from such a problem. To see this, consider the pure coor-
dination game in Fig. 3. Suppose *0

1(L)>1�2 and *0
2(D)>1�2. Assume also

that the players' assessment rules are symmetric in the sense that the two
players always use patterns of the same length, and suppose further that
their behavioral rules specify the same action as in the previous period in
case of ties. It is not difficult to see that when players do not recognize
patterns, the overall joint frequency converges to 0.5(U, R)+0.5(D, L).
Even when they recognize patterns, we can check that they cannot get out
of this correlation. Hence, even if the overall marginal frequency converges
to 1�2 for each player, the overall joint frequency is always a convex
combination of (U, R) and (D, L), which does not correspond to the Nash
equilibrium profile. Note, however, that players in our model take correla-
tion into account while in fictitious play they do not. The realized history
exhibits correlation only because the two players happen to make
adjustments based on patterns with the same timing. The problem is hence
in part attributed to the symmetry of the assessment rules.23 Therefore, this
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22 See, for example, Fudenberg and Kreps [3] and Jordan [5].
23 The example is also not robust against slight disturbance in the payoffs.
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type of problem would be generally avoided if we require the assessment
rules to be only asymptotically symmetric (6), although in which case this
particular mixed equilibrium is unlikely to be stable.

APPENDIX

Proof of Proposition 1. Fix | # 0 such that limt � � (*t
2(|), *t

1(|))=m
and let C=lim supt � � ci (Bi (*t

i(|))), where for Q/Mi , ci (Q)=
�m i # Q [ai # Ai : mi (ai)>0] is the support of Q. Note that C/Ai is the
(nonempty) set of i 's pure actions that are in the support of i 's mixed
actions infinitely often along the path. As player j only observes i 's pure
actions in the set C from some time on, limt � � *t

j(C)=1 by adaptiveness.
Since *t

j converges to mi , it must be the case that mi (C)=1.
We next show that C/ci (Bi (mj)). Take ai # C. By definition of C, we

can take a subsequence of (*t
i) such that ai # ci (Bi (*tn

i )) and hence
ai # Bi (*t n

i ) for n # N. Since the best response correspondence Bi is upper
hemi-continuous, it follows that ai # Bi (mj), or ai # ci (Bi (mj)). Thus,
C/ci (Bi (mj)) and hence mi (C)�mi[ci (Bi (mj))]. Since mi (C)=1 from
the previous step, it follows that mi[ci (Bi (mj))]=1. Since the set Bi (mj) is
convex, we conclude that mi # B(mj). K

Proof of Proposition 2. Note by (iii) that for each l # N, there exists a
random time Tl # N such that for every t�Tl , the conditional frequency gt

i

at history ht is based on at least l observations. (This is obviously true if
ki (s)=� for all s>n$ for some n$ since in that case all the patterns used
are length n$ or smaller and there are only finitely many of them. On the
other hand, when ki (s)<� for each s # N, new patterns may be used after
an arbitrarily long period of time. But since there exist only finitely many
patterns of any given length or less, the patterns that are used for the first
time after a very long time must be very long. Since ki (s) � � as s � �
by (iii), the empirical frequencies conditional on long patterns are based on
a large number of observations.)

Let W/H m be the (random) set of m-length histories that appear
infinitely often. Take any m-length history c # Hm. When c # W, let tn # N
be the (random) time of the n th occurrence of c # C, i.e., ht n&m+1, tn=c
(n # N). Since N tn

i �m when n�ki (m) by (ii), the conditional empirical
frequencies gt n

i at htn (n�ki (m)) always reflect the realizations of i.i.d.
random draws from xj (c) # Mj even if those empirical frequencies may be
conditioned on different patterns. It then follows from the observation in
the preceding paragraph that for any l # N, if n # N is such that tn�Tl and
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n�ki (m), then gtn
i is based on at least l draws from xj (c). We can hence

apply the strong law of large numbers to obtain

P( lim
n � �

gtn
n =xj (x) | c # W)=1 (a1)

when P(c # W)>0. On the other hand, note that &*t n
i &xj (c)&�

(1&;tn
i ) dt n

i +&gt n
i &xj (x)& if dt n

i �=, and (iv), &*tn
i &xj (c)&=&gt n

i &xj (c)&
if dtn

i >=. In either case, we have &*t n
i &xj (c)&�=+&gt n

i &xj (c)&. Taking
the limsup of the both sides and comparing the result with (a1), we find
that

P(lim sup
n � �

&*tn
i &xj (c)&�= | c # W)=1. (a2)

Since (a2) is true for any c # Hm such that P(c # W)>0, it follows that
P(lim supt � � &*t

i&xj (ht)&�=)=1. K

Proof of Corollary 2.1. Since ki (s) � � as s � �, by the same discus-
sion as in the Proof of Proposition 2, given any l # N, there exists a random
time Tl # N such that for every t�Tl , the conditional frequency gt

i at
history ht is based on at least l observations. Thus, against a 0-bounded
recall behavioral rule xj , we have by the strong law of large numbers

lim
t � �

gt
i= lim

t � �
f t

i=xj (h0)

with probability one. Therefore, P(limt � � *t
i=xj (h0))=1 as desired. K

Proof of Proposition 3. Let a=(a1 , a2) # A be a strict Nash equilibrium
of the game G. By the continuity of ?i , there exists $>0 such that
&(*2 , *1)&a&<$ implies Bi (*i)=[ai] (i=1, 2). Take (*0

1 , *0
2) so that

&(*0
2 , *0

1)&a&<$. Then (a1
1 , a1

2)=a. Suppose (at
1 , at

2)=a for t=1, ..., T.
Then gT

i (aj)=f T
i (aj)=1 and hence *T

i (aj)=1 (i=1, 2, j{i). It follows that
(aT+1

1 , aT+1
2 )=a and hence that *T+1

i (aj)=1. This completes the proof. K

Proof of Proposition 4. We first present the following result which will
be used in the Proof of Proposition 4. It relates convergence in beliefs to
convergence in empirical frequencies when there is an upper bound on the
length of the patterns that a player can recognize.

Proposition A1. Suppose the assessment rule zi satisfies (3) when
ki (s)=� for every s�n for some n # N. If limt � � *t

i=mj # Mj and
limt � � ;t

i=1 along some sample path, then limt � � f t
i=limt � � gt

i=mj

along the path.
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Namely, when there is such a bound, whenever a sequence of beliefs as
described in (3) converges to some point, the empirical frequency also
converges to the same point, provided that only the conditional frequency
is used asymptotically.

Proof of Proposition A1. Fix such an | # 0. Since limt � � ;t
i(|)=1,

it immediately follows that limt � � &*t
i&gt

i &=0 and hence that
limt � � gt

i=mj . Let W/�s<n H s be the (finite) set of patterns that are
used by player i infinitely often along h=h(|) # H�. There exists time
T # N such that player i only uses patterns belonging to W after T.

For t>T, let

f� ti(aj)=
�ai # A i

R(hT+1, t, a)

t&T
(aj # Aj),

and

ĝt
i(c)(aj)=

�a i # Ai
[R(ht, ca)&R(hT, ca)]

R(ht, c)&R(hT&1, c)
(aj # Aj , c # W), (a3)

when R(ht, c)&R(hT&1, c)>0 (a=(a1 , a2)). Namely, f� t
i is the overall

empirical frequency in the history hT+1, t, and ĝ t
i(c) is the (appropriately

defined) empirical frequency conditional on the pattern c in hT+1, t. Also let
ĝt

i=ĝ t
i(c) if c # W is used at history ht. It is clear that limt � � & f� t

i&f t
i &=0

and limt � � &ĝt
i&gt

i &=0.
Note that we can rewrite f� t

i as

f� t
i(aj)=

�c # W �ai # Ai
[R(ht, ca)&R(hT, ca)]

�c # W [R(ht, c)&R(hT&1, c)]
(a4)

Comparing (a3) and (a4), we find that

min
c # W

ĝt
i(c)(aj)�f� t

i(aj)�max
c # W

ĝt
i(c)(aj). (a5)

Fix =>0 arbitrarily. Take T1>T such that if t�T1 , ĝt
i(c) is well defined

for all c # W, ;t
i>1&=, & f� t

i&f t
i &<=, &ĝt

i&gt
i &<=, and &gt

i&mj&<=.
For t>T1 , it follows from (a5) that for each aj # Aj ,

f t
i(aj)�f� t

i(aj)+=�;t
i max

c # W
ĝt

i(c)(aj)+(1&;t
i) f� t

i(aj)+=

� sup
s>T 1

ĝs
i(aj)+=f� t

i(aj)+=

� sup
s>T 1

gs
i(aj)+3=

�mj+4=.
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Similarly, we can show that f t
i(aj)�mj&4= for t>T1 . Since = is arbitrary,

we have limt � � f t
i =mj . K

We now return to the proof of Proposition 4.
Fix =>0 such that =<min[}1 , }2]�3. Given this =, let T= # N _ [�] be

the (random) time such that T=>1�= and supt>T = &(*t
2 , *t

1)&m&<= for the
first time. We show below T=(|)=� for any | # 0 and hence conclude
that m is unstable.

Suppose on the contrary that there exists | # 0 for which
T=T=(|)<�. We have three possible cases to consider:

(a) dt
i>}i for all t>T for either i=1 or 2.

This implies ;t
i =1 for all t>T. Thus limt � � *t

i=limt � � f t
i=mj and

hence limt � � dt
i=0 by Proposition A1. This is a contradiction.

(b) dt
i>}i and dt&1

i �}i for some t>T+1 for either i=1 or 2.

Then &*t
i&*t&1

i &=&;t
i g

t
i +(1&;t

i) f t
i &f t&1

i &�dt
i&& f t

i&f t&1
i &�}i&1�t

>2=, which is a contradiction.

(c) dt
i�}i for all t>T $ for some T $�T for both i=1 and 2. In this

case, note that *t
i=f t

i for t>T $ (i=1, 2). We proceed case by case.

Condition (i): Note there exists a pure action profile a # A that
appears infinitely often along h. Let tn be the time of the nth occurrence of
a along h (n # N). After period T $, player j never observes action a$i played
after a.

Condition (ii): Since ai as specified must be played infinitely often,
let tn be the time of the n th occurrence of ai along h (n # N). After period
T $, player j never observes action a$i played after (ai , aj) for any aj # Aj .

In either case, limn � � gtn
j (a$i)=0. This implies dt n

j >}j for n large
enough if }j>0 is such that }j<minai # c i(mi) mi (ai). We hence have a
contradiction. K

Proof of Proposition 5. Let W/�s<n Hs be the random set of patterns
that are used by player i infinitely often. Under (6), we have W1=W2=W
with probability one since the two players eventually use the same patterns
almost surely. Also W consists of patterns of the same (random) length l
almost surely. We henceforth restrict our attention to this event. Let T<�
be the random time such that every pattern used after T is in W. For any
sample path h # H�, note that the sequence of periods T+1, T+2, . . . can
be partitioned into subsequences depending on which l-length pattern in W
is used at ht (t�T+1). Take an arbitrary pattern c # �s<n H s. When
c # W, let tn be the random time when the pattern c is used for the n th time
along h after T. Hence (tn)n # N forms one of the subsequences described
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above. Since m is stable under fictitious play with arbitrary initial weight,
it follows that P(limn � � gt n

i =mj | c # W)=1 when P(c # W)>0 (i=1, 2,
j{i). Since *tn

i =gtn
i for each n # N, P(limn � � *t n

i =mj | c # W)=1. Since
this is true for any pattern c such that P(c # W)>0, we have
P(limt � � *t

i=mj)=1. K
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