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Abstract

We reexamine the theory of rational voter participation where voting is by two collusive parties
that can enforce social norms through costly peer punishment. This model nests both the ethical
voter model and the pivotal voter model. We initially abstract from aggregate shocks to the
population of voters in favor of the original Palfrey and Rosenthal [24] model and analyze the
subsequent all-pay auction game. We show that this game has a unique mixed strategy equilibrium
in which one party - the advantaged party - gets all the surplus and give a simple formula for
determining which party is advantaged. This equilibrium is scale invariant - increasing the size of
both parties in proportion has no e�ect on voter turnout by either party. Our main �nding is that
when the cost of enforcement of social norms is low and the bene�t of winning the election is the
same for both parties the larger party is always advantaged. By contrast, when the enforcement
of social norms is costly we have a result reminiscent of Olson [27] in which - even if the bene�t
of winning the election is the same for both parties - the smaller party may be advantaged. We
then examine more general contest resolution functions giving conditions under which pure strategy
equilibria do and do not exist, examining the robustness of the comparative statics of the all-pay
auction model, and give conditions under which participation declines with the size of the electorate.
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1. Introduction

Woman who ran over husband for not voting pleads guilty. USA Today April 21,

2015

We investigate the idea that voters vote due to peer pressure to adhere to social norms - with the

additional feature that these social norms are chosen strategically. We introduce a model based

on the well documented fact that social norms play a key role in voter participation.3 Our model

e�ectively nests the �ethical� voter model of Feddersen and Sandroni [9] and Coate and Conlin [3]

in large elections and the pivotal voter model of Palfrey and Rosenthal [24] in small elections while

at the same time making a rich set of new predictions about features such as the role of party size

in determining participation rates.

Rational theories of voter participation remain controversial. The standard Palfrey and Rosen-

thal [24] model �nds empirical support in the laboratory (see for example Levine and Palfrey [20])

but it has di�culty explaining large scale elections. Coate, Conlin and Moro [4] show that in

a sample of Texas referenda, elections are much less close than is predicted by the pivotal voter

model, and Coate and Conlin [3] show that a model of �ethical� voters better �ts the data than

the model of pivotal voters. Indeed, the probability of being pivotal in large elections is very low as

documented by Mulligan and Hunger [21]. Moreover, the probability of being pivotal- since it is

proportional to standard error - should decline roughly as the square root of the number of voters.

The same applies to participation rates if voting costs are non-negative and uniformly distributed.4

If we focus on post-war national elections in consolidated democracies with per capita income

above the world average and voluntary voting, the relation between voter turnout and the size of

the country is hardly consistent with the predictions of the pivotal voter model. In particular, there

is a group of small countries with population ranging from 300,000 to 10 million with high voter

turnout of 78% to 88% and a group of large countries with population ranging from 35 million

to 319 million with lower voter turnout ranging of 55% to 71%. Within these groups of countries

there is very little variation or evidence of negative correlation between size and turnout.5 While it

is true that the group of smaller countries generally have higher turnout than the larger countries,

within groups turnout is quite homogeneous while population varies by a factor of nearly 10 - this

data is in no way consistent with scaling by the square root of the population. In fact, it is not even

3See, e.g., Gerber, Green and Larimer [10] and Della Vigna et al [5].
4In a two-candidates election with an even number of voters n each casting her vote randomly, the probability of

a tie approaches
√

2/nπ as n grows large. See Penrose [25] and Chamberlain and Rothschild [2]. Assuming that
cost of voting is non-negative and uniformly distributed is standard in the theoretical literature on turnout, see, for
example Feddersen and Sandroni [9] and Coate and Conlin [3]. That the cost of voting distribution is relatively �at
is also consistent with the well documented fact that turnout is highly sensitive to the importance of the election -
for example turnout in U.S. Presidential elections is much greater than in election for local issues only.

5Turnout data are averages in the post-war period of OECD countries with voluntary voting and Freedom House
Index of political freedom below 3. We included UK and excluded the rest of the EU since in the latter substantial
power has passed to the EU itself, so that the signi�cance of �national� elections is di�erent than in fully sovereign
nations - in particular for the smaller EU nations. However, including the rest of the EU does not alter the overall
picture. Data is taken from http://www.idea.int.
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consistent with a monotone relation between turnout and population, which is the main prediction

of the pivotal voter model. A similar picture emerges if we turn attention to the dynamics of voter

turnout in advanced democracies: turnout declined on average by a mere 10% in the past 50 years

in the face of a voting age population which more than doubled.6 On the other hand, empirical

analysis by Gray and Caul [16] relates post-war turnout decrease with the decline of mobilizing

actors such as labor parties and trade unions.7

The most recent rational voter theories studied by economists have been the social preference

model of ethical voters introduced by Feddersen and Sandroni [9] and Coate and Conlin [3].

Roughly speaking these models assume that some or all voters choose to participate based upon

whether or not the bene�ts of their vote to their party justi�es the cost of their participation. Here

we take the view that these social preferences arise as a social norm - that voters choose whether

or not to vote based upon whether social norms call upon them to vote - and we assume that

these social norms are endogenous and chosen strategically by political parties. That is, rather

than assuming that voters weigh the bene�ts to the party of their vote against the cost, we assume

that each party collusively weighs the bene�ts of voter turnout against the costs and chooses a

social norm that is optimal for the party. In turn this social norm is enforced through costly peer

punishment.

Our model of peer punishment originates in Kandori [14]'s work on social norms in repeated

game and is a variant of the peer punishment model introduced by Levine and Modica [18]. In this

model within each party voters monitor each others voting behavior and punish - through ostracism

and social disapproval (and perhaps as the quotation at the top indicates more severely) - those

who fail to adhere to the social norm. This is consistent with recent large scale �eld experiments.

For example Della Vigna et al [5] show that an important incentive for voters to vote is to show

others that they have voted, and Gerber, Green and Larimer [10] provide evidence that social

pressure signi�cantly increase voter turnout.8 Here we hypothesize that the reason that voters

want to show others that they have voted is because either they have internalized a social norm, or

they expect to be rewarded for following the social norm or punished for failing to do so. Equally

crucial is that we assume that the social norm is endogenous and chosen rationally by a political

party that colludes among its members.

The idea of collusive parties is nothing new - a large range of literature in political economy

studying parties such as elites and masses and other groups often treats these groups as single

players who act in the group interest. Our political parties behave in a similar way although as in

Dutta, Levine and Modica [6] they must do so subject to incentive constraints - that is, parties

can only collude to make choices that are incentive compatible for its members. If punishment is

6In fact in Denmark and Sweden turnout increased by 3% and 6%, respectively in the period 1950-2000.
7See also Knack [15] on the decline of American voter turnout and its relation to a weakened enforcement of

social norms.
8Palfrey and Pogorelskiy [23] provide experimental evidence showing that communication among voters and in

particular communication within parties increases turnout.
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adequate to induce voter turnout, then that turnout can be chosen by the party - otherwise not.

Initially we abstract from aggregate shocks. We do so not because we believe that aggregate

shocks are not likely to be important in practice but to remain as close as possible to the original

Palfrey and Rosenthal [24] and also to highlight the role of mixed strategies: Feddersen and

Sandroni [9] and Coate and Conlin [3] need to impose restrictions on parameter values in order to

avoid the necessity of mixing. Here mixtures play a rather more sensible role because the mixing is

done by the parties rather than by individuals. Indeed mixed stragies are essential in contests with

opposing interests. In the voting context if one party is expected to win, the second party should

not bother to turn out voters, so the �rst party should make a minimal mobilization e�ort, in which

case the second party should overcome this minimal e�ort. That is - voting between collusive parties

has the �avor of matching pennies and indeed in all pay auctions equilibria as originally shown by

Hillman and Riley [13] have only mixed equilibria. This is re�ected in the reality of elections. Real

political parties engage in the �ground game� or �GOTV� (Get Out The Vote) e�orts. This ranges

from phone calls reminding people to vote, or the importance of the election to driving people to

the polls. We view it as an important part of the peer punishment system establishing the social

norm for the particular election, and these GOTV e�orts are variable and strategic. Furthermore,

political parties have strong incentives not to advertize their GOTV e�ort, and in fact to keep their

GOTV e�ort secret.9 Clearly, there is little reason to do that unless indeed GOTV e�ort is random.

Hence, the mere fact that it is secret provides evidence that - consciously or not - political parties

engage in randomization when choosing social norms for particular elections.

Our initial setting then is one of collusive parties enforcing costly social norms in an e�ort to

win an all-pay auction. We show that this game has a unique mixed strategy equilibrium in which

one party - the advantaged party - gets all the surplus and give a simple formula for determining

which party is advantaged. Equilibrium is scale invariant - increasing the size of both parties in

proportion has no e�ect on voter turnout by either party. Our main �nding is that when the

enforcement of social norms is costless and the bene�t of winning the election is the same for both

parties the larger party is always advantaged. By contrast, when the enforcement of social norms

is costly we have a result reminiscent of Olson [27] in which - even if the bene�t of winning the

election is the same for both parties - the smaller party may be advantaged. We provide a number

of other comparative static results. We show that while being advantaged �ordinarily� results in a

higher probability of winning the election it need not do so. In addition we examine when parties

will engage in supressing the vote of their rival - �nding that disadvantaged parties never will do

so, but that advantaged parties generally will.

We also examine general contest resolution functions and incentive constraints that account

9Accounts in the popular press document both the surprise over the strength of the GOTV and the secrecy
surrounding it. For example �The power of [Obama's GOTV] stunned Mr. Romney's aides on election night, as they
saw voters they never even knew existed turn out...� Nagourney et al [22]or �[Romney's] campaign came up with
a super-secret, super-duper vote monitoring system [...] to plan voter turnout tactics on Election Day � York [28].
Note that the secrecy at issue is not over whether or not people voted as for example voting pins: we assume that
the act of voting is observable. Rather the secrecy is over the social norm that is enforced on election day.
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for pivotality. We show that when aggregate shocks are su�ciently large or pivotality su�ciently

important pure strategy equilibria exist and that conversely with large electorates and small ag-

gregate shocks only mixed strategy equilibria exist. We examine the robustness of the comparative

statics of the all-pay auction to aggregate shocks and pivotality and give conditions under which

participation declines with the size of the electorate.

2. Costs of Voting for a Single Party

We follow the approach of Levine and Modica [18] and Dutta, Levine and Modica [6] in

modeling a homogeneous collusive party: we treat it as a problem in mechanism design. The party

- either by consensus or directed by leaders - moves �rst and chooses a social norm; the individual

party members move second and, given the social norm, make choices about whether or not to vote

that are individually optimal. Here we study the cost to the party of inducing a fraction of voters

to vote.

2.1. The Model

Each identical party member privately draws a type y from a uniform distribution on [0, 1].

This type determines a cost of voting c(y), possibly negative, and based on this the member

decides whether or not to vote. The cost of voting c is continuously di�erentiable, has c′(y) > 0

and satis�es c(y) = 0 for some 0 ≤ y ≤ 1. Voters for whom y < y are called committed voters. The

(total) participation cost of voting is de�ned as C(y) = 0 for y < y and C(y) =
´ y
y c(y)dy for y ≥ y.

This is a standard formulation: for example Coates and Conlin assume that c(y) is linear so that

the participation cost of voting for y ≥ y is quadratic.

The party can impose punishments 0 ≤ P ≤ P on members. The social norm of the party

is a threshold ϕ together with a rule prescribing voting if y ≤ ϕ. This rule is enforced through

peer auditing and punishment. Each member of the party is audited by another party member.

The auditor observes whether or not the auditee voted. If the auditee did not vote and the party

member did not violate the policy (that is, y > ϕ) there is a probability π that the auditor will

learn this. The value of π represents the quality of the signal about y: if π = 0 then the auditor

learns nothing about y; if π = 1 the auditor perfectly observes whether y is above or below the

threshold ϕ. Whatever the quality of the signal, if the auditee voted or is discovered not to have

violated the policy, the auditee is not punished. If the auditee did not vote and the auditor cannot

determine whether or not the auditee violated the policy, the auditee is punished with a loss of

utility P . Initially we are going to assume that the probability of being pivotal is too small to

matter. We see immediately that a social norm is incentive compatible if and only if P = c(ϕ),

in which case any member with y ≤ ϕ would be willing to pay the cost c(y) of voting rather than

face the certain punishment P , while any member with y > ϕ prefers to pay the expected cost of

punishment (1− π)P over the cost of voting c(y).

The overall cost of a punishment P to the party is ψP where ψ ≥ 1. Naturally the punishment

itself as it is paid by a member is a cost to the party. However, there may be other costs: for
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example, if the punishment is ostracism this may not only be costly to the member punished, but

also to other party members who might otherwise have enjoyed the company of the ostracized

member. In addition, the audits and the punishments may themselves be costly, and there may be

additional rounds of audits and punishments needed so that members are willing to do their share

of enforcing the social norm as in Levine and Modica [17]. If so we assume that these costs are

proportional to the size of the punishment.10

2.2. The Cost of Turning Out Voters

Note that ϕ is the participation rate of the party, that is, the probability a representative party

member votes. Recall that y is the (unique) value of y such that c(y) = 0. The role of committed

voters with y < y, that is, c(y) < 0, is quite di�erent from those with y ≥ y, that is c(y) ≥ 0.

Those with c(y) < 0 represent voters who out of civic duty or because they enjoy the camaraderie

of the polling place will always vote. Since a fraction y of the party will vote no matter what, the

crucial question for the party is how costly it is for the party to induce additional voters to vote by

choosing an incentive compatible social norm ϕ ≥ y. Denote this cost by D(ϕ).

We start by observing that D(ϕ) has two parts. The participation cost C(ϕ) =
´ ϕ
y c(y)dy is the

total cost of voting to the members who vote. Notice that C ′(ϕ) = c(ϕ) and so C(ϕ) is increasing

and convex. The monitoring cost M(ϕ) =
´ 1
ϕ ψ(1−π)Pdy is the (expected) cost of punishing party

members who did not vote. As incentive compatibility requires P = c(ϕ) = C ′(ϕ), this can be

written as M(ϕ) = ψ(1− π)(1− ϕ)C ′(ϕ). We refer to θ ≡ ψ(1− π) as the monitoring ine�ciency.

This can be any non-negative number. If the signal quality is high so that π is large monitoring is

very e�cient. If the costs of issuing punishments ψ is high then monitoring is very ine�cient.

Since c(y) is strictly increasing we may de�ne the unique y to be such that c(y) = P where P

is the maximum feasible punishment, or y = 1 if c(1) ≤ P . Observe that those for whom y > y

will not vote regardless of the social norm. The feasible turnout rates ϕ are therefore those in the

range y ≤ ϕ ≤ y, so our interest is on the behavior of D(ϕ), C(ϕ), M(ϕ) in this range.

The crucial fact is that while C(ϕ) is necessarily convex, M(ϕ) and more importantly D(ϕ)

may fail to be so, and indeed may be concave. As we will see the convexity of D(ϕ) is crucial in

determining how the cost of turning out a �xed number of voters depends on the size of the party:

when D(ϕ) is convex a larger party necessarily has a lower cost of turning out a �xed number of

voters, but this need not be the case when D(ϕ) fails to be convex.

Theorem 1. We have C(y) = M(y) = 0 so D(y) = 0. The participation cost C(ϕ) is twice
continuously di�erentiable strictly increasing and strictly convex. The monitoring cost M(ϕ) is
continuously di�erentiable. If y = 1 (that is c(1) ≤ P so that full participation is possible) the
monitoring cost M(ϕ) cannot be concave, must be decreasing over part of its range and M(1) = 0
so D(1) = C(1).

10In Levine and Modica [17] it is assumed that audits have a �xed cost component and that all members need to
be audited. We do not think in the case of voting that the �xed cost component is terribly signi�cant - for example,
it is probably possible to avoid auditing voters - and as it complicates the analysis, we ignore it.
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Proof. From the fundamental theorem of calculus C ′(ϕ) = c(ϕ); since this is continuously di�eren-
tiable with c′(ϕ) > 0 we see that C(ϕ) is twice continuously di�erentiable and that C ′′(ϕ) > 0. At
y we have M(y) = θ(1 − y)c(y) = 0 since by de�nition c(y) = 0 so D(y) = C(y) = 0. If c(1) ≤ P
we have M(1) = θ(1 − 1)c(1) = 0 so D(1) = C(1). Since M(y) = 0 and M(1) = 0 and M(ϕ) > 0
for 0 < ϕ < 1 we see that M(ϕ) cannot be concave, must be decreasing over part of its range.

The key fact is that at y there is no punishment cost since punishment is not needed to turn

out the committed voters, while at y = 1 everybody votes, so despite the fact that the punishment

is positive, nobody is actually punished. It should be clear that this idea and result is robust to

the particular details of the monitoring process. Note also that in addition to the possibility that

D(ϕ) may fail to be convex, it is not necessarily increasing.

Example 1. Suppose that for ϕ ≥ y cost is given by c(ϕ) = α(ϕ − y)α−1 for some α > 1, or
equivalently that C(ϕ) = (ϕ− y)α. For example, Coate and Conlin [3] consider α = 2. From the
detailed computation in the Web Appendix we �nd that D(ϕ) = (1−αθ)(ϕ− y)α +αθ(1− y)(ϕ−
y)α−1. If αθ > 1 and α ≤ 2 then this function is concave. Moreover we have D′(ϕ) ≥ α (1− θ) so
that D(ϕ) is is strictly increasing for θ ≤ 1. By way of contrast, if θ = 2 and α = 2 at φ = 1 we
have D′(1) = −2(1− y) < 0 which implies that at ϕ = 1, D(ϕ) is decreasing.

3. All Pay Auction

We now suppose that a population of N voters is divided into two parties k = S,L of size ηkN

where ηS + ηL = 1. These parties compete in an election. We abstract from random variation in

voter turnout and assume that the side that produces the greatest expected number of votes wins

a prize worth vL > 0 and vS > 0 to each member respectively. We assume that both parties face

per capita costs of turning out voters characterized by y
k
< yk and cost function Dk(ϕk). We make

the generic assumption that ηSyS 6= ηLyL and ηSyS 6= ηLyL. We de�ne the large party L to be

the one with the largest possibility for turning out voters ηLyL > ηSyS , with S the small party.

We de�ne the most committed party to be the one with the largest number of committed voters,

i.e., with th largest value of ηkyk and the least committed party to be the one with the smallest

value. We will assume that D′k(ϕ) > 0 since it is the standard assumption in the literature and the

non-increasing case is harder to characterize and seems less interesting. For notational convenience

we assume that for ϕk < y
k
the cost is Dk(ϕk) = 0.

A strategy for party k is a probability measure represented as a cumulative distribution function

Fk on [ηkyk, ηkyk] where we refer to ηkϕk as the bid. A tie-breaking rule is a measurable function BS

from [max ηkyk, ηSyS ]2 → [0, 1] with BS(ηSϕS , ηLϕL) = 0 for ηSϕS < ηLϕL and BS(ηSϕS , ηLϕL) =

1 for ηSϕS > ηLϕL with BL = 1 − BS . We say that FS , FL are an equilibrium if there is a

tie-breaking rule BS such that

ˆ
vkBk(ηkϕk, η−kϕ−k)Fk(dηkϕk)F−k(dη−kϕ−k)−

ˆ
Dk(ϕk)Fk(dηkϕk) ≥ˆ

vkBk(ηkϕk, η−kϕ−k)F̃k(dηkϕk)F−k(dη−kϕ−k)−
ˆ
Dk(ϕk)F̃k(dηkϕk)
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for all cdfs F̃k on [ηkyk, ηkyk].
11

Let ϕ̂k satisfy Dk(ϕ̂k) = vk or ϕ̂k = yk if there is no solution. Hence, ϕ̂k represents the most

fraction of voters the party is willing and able to turn out. We make the generic assumption that

the party sizes are such that ηLϕ̂L 6= ηSϕ̂S . We de�ne the disadvantaged party d to be the party

for which ηdϕ̂d < η−dϕ̂−d, where −d is the advantaged party.

Notice that we have three measures of the �strength� of a party: the overall possibility of turning

out voters (large or small), the number of committed voters (most or least committed) and the

willingness to turn out voters (advantaged or disadvantaged). Our theorem shows that each of

these plays a role in determining the outcome of elections.

Theorem 2. There is a unique mixed equilibrium. The disadvantaged party earns zero and the
advantaged party earns v−d −D−d((ηd/η−d)ϕ̂d) > 0.

If ϕ̂k ≤ (η−k/ηk)y−k then the election is uncontested: the least committed party k is disadvan-
taged, concedes the election by bidding ηkyk and the most committed party −k takes the election by
bidding η−ky−k.

If ϕ̂k > (η−k/ηk)y−k for k ∈ {S,L} then the election is contested: in (maxk ηkyk, ηdϕ̂d) the
mixed strategies of the parties have no atoms, and are given by continuous densities

fk(ηkϕk) = D′−k((ηk/η−k)ϕk)/(η−kv−k).

In these contested elections there are three points that may have atoms: each party may turn out
only its committed voters and the advantaged party may take the election by turning out ηdϕ̂d with
positive probability. The possible cases are as follows:

1) The only party that concedes the election with positive probability is the disadvantaged party
which does so by bidding ηdyd with probability φd(ηdyd) = 1−D−d((ηd/η−d)ϕ̂d)/v−d+D−d((ηL/η−d)yL)/v−d

2) The only time an advantaged party turns out only its committed voters with positive prob-
ability is if it is also the most committed party in which case this probability is φ−d(η−dy−d) =
Dd((η−d/ηd)y−d)/vd

3) The advantaged party takes the election by turning out ηdϕ̂d with positive probability only if
ϕ̂S = yS in which case this probability is φ−d(ηSyS) = 1 − D−d((ηS/ηL)yS)/vS. This is the only
case in which the tie-breaking rules matters: when both parties bid ηSyS the large party must win
with probability 1.

Proof. See Appendix I.

Next we examine the comparative statics of the model using a notion of decreased turnout in

terms of �rst-order stochastoc dominance.

Corollary 1. We have the following
1. Only the relative sizes of the parties matters.
2. If the value of the prize to the least committed party is small enough then that party is

disadvantaged and concedes the election with probability one. If the value of the prize to the large

11We note that by the Lesbesgue decomposition theorem the cdf Fk may be decomposed into a density for a
continuous random variable fk and a discrete density φk along with a singular measure (such as a Cantor measure)
that fortunately can be ruled out in equilibrium.
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party is large enough then it is advantaged and it takes the election with very high probability, while
the small party concedes the election.

In contested elections:
3. Increasing the value of the prize of the advantaged party increases the surplus of the advan-

taged party (and hence welfare), increases the probability of the advantaged party winning, decreases
the turnout of the disadvantaged party and has no e�ect on the turnout of the advantaged party. The
reverse is true for decreasing the valuation of the advantaged party provided it remains advantaged.

4. Decreasing the valuation of the disadvantaged party increases the surplus of the advantaged
party (and hence welfare), decreases the turnout of the advantaged party and if ϕ̂d < yd decreases
the turnout of the disadvantaged party. The reverse is true for increasing the valuation of the
disadvantaged party provided provided it remains disadvantaged.

Proof. See Appendix I.

3.1. The Uniform Case

In addition to knowing which party is advantaged and gets all the surplus, it is of interest also

to know which party has a better chance of winning the election. We now specialize to the case

of identical costs Dk = D, y
k

= y, yk = y. In general, computing which party has a better chance

of winning the election is quite di�cult because the continuous part of the distribution given by

the density fk(ηkϕk) = (1/η−k)D
′((ηk/η−k)ϕk)/v−k depends on the derivative of the non-linear

function D(ϕ) and this function is evaluated at di�erent points for the two parties. In the limit

case of the polynomial c(ϕ) = α(ϕ− y)α−1 considered above as α→ 1 it is possible to give better

conclusions. Notice that as α→ 1 we converge to the case where all non-committed voters face the

same cost. We also assume that c(1) ≤ P̄ , so that ȳ = 1 and it is possible to turn out all voters.

Assume also that monitoring ine�ciency θ < 1 so that cost is increasing, and consider only the

case in which ϕ̂S > (ηL/ηS)y so that we can have contested elections in equilibrium. The detailed

derivation and proof of the results in this section can be found in the Web Appendix.

For ϕ > y the limiting cost is given by D(ϕ) = (θ− y) + (1− θ)ϕ and since θ < 1 we have that

D′(ϕ) > 0. Notice that as α→ 1, D(y) = 0 but D(y+ ε) ≥ θ(1− y) > 0 so that the function D(ϕ)

is discontinuous at y - there is, in e�ect, a �xed cost of entry - and also that the function D(ϕ) is

concave. The discontinuity in D(ϕ) is re�ected in the limit of equilibrium in which the small party

is advantaged through an additional atom for the small party at ηLy of size

φS(ηLy) =
θ(1− y)

vL

with the small party always winning the tie. Moreover the continuous part of the density is now

uniform with

lim α→1fk(ηkϕk) =
1− θ
η−kv−k

.

The next theorem provides a su�cient condition under which a party has a better chance of winning

the election.

Theorem 3. If η−dv−d/ηdvd ≥ 1 then the advantaged party has a higher probability of winning the
election.
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On the other hand there are parameters, for example, θ = 0, ηL = 2.5ηS , vL = 2/9, vS = 6/9

and y = 1/9 for which the large party is advantaged yet the small party has a higher probability

of winning the election.

3.2. Common Prize

We continue to assume identical costs and consider now the case of a prize that is of equal value

to both parties, that is ηSvS = ηLvL = V . We suppose that D(ϕ) is strictly increasing and twice

di�erentiable in [y, ȳ].

Theorem 4. If D(ϕ) is convex then the large party is advantaged and has the higher probability of
winning the election. If D(ϕ) is concave for ϕ ≥ y, (ηS/ηL)y > ϕ̂L and for some y < ŷ < y with
D(ŷ) < V/ηL < D(y) we have

2yD′(y)

ŷ2 − y2
< − max

y≤y≤ŷ
D′′(y)

then the small party is advantaged and has the higher probability of winning the election.

Proof. In Appendix I.

Since the condition for the small party to be advantaged is a complicated one it is useful to

summarize the requirements. It must be that y is large, y is small, that the size disadvantage is

not too great, that the prize is of intermediate value and that D(ϕ) is concave enough. Notice that

since C(ϕ) is convex, the concavity requirement on D(ϕ) means that monitoring costs must play

an important role. There is a straightforward intuition for the requirements. If y is small or y is

large, the election is basically determined by the number of voters. Similarly if the prize is small

the election will be determined by the committed voters, while if it is large it will be determined by

the party that can turn out the most number of voters - with identical costs this means the larger

party. Finally, we note that if D(ϕ) is convex then the average cost of turning out a voter increases

with turnout - this favors the larger party which needs to turn out fewer voters to win.

4. Vote Suppression and Mandatory Voting

4.1. Vote Suppression

Suppose that each party can increase the monitoring cost θ of the opposing party to an amount

θ > θ by incurring a cost G > 0.

Theorem 5. [Cesar Martinelli] If θ is su�ciently close to θ then only the advantaged party will
suppress votes. If G is su�ciently small it will choose to do so and this will be a strict Pareto
improvement.12

Proof. If θ is su�ciently close to θ then there is no change in which party is advantaged regardless
of whether votes are suppressed or not. The disadvantaged party therefore gets zero regardless of
whether is suppresses votes or not, hence it will not pay a positive cost to do so. On the other
hand Dd(ϕ̂d) = vd. Since suppressing votes by increasing θ raises D and D is increasing in ϕ we

12This theorem was suggested to us by Cesar Martinelli during the 2015 Priorat Workshop.
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see that it reduces ϕ̂d. This raises the surplus v−d − D−d(ϕ̂d) of the advantaged party so if G is
small enough it is worth paying.

Note that if the vote suppression raises the cost to each voter of voting the result about the

advantaged party remains the same, but the disadvantaged party will be strictly worse o�.

4.2. Mandatory Voting

We now explore the consequences of mandatoring voting, continuing to assume identical costs.

Suppose that all non voters are charged a small fee f > 0. The fee is collected by an external agency

ouside the party (or alternatively we can assume that fees are thrown away). We will make two

simplifying assumptions:

1. We assume π = 0. In this case the auditor cannot determine whether or not the auditee

violated the policy and hence any non voter must be punished.

2. We also assume that ψ = 1.

Notice that now incentive compatibility requires P + f = c(ϕ), in which case any member

with y ≤ ϕ would be willing to pay the cost c(y) of voting rather than face the certain punish-

ment P and pay the fee f , while any member with y > ϕ prefers to pay the cost of punishment

P plus the fee f over the cost of voting c(y). As before, D(ϕ) has two parts. The participa-

tion cost is identical as before. The monitoring cost is M(ϕ) = (1 − ϕ) (C ′(ϕ)− f). Hence

D(ϕ) = C(ϕ) + (1 − ϕ) (C ′(ϕ)− f). Note that since D(ϕ̂k) = vk, we have that taking deriva-

tives with respect to f
∂ϕ̂k
∂f

=
1− ϕ̂k
D′(ϕ̂k)

> 0

and from Theorem 2, as it should be, mandatory voting increases turnout.

Consider now the uniform case and let us focus on the case in which the small party is not

constrained, c(1) ≤ P̄ + f, so that ȳ = 1, and f ∈ (0, 1). We say that mandatory voting enhances

parties competition if
∂|ϕ̂k − ϕ̂−k|

∂f
< 0,

and we have the following result:

Theorem 6. In the uniform case if the large party is advantaged, mandatory voting enhances
parties competition. If the small party is advantaged, mandatory voting enhances parties competition
if and only if ηL/ηS < (1 + y + vS)/(1 + y + vL).

The proof is in the web appendix. Notice that, Theorem 6 implies that mandatory voting can

boost the electoral prospects of a small party with intense preference in particular when the small

party is only slightly advantaged.

5. Contests

The all pay auction is the limiting case of a contest which is decided by a con�ict resolution

function in which the probability of winning the election is a continuous function of the expected
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number of voters each party turns out. In particular the outcome of the election is decided by the

actual number of votes rather than the expected number of votes - in this case the con�ict resolution

function is derived from the binomial distribution (computed for example in Palfrey and Rosenthal

[24] and Levine and Palfrey [20].) However there are other reasons such that the outcome of an

election may be random, varying from correlation in the draws of y by voters to random errors

in the counting of votes, the way in which ballots are validated or invalidated or intervention by

courts. In this section we want to incorporate such randomnes in our model.

A second thing we wish to account for is pivotality in the incentive constraint. This means that

the cost function for turning out voters depends on the turnout of the other party, since this a�ects

pivotality. We give the appropriate generalization here, and discuss in more detail how it arises

from pivotality below.

Getting to the details, we continue to suppose that a population of N voters is divided into

two parties k = S,L of size ηkN . These parties now compete in a contest. Each party continues

to produce an expected number of votes ηkϕk and may win a prize worth vk > 0 to each voter

respectively. Now, however, the probability of the small party winning the prize is given by a con�ict

resolution function pS(ηSϕS , ηLϕL) ∈ [0, 1] and we de�ne pL(ηLϕL, ηSϕS) = 1− pS(ηSϕS , ηLϕL).

A strategy for party k is a probability measure represented as a cumulative distribution function

Fk on [0, 1]. Each party faces a per capita costs of turning out voters characterized by a cost function

Dk(ϕk, F−k) which represents the cost of turning out a fraction ϕk of voters when pivotality is

determined by ϕk, F−k. For a topology to the space of cumulative distribution functions on [0, 1] we

use the weak topology: the corresponding notion of convergence is that FNk → Fk if the expectation

of every continous function on [0, 1] converges.13

We assume that pS(ηSϕS , ηLϕL) and Dk(ϕk, F−k) are continuous on [0, 1]. Note that in general

both depend on the absolute size of the population N . The latter assumption amounts to assuming

that yk = 1, that is, that the punishment is su�ciently large that it is possible (although possibly

very expensive) to coerce all voters into voting.14 Note that we assume nothing regarding the

monotonicity of Dk, this is important for the result on convergence to pivotal equilibrium since

when we allow pivotality, and monitoring costs are very high, Dk will be continuous but certainly

not monotone - it can be expensive to get voters not to vote when they are motivated to vote

because of the chance they are pivotal.

We say that FS , FL are an equilibrium of the con�ict resolution model if

ˆ
vkpk(ηkϕk, η−kϕ−k)Fk(dηkϕk)F−k(dη−kϕ−k)−

ˆ
Dk(ϕk, F−k)Fk(dηkϕk) ≥ˆ

vkpk(ηkϕk, η−kϕ−k)F̃k(dηkϕk)F−k(dη−kϕ−k)−
ˆ
Dk(ϕk, F−k)F̃k(dηkϕk)

13This is called the weak topology by probability theorists and the weak* topology in functional analysis Glicksberg
[11].

14Otherwise we would have yk depending on the strategy of the other party F−k creating the problem discussed in
Dutta, Levine and Modica [6] when there are constraints on party behavior that depend on the choice of the other
party.
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Theorem 7. An equilibrium of the con�ict resolution model exists.

Proof. In Appendix II.

5.1. Continuity

We now consider an in�nite sequence of con�ict resolution models pNS (ηSϕS , ηLϕL), DN
S (ϕS , FL),

DN
L (ϕL, FS) and an all-pay auction with costs Dk(ϕk) di�erentiable on (y

k
, 1] with (1/ε) > D′k(ϕ) >

ε for some ε > 0 and ηSϕ̂S 6= ηLϕ̂L. We say that the sequence of con�ict resolution models

converges to the all-pay auction if for all ε > 0 and ηSϕS > ηLϕL + ε we have pNS (ηSϕS , ηLϕL)→ 1

uniformly, and ηSϕS < ηLϕL − ε implies pNS (ηSϕS , ηLϕL) → 0 uniformly, and DN
k (ϕk, F−k) →

Dk(ϕk) uniformly.

Theorem 8. Suppose that pNS (ηSϕS , ηLϕL), DN
S (ϕS , FL), DN

L (ϕL, FS) converge to the all-pay auc-
tion DS(ϕS), DL(ϕL), that FNk are equilibria of the con�ict resolution models and that Fk is the
unique equilibrium of the all-pay auction. Then FNk → Fk.

To prove this theorem we use the standard approch to prove that equilibrium correspondences

are upper-hemi-continuous: we show that for any strategy by party k, the utility received for large

N is uniformly close to the utility received in the limit. Hence, any strictly pro�table deviation in

the limit would also have to be strictly pro�table for large N . If the limit of pNk was a continuous

function this would be completely straightforward: since the convergence of the objective functions

is assumed to be uniform and the integrals de�ning expected utility would converge for any �xed

pk by a standard argument this would give uniform convergence of the objective functions. The

complication is that the limit is not a continuous function: it is discontinuous when there is a tie.

Suppose, however, that we can show that the equilibria FNk had the property that for any ε and

large enough N there is a uniform bound such that the probability of an ε neighborhood is at most

Πε - basically that FNk is converging to a limit with a bounded continuous density. Then for any

choice of ϕ−k it would be the case that for large enough N the utility of FNk would be at most

ε-di�erent for ϕk outside of an ε neighborhood of (ηk/η−k)ϕ−k and that the probability of being in

that neighborhood is also of order no more than ε. This implies that the utility of FNk is of order ε

di�erent than the utility of F∞k , which is what is needed for the standard argument to work. This

argument is not completely adequate because there can be two points where there is an atom in

the limit, but these cases can be covered by the appropriate choice of tie-breaking rule. The details

can be found in Appendix II.

Note that while this is stated as an upper hemi-continuity result, since the equilibrium of the

all-pay auction is unique and we have existence it is in fact a continuity result. We can summarize

it by saying that if the con�ict resolution model is close enough to winner-take-all and pivotality

is not important then the equilibria of the con�ict resolution model are all close to the unique

equilibrium of the all-pay auction.

The theorem allows N to be any abstract index of a sequence. A particularly interesting

application is the one in which N represents population size and we consider that the con�ict

resolution function is binomial arising from independent draws of type by the di�erent voters.
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In this case an application of Chebychev's inequality gives the needed uniform convergence of

pNS (ηSϕS , ηLϕL). The convergence of costs when pivotality is accounted for is shown below.

5.2. High Value Elections and the Impact of Electorate Size on Turnout

Now we consider an alternative conceptual experiment: we hold �xed the size of the electorate,

but allow the size of the prize to be very large.

Theorem 9. Suppose vL →∞. Then FL(1− ε)→ 0.

Proof. Recall that we have assumed that y = 1. Suppose that with positive probability party
L chooses ϕ smaller than 1 − ε. Because the small party turns out at least y and the con�ict
resolution is �xed and continuous (N is �xed) this implies that the di�erence in the probability of
losing between ϕ and 1 is bounded away from 0 by κ > 0 independent of vL. Hence party L gains
at least κvL −maxϕL,FS

DN
L (ϕL, FS) which is positive for vL large enough.

This theorem together with Theorem 8 have an important implication about voter turnout and

population size. Because the con�ict resolution function is continuous, Theorem 9 gives a di�erent

result than the all-pay auction. Here as the prize grows large the large party almost certainly turns

out all of its voters. In the all-pay auction case we know that it turns out only enough voters to

beat the small party, that is ηS/ηL < 1. Consequently, if we �rst �x N and then make the size of

the prize large enough, we obtain that the large party will turn out more than enough voters to

beat the small party, that is ϕ > ηS/ηL. If we now �x the size of the prize and increase the number

of voters Theorem 8 implies that equilibrium must approach the equilibrium of the all-pay auction,

meaning that the turnout of the large party must decline to ηS/ηL.

5.3. Pure Strategy Equilibrium

When the con�ict resolution function is �nearly� winner-take-all and pivotality is not too im-

portant, we are close to the all-pay auction and hence the equilibrium is in mixed strategies. By

contrast if the objective functions pk(ηkϕk, η−kϕ−k)vk−Dk(ϕk, F−k) are single-peaked in ηkϕk (for

example: pk is concave and Dk convex, at least one strictly) then a standard argument shows that

there is a pure strategy equilibrium. Indeed, when the objective functions are single-peaked there is

a unique optimum for each party and so the party cannot mix - all equilibria must be pure strategy

equilibria. This is basically the case considered in Coate and Conlin [3].15

It is worth considering what is needed for pk(ηkϕk, η−kϕ−k) to be concave in the symmetric case

in which pL(ηLϕL, ηS , ϕS) = pS(ηLϕL, ηSϕS). Symmetry implies pk(1/2, 1/2) = 1/2. Concavity

implies pk(1/4, 1/2) ≥ (1/2)pk(0, 1/2) + (1/2)pk(1/2, 1/2) ≥ 1/4. In other words, when one party

sets a target of a 2-1 majority, it must none-the-less have at least a 25% chance of losing: in this

15However, the model inCoate and Conlin [3] di�ers slightly from the one here: in their model the size of the
parties is random. Conceptually this poses a problem for a model of peer punishment within parties - it is not clear
how a collusive agreement can be reached among a party whose members are not known. Coate and Conlin [3] also
use a di�erent objective function than we do: they assume that the �party� maximizes total utility so that when a
random event causes the party to be large the party is �happier� than when it is small. This is not necessary, they
could consider (as implicitly we do) a party that maximizes per capita rather than total utility.
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sense concavity means �a great deal� of variance in the outcome. Hence we have the broad picture

that when pivotality is not important small aggregate uncertainty leads to non-trivial mixing in

equilibrium, while large aggregate uncertainty leads to pure strategies in equilibrium.

Example 2. Suppose that the types yk have both a common and an idiosyncratic component
where the common component may be correlated between the two parties. We have indexed types
by a uniform distribution on [0, 1]. It is convenient in developing an example with a common
component to index types by zk drawn from continous strictly increasing cdfs Gk(z) on [0,∞). The
original index yk can then be recovered from the formula yk = Gk(zk). In our example the objective
function will be concave in zk - this implies that it is single-peaked in yk. With the index zk the
party chooses a type threshold ζk. We assume that N is large - the proof of a formal convergence
result here is straightforward since the limiting con�ict resolution function is continuous.

The speci�c example is de�ned by a parameter 0 <β. We assume that costs are su�ciently
high relative to the prize so that ϕ̂k < β/(1 +β). Each voter i in party k takes an iid draw ui from
a uniform distribution on [0, 1]. A single independent common draw ν is taken also from a uniform
on [0, 1]. We set νS = ν1/β and νL = (1− ν)1/β and a voter's type is zik = βui/(1 +β)νk. We let ζk
denote the threshold for voting in terms of zk. Because we are assuming that N is large we ignore
pivotality so that it follows that the cost of turning out voters is Dk(Gk(ζk)) ≥ 0.

Conditional on the common shock νk the expected fraction of voters that turns out is Pr(zk ≤
ζk|νk) = Pr(ui ≤ ((1 + β)/β)ζkνk|νk). For ζk ≤ β/(1 + β) this is Pr(zk ≤ ζk|νk) = ((1 + β)/β)ζkνk
(since the RHS is no greater than 1). Observe �rst that Pr(zk ≤ ζk) =

´
((1 + β)/β)ζkν

1/βdν = ζk
from which we can conclude that for ζk ≤ β/(1 + β) we have yk = zk. Since it cannot be optimal
to choose ϕk > ϕ̂k and ϕ̂k ≤ β/(1 +β) we see that for ϕk ≤ ϕ̂k the expected fraction of voters who
turn out conditional on the common shock νk is ((1 + β)/β)ϕkνk.

Because we are assuming that N is large we suppose that the actual fraction of voters who turn
out is exactly ((1 + β)/β)ϕkνk. Hence party k wins the election if ηkϕkνk > η−kϕ−kν−k. Taking
logs, this reads log(ηkϕk/(η−kϕ−k)) + (1/β)(log(ν)− log(1− ν) > 0. Since for a uniform ν on [0, 1]
the random variable log(ν)− log(1− ν) follows a logistic distribution the probability of winning is
the Tullock contest success function

1

1 + (η−kϕ−k/(ηkϕk))β
=

(ηkϕk)
β

(ηkϕk)β + (η−kϕ−k)β
.

A su�cient condition for this to be concave is that β ≤ 1 so that if Dk(ϕk) is strictly increasing
when it is strictly positive, continous and (at least for ϕk ≤ ϕ̂k) convex then there are only pure
strategy equilibria. By contrast as β → ∞ the distribution of ν1/β approaches a point mass at
1 and we approach the case of the all-pay auction and for large β there can be no pure strategy
equilibrium. However, under the assumption that the cost function satis�es a diminishing hazard
rate condition, Herrera, Morelli and Nunnari [12] show that pure strategy equilibria exist for
relatively large β and give a detailed breakdown of the comparative statics of the equilibrium.

5.4. Pivotality

Up to this point we have assumed that voters vote only because either they prefer to do so, the

commited voters, or because they face punishment if they do not: these motivations are re�ected in

the incentive constraint ck(y) ≤ Pk that voters should vote provided the cost of doing so is less than

or equal to the cost of being punished for not doing so. This formulation ignores the traditional

focus in Palfrey and Rosenthal [24] on the individual incentive to vote based on the chance of being
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pivotal. We turn now to combining the more traditional incentives of pivotality with the possibility

of punishment.

We start by giving a formulation of the contest model that enables us to compute the probabil-

ity of being pivotal. Rather than a single con�ict resolution function we de�ne two partial con�ict

resolution functions: P 0
k (ηkϕk, η−kϕ−k), the probability of winning conditional on all voters except

one following the social norm ϕk and the remaining voter not voting, and P 1
k (ηkϕk, η−kϕ−k), the

probability of winning conditional on all voters except one following the social norm ϕk and the

remaining voter voting. These should be di�erentiable and non-decreasing in ϕk. This two func-

tions enable us to compute both the overall con�ict resolution function and the probability of being

pivotal: the overall con�ict resolution function is pk(ηkϕk, η−kϕ−k) = ϕkP
1
k (ηkϕk, η−kϕ−k) + (1 −

ϕk)P
0
k (ηkϕk, η−kϕ−k) and the probability of being pivotal isQk(ηkϕk, η−kϕ−k) = P 1

k (ηkϕk, η−kϕ−k)−
P 0
k (ηkϕk, η−kϕ−k). It is convenient in what follows to view the strategies Fk as measures rather

than functions.

To analyze incentives with pivotality we start by identifying what and individual voter would

like to do in the absence of punishment. This depend on what voters from both parties are doing.

For any given social norm ϕk and mixed strategy of the other party F−k we may de�ne the pivotal

cuto� γk(ϕk, F−k) by the solution to ck(γk) = Qk(ηkϕk, η−kF−k)vk. This represents the type of

voter who is indi�erent between bearing the cost of voting in order to improve the party's chance

of victory and abstaining. Since ck(y) is di�erentiable and has a strictly positive derivative the

solution is unique and continuous. We can now determine the incentive constraint when there is

punishment for not voting. For voters who would not otherwise vote, that is, y ≥ γk(ϕk, F−k), the
incentive constraint is ck(y) − Qk(ηkϕk, η−kF−k)vk ≤ Pk. This says that the net cost of voting,

which is the direct cost ck minus the bene�t because of pivotality Qkvk, must be less than or equal

to the punishment for not voting. Notice that the mixed strategy of the other party F−k appears

in the incentive constraint since Pk must be chosen before the realization of ϕ−k is known.

From the incentive constraint we can derive the monitoring cost for ϕk ≥ γk(ϕk, F−k) as the

cost of punishing a non-voter who was not supposed to vote after having received a wrong signal

Mk(ϕk, F−k) = ψ(1−π)(1−ϕk) (ck(ϕk)−Qk(ηkϕk, η−kF−k)vk). Notice that if ϕk is pivotal in the

sense that ϕk = γk(ϕk, F−k) then Mk(ϕk, F−k) = 0 and the function Mk is continuous.

There remains the issue of what happens if the social norm calls for less participation than

would be individually optimal in the presence of the pivotality incentive ϕk < γk(ϕk, F−k). For

voters with ϕk < y < γk(ϕk, F−k) the social norm calls on y to not to vote, but in fact y would

like to. This case is not covered by the basic model and there is more than one modeling pos-

sibility. One is to assume that there is no cost of getting a voter not to vote, in which case

ϕk < γk(ϕk, F−k) and Mk(ϕk, F−k) = 0. In this case we may write Mk(ϕk, F−k) = ψ(1 − π)(1 −
ϕk) max {0, (ck(ϕk)−Qk(ηkϕk, η−kF−k)vk)} which is obviously continuous, although scarcely linear
in F−k. However, all that is required for the results that follow is that Mk(ϕk, F−k) is non-negative

for ϕk < γk(ϕk, F−k).

To summarize: the goal of the party is to maximize per capita utility pk(ηkϕk, η−kϕ−k)vk −
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Ck(ϕk) −Mk(ϕk, F−k). We already showed that equilibrium distributions FS,FL exist. A useful

technical result is that the model chosen of monitoring costs for ϕk < γk(ϕk, F−k) does not matter

because in equilibrium neither party ever chooses such a low participation rate.

Lemma 1. Basic Lemma: If FS,FL are equilibrium distributions then Fk(ϕk < γk(ϕk, F−k)) = 0.

Proof. Start by assuming that ϕk < γk(ϕk, F−k) and Mk(ϕk, F−k) = 0, we will show later that this
assunption does not matter. Then the objective function is

Uk =
(
ϕkP

1
k (ηkϕk, η−kϕ−k) + (1− ϕk)P 0

k (ηkϕk, η−kϕ−k)
)
vk − Ck(ϕk)

and di�erentiating with respect to ϕk we get

dUk
dϕk

=

(
Qk(ηkϕk, η−kϕ−k) + ϕkηk

dP 1
k (ηkϕk, η−kϕ−k)

dηkϕk
+ (1− ϕk)ηk

dP 0
k (ηkϕk, η−kϕ−k)

dηkϕk

)
vk−c(ϕk).

Since ϕk < γk(ϕk, F−k) we haveQk(ηkϕk, η−kϕ−k)vk = ck(γk(ϕk, F−k)) > ck(ϕk) so that dUk/dϕk >
0, so that certainly Fk puts no weight on a neighborhood of ϕk. Now we drop the assumption that
for ϕk < γk(ϕk, F−k) we haveMk(ϕk, F−k) = 0. Notice that we may increase ϕk until the �rst time
that ϕ̃k = γk(ϕ̃k, F−k) is satis�ed, and it follows that Uk(ϕ̃k)−Mk(ϕ̃k, F−k) > Uk(ϕk)−Mk(ϕk, F−k)
since the derivative is strictly positive. But Mk(ϕ̃k, F−k) = 0 so ϕk is strictly worse than ϕ̃k.

One implication of the �nal step of the proof of the lemma is that the set of equilibria for any

de�nition of Mk(ϕk, F−k) ≥ 0 for ϕk < γk(ϕk, F−k) contains the equilibria for the corresponding

model with Mk(ϕk, F−k) = 0 for ϕk < γk(ϕk, F−k) - and in particular since equilibria in the former

model exist, they also exist in the latter.

Our main interest is in what equilibrium with pivotality looks like. There are two limits of

interest. The �rst is the large population case which has been our focus. In the case of iid draws

of y as N → ∞ the fact that y
k
> 0 forces the probability of being pivotal to converge to zero

uniformly. It follows that Mk(ϕk, F−k) converges uniformly to Mk(ϕk) = ψ(1 − π)(1 − ϕk)ck(ϕk)
and so Theorem 8 tell us that we approach the unique all-pay auction equilibrium: as we expect,

pivotality is not important when the electorate is large.

The second limit of interest is the case of large monitoring costs - in this case we expect

pivotality to play the decisive role. Speci�cally we would like to show that as ψ →∞ we approach

a correlated equilibrium of the purely pivotal model. However, this need not be the case - there is

no cost of monitoring at ϕk = 1 and we have assumed y = 1, so the very high costs of monitoring

can potentially be avoided by choosing a very high participation rate. Suppose in particular that

Ck(1) < vk so that it would pay to turn out the entire electorate without monitoring cost. Then we

cannot rule out the possibility that even for very large ψ equilibrium might involve participation

rates close to 1 and very much higher than the pivotal cuto� γk(ϕk, F
ψ
−k).

By contrast, suppose that Ck(1) > vk. It follows directly from Lemma 1 that

Theorem 10. If Ck(1) > vk then as ψ →∞ we have Fψk (|ϕk − γk(ϕk, Fψ−k)| ≤ ε)→ 1.

Notice that this does not necessarily imply that the limit is an equilibrium in the sense of

Palfrey and Rosenthal [24] since we allow correlation devices within parties, but rather a correlated
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equilibrium with pivotality of the type studied by Pogorelskiy [26].

6. Welfare

In our model, e�ort spent voting and monitoring voters is pure waste. If the prize is of equal

value to the two parties and there is no uncertainty about party sizes then a mechanism of �ipping

a coin (and allowing the committed voters to vote, but ignoring the results of that vote) is a strict

welfare improvement over voting. These results are heavily in�uenced by the fact that increased

participation increases costs and thereby tends to reduces welfare. However, there are a number of

reasons to believe that higher participation might be welfare improving. In this section we want to

explore some of these arguments.16

A possible reason for preferring higher participation is that, in a model of incomplete infor-

mation, higher participation would lead to greater information aggregation. However, once the

absolute number of voters is reasonably large the additional improvement in information aggrega-

tion from doubling or tripling the number of voters seems quite modest. After all, do we really

believe that the United States general elections aggregate information much better than those in the

UK because ten times as many voters vote? A more common reason given why high participation

is important is because it increases the sense of participation in government. What concretely this

might mean beyond the relatively meaningless statement that each vote creates a utility bene�t for

someone is hard to say. One possibility is that it signals the willingness or likelihood that citizens

will abide by the democratic rules or that they will �ght o� attempts at coup d'etats and the like.

In our view, one of the most reasonable arguments for preferring higher participation is that when

turnout is too low there is a concrete possibility that a minority non-democratic party may come

to power. This latter possibility is relatively straightforward to model and not inconsistent with

the idea that there might be broader bene�ts such as signaling.

Suppose that depending on turnout ηkϕk there is a probability that a third party who will

refer to as blackshirts might win the election. Denote this probability by B(η1ϕ1, η2ϕ2) and

suppose that each party k su�ers a per-capita loss of bk in the event in which the blackshirts

win the election. Recall that in our model costs are Dk(ϕk) = Ck(ϕk) + Mk(ϕk). Extending

the model to the the possibility of blackshirts winning the election leads to a new cost function

D̃k(η1ϕ1, η2ϕ2) = Dk(ϕk) + bkB(η1ϕ1, η2ϕ2). This di�ers from the original model for two reasons:

First, the participation rate of the opposing party −k now enters the cost function of party k.

Second, the sizes of the parties have an impact on per capita costs. To see how these di�erences

will a�ect the welfare implications of the model, consider a simple example in which the number

of blackshirts who will cast votes is uncertain and uniformly distributed with density 1/β, and

institutions are such that in order to achieve power blackshirts must collect an absolute majority.

Then

B(η1ϕ1, η2ϕ2) = B0 − β(η1(ϕ1 − y1) + η2(ϕ2 − y2)),

16We thank Guido Tabellini for pushing us in this direction and helping us to explore some of these ideas.
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where B0 ≤ 1 denotes the probability that blackshirts are enough to outnumber the commited

voters. Furthermore, we assume that B(η1y1, η2y2) ≥ 0 so that there is a positive chance that

blackshirts are enough to outnumber all the voters in both parties.17 This additively separable

functional form has the advantage that the marginal bene�t of reducing the chance of blackshirts

winning is independent of the participation rate of the other part so that we may apply our existing

analysis of equilibrium. In particular we may analyze equilibrium using the overall per-capita cost

function for party k

D̃k(η1ϕ1, η2ϕ2) = Dk(ϕk) + bk
[
B0 − β(η1(ϕ1 − y1) + η2(ϕ2 − y2))

]
using our existing analysis. If we are willing to assume bk, and β small enough and Mk not too

big, the D̃k function will be increasing, despite the fact that B will be decreasing and Mk might

be decreasing as well. In particular, if βηkbk < dDk(ϕk)/dϕk then D̃k is increasing in ϕk. In this

case our all-pay auction and con�ict resolution analysis applies unchanged.

The welfare analysis can change substantially, however, even when D̃k is increasing. In fact, if

β
(
η1b1 + η2b2

)
> dDk(ϕk)/dϕk, the overall per-capita cost of voting

D̃1(η1ϕ1, η2ϕ2) + D̃2(η1ϕ1, η2ϕ2)

is decreasing in ϕk. In this case the earlier welfare conclusions will e�ectively be reversed.

Two further observations may be of interest. First, in addition to parties we may wish to

consider an additional social network of �citizens� to which everyone belongs and which also can

create incentives for voting.18 Such a network may have as its objective keeping the blackshirts

out of power. Because this social network strictly prefers greater voter participation, we may wish

to interpret the �committed� voters yk as those for whom the citizen incentives are binding which

is to say that they vote because it is their �civic duty.� This would lead to a theory in which the

number of committed voters is endogenous and would depend on the strength of the blackshirts and

whether the other existing parties are willing to turn out voters. Second, the idea that the strength

of blackshirts might vary is an important one. Since the Second World War voter participation

has fallen. There are many explanations of this, including the weakening of parties ability to

mobilize voters.19 But note also that during the same period the possibility of a blackshirts surge

diminished substantially as democratic institutions became increasingly stronger (ranging from

peacefully accepting the election outcome, to the strength of the courts and independence of the

press). In the early years of European democracy, institutions were weak, the chance of blackshirts

high, and a high voter turnout was perfectly reasonable. As time has gone on and institutions got

17It should be noted that turnout in 1933 German federal elections was 89% and the Nazist party fell barely short
of an absolute majority with 44% of the votes. Clearly the election was not free from intimidation, but of course this
is part of the reason for turning out a great many voters to defeat the blackshirts.

18For details on models where individual members belong to several social networks that can induce incentives see
Dutta, Levine and Modica [8].

19See Gray and Caul [16]and Knack [15] among others.
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stronger, better established, and con�dence in them has been growing, there has been less reason

for high turnout to keep blackshirts out of power.20

7. Conclusion

We have examined a simple model of voter turnout where collusive parties choose social norms

enforced by peer punishment. This model is broadly consistent with the conclusions of the ethical

voter model - for example the dependence of turnout on the size of the electorate is modest and due

to the fact that there is a small degree of residual uncertainty about turnout. The key di�erence

from the ethical voter model is that when the cost of punishment is signi�cant, the cost of turning

out voters will be concave rather than convex - and as we have seen this advantages the smaller

party. There are many elections where special interests do well: for example Indian lotteries, school

boards, school salary referenda, prison guard and so forth. In general we would expect that single-

issue voting - referenda - which keeps the stakes to the smaller party large while the stakes to the

larger party small should favor the smaller party,21 while general issue voting - for example for

Governor or President - will have high stakes disadvantaging the small party. One implication of

this is that in the case of referenda the way for a large party to defeat a small party is to make sure

that some high stakes issue is on the ballot. A good example of how this works was the passage of

Proposition 8 in California in 2008. Here the large party was against gay marriage, and the small

party in favor of gay marriage and the black community was especially opposed to gay marriage.

Having a black presidential candidate led to very high black voter turnout, and it is generally

thought that in a year of more ordinary turnout the proposition would have failed.

The model applies more generally to a situation where two groups compete by turning out mem-

bers - for example in street demonstrations or strikes. The model potentially also has applications

to models of lobbying by bribery as in Hillman and Riley [13], Acemoglu [1], or Levine and Modica

[19] - although the welfare analysis is quite di�erent as the �votes� which are wasted in a model

of voting (or demonstrations) are income to a politician in a model of lobbying by bribery. There

are three additional di�erences that are potentially important. First, we have examined only a 0-1

decision to participate. In lobbying there is also an intensive margin: participation can be at either

a higher or a lower level. Second, rather than committed members of lobbying groups we might

expect instead a �xed cost of providing a minimal amount of resources to be useful - this has the

opposite e�ect of committed voters, favoring the smaller party. Third, the prize in lobbying may

be fungible (money) that can be used to pay the politician's bribe so that the resource constraint

of a small group may not matter so much. These considerations - and the results of Levine and

Modica [19] - seem to suggest that lobbying by bribery may be more favorable to a small group

20It should be noted that while comparisons are sometimes made between modern populist movements such as
UKIP in the UK, 5 Star in Italy and Trump in the US, with the exception of the Golden Dawn in Greece and unlike
the Nazi and Fascist movements, these parties do not have anti-democratic paramilitary forces.

21Not all referenda are for low stakes. Large issue referenda - such as the recent referendum on Scottish independence
or the forthcoming referendum on British membership in the EU - should favor the larger party.
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than voting.
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Appendix I: All-Pay Auction

We let ` denote the party with the most committed voters.

Theorem. 2 There is a unique mixed equilibrium. The disadvantaged party earns zero and the
advantaged party earns v−d −D−d((ηd/η−d)ϕ̂d) > 0.

Theorem 11. If ϕ̂k ≤ (η−k/ηk)y−k then the election is uncontested: the least committed party k
is disadvantaged, concedes the election by bidding ηkyk and the most committed party −k takes the
election by bidding η−ky−k.

If ϕ̂k > (η−k/ηk)y−k for k ∈ {S,L} then the election is contested: in (maxk ηkyk, ηdϕ̂d) the
mixed strategies of the parties have no atoms, and are given by continuous densities

fk(ηkϕk) = D′−k((ηk/η−k)ϕk)/(η−kv−k).

In these contested elections there are three points that may have atoms: each party may turn out
only its committed voters and the advantaged party may take the election by turning out ηdϕ̂d with
positive probability. The possible cases are as follows:

1) The only party that concedes the election with positive probability is the disadvantaged party
which does so by bidding ηdyd with probability φd(ηdyd) = 1−D−d((ηd/η−d)ϕ̂d)/v−d+D−d((ηL/η−d)yL)/v−d

2) The only time an advantaged party turns out only its committed voters with positive prob-
ability is if it is also the most committed party in which case this probability is φ−d(η−dy−d) =
Dd((η−d/ηd)y−d)/vd

3) The advantaged party takes the election by turning out ηdϕ̂d with positive probability only if
ϕ̂S = yS in which case this probability is φ−d(ηSyS) = 1 − D−d((ηS/ηL)yS)/vS. This is the only
case in which the tie-breaking rules matters: when both parties bid ηSyS the large party must win
with probability 1.

Proof. No party will never submit a bid ηkϕk for which ηkyk < ηkϕk < η−ky−k since such a bid
will be costly but losing, and neither party will submit a bid for which ηkϕk > ηkϕ̂k since to do
so would cost more than the value of the prize. Since Dk(yk) = 0 < vk, then it follows that bids

must either be maxk ηkyk or in the range [maxk ηkyk, ηdϕ̂d]. If vk ≤ D
(
y−kη−k/ηk

)
, it follows

that ηkϕ̂k ≤ η−ky−k. In this case party k will only mobilize committed voters, that is will bid
ηkyk, and the other party can win with probability 1 by bidding η−ky−k. Consider now the case

of vk > D
(
y−kη−k/ηk

)
for both parties. In the range (maxk ηkyk, ηdϕ̂d) there can be no atoms

by the usual argument for all-pay auctions: if there was an atom at ηkϕk then party −k would
prefer to bid a bit more than ηkϕk rather than a bit less, and since consequently there are no bids
immediately below ηkϕk party k would prefer to choose the atom at a lower bid. This also implies
that party k with the least committed voters cannot have an atom at η−ky−k: if −k has an atom
there there then k should increase its atom slightly to break the tie. If the −k does not have an
atom there then k should shift its atom to ηkyk since it does not win either way.

Next we observe than in (maxk ηkyk, ηdϕ̂d) there can be no open interval with zero probability.
If party k has such an interval, then party −k will not submit bids in that interval since the cost of
the bid is strictly increasing it would do strictly better to bid at the bottom of the interval. Hence
there would have to be an interval in which neither party submits bids. But then, for the same
reason, it would be strictly better to lower the bid for bids slightly above the interval.

Let uk be the equilibrium expected utility of party k. In equilibrium the disadvantaged party
must earn zero since it must make bids with positive probability arbitrarily close to ηdϕ̂d, while the
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advantaged party gets at least u−d ≥ v−d − D−d((ηd/η−d)ϕ̂d) > 0 since by bidding slightly more
than ηdϕ̂d it can win for sure, but gets no more than that since it must make bids with positive
probability arbitrarily close to ηdϕ̂d. We conclude that the equilibrium payo� of the advantaged
party must be exactly u−d = v−d −D−d((ηd/η−d)ϕ̂d).

From the absence of zero probability open intervals in (maxk ηkyk, ηdϕ̂d) it follows that the
indi�erence condition for the advantaged party

v−dFd(ηdϕd)−D−d((ηd/η−d)ϕd) = v−d −Dd((ηd/η−d)ϕ̂d)

must hold for at least a dense subset. For the disadvantaged party we have

vdF−d(η−dϕ−d)−Dd((η−d/ηd)ϕ−d) = 0

for at least a dense subset. This uniquely de�nes the cdf for each party in that range:

Fd(ηdϕd) = 1− D−d((ηd/η−d)ϕ̂d)−D−d((ηd/η−d)ϕd)
v−d

for ηdϕd ∈ (maxk ηkyk, ηdϕ̂d), and

F−d(η−dϕ−d) =
Dd((η−d/ηd)ϕ−d)

vd

for η−dϕ−d ∈ (maxk ηkyk, ηdϕ̂d). As these are di�erentiable they can be represented by continous
density functions which are found by taking the derivative. Evaluating Fd(ηdϕd) at maxk ηkyk
gives φd(ηdyd) = 1−D−d((ηd/η−d)ϕ̂d)/v−d +D−d(maxk ηkyk/η−d)/v−d. Note that Fd(maxk ηkyk)
is always strictly positive and may or may not be smaller than 1. To see this, notice that η−dϕ̂−d >
ηdϕ̂d implies D−d((ηd/η−d)ϕ̂d)/v−d < D−d(ϕ̂−d)/v−d ≤ 1.

Since the disadvantaged party has an atom at maxk ηkyk if an only if maxk ηkyk = ηdϕ̂d we see
that the disadvantaged party has an atom at ηdyd with probability φd(ηdyd) = 1−D((ηd/η−d)ϕ̂d)/v−d+
D(maxk ηkyk/η−d)/v−d and no other atom.

As for the advantaged party, if -d = S then ηLyL > ηSyS ≥ ηSϕ̂S > ηLϕ̂L implies that
FS(ηLϕ̂L) = DL(ϕ̂L)/vL = 1. If instead −d = L then FL(ηSϕ̂S) = DS(ϕ̂S)/vS . If ϕ̂S ≤ ySthen
this is 1 and there is no atom, otherwise there must be an atom of 1−DS(yS)/vS .

Turning to maxk ηkyk we see that the atom there is given by Dd((η−d/ηd)(η`/η−d)y`)/vd =
Dd((η`/ηd)y`)/vd. If ` = d this is Dd(yd)/vd = 0 if ` = −d this is

Dd((η−d/ηd)y−d)/vd > Dd(yd) = 0.

We make the following observations summarized in Corollary 1 in the text.

1. Examining the derivation and result it is immediate to see that only the relative sizes of the

parties matter.

2. If v−` ≤ D((η`/η−`)y`), it follows that η−`ϕ̂−` ≤ η`y` and the party with the least committed

voters always concedes the election. In other words if the value of the prize to the party with the

least committed voters is small enough then that party is disadvantaged and concedes the election.

On the other hand as vL →∞ then ϕ̂k = yL so that the large party is advantaged. The probability

that the small party concedes is than PS(ηSyS) = 1 −DL((ηS/ηL)yS)/vL. Hence, the probability
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that the small party concedes goes to one at a rate that is bounded independently of the value of

the prize to the small party. In other words, in a very high value election, the small party turns

out only its committed voters and the large party acts preemptively turning as many voters as the

small party is capable of turning out.

In a contested election:

If v−d increases then ϕ̂d does not change.The equilibrium payo� of the advantaged party is

v−d −D−d((ηd/η−d)ϕ̂d) so increases. However, the equilibrium bidding strategy of the advantaged

party and its expected payment do not depend on v−d. Hence, it must be the case that the

expected probability of winning of the advantaged party increases with v−d. Moreover, since the

bidding strategy of the advantaged party does not change, neither does its turnout. Finally, the

density of the disadvantaged party fd(ηdϕd) = D′−d((ηd/η−d)ϕd)/(η−dv−d) falls with the extra

weight accumulating at the atom where it concedes the election, clearly lowering the turnout (and

providing an alternative argument as to why the probability of the advantaged party winning must

increase).

Suppose that vd decreases. Then ϕ̂d weakly decreases sinceD−d(ϕ̂d) = vd andD−d is assumed to

be increasing and strictly decreases if ϕ̂d < yd. The density of the advantaged party f−d(η−dϕ−d) =

D′d((η−d/ηd)ϕ−d)/(ηdvd) increases by a �xed ratio and the probability that it turns out only its

committed voters φ(η−dy−d) = Dd((η−d/ηd)y−d)/vd increases by exactly the same ratio. This

means that the cdf has shifted to the left reducing turnout.

If ifϕ̂d < yd then ϕ̂d strictly decreasing the surplus v−d − D−d((ηd/η−d)ϕ̂d) of the advan-

taged party. Moreover, fd(ηdϕd) is unchanged, while the range is strictly smaller, with the extra

weight accumulating where the disadvantaged party concedes the election so the turnout of the

disadvantaged party declines.

Theorem. [4 ] IIf D(ϕ) is convex than the large party is advantaged and has the higher probability
of winning the election.

If D(ϕ) is concave for ϕ ≥ y, (ηS/ηL)y > ϕ̂L and for some y < ŷ < y with D(ŷ) < V/ηL < D(y)
we have

2yD′(y)

ŷ2 − y2
< − max

y≤y≤ŷ
D”(y)

then the small party is advantaged and has the higher probability of winning the election.

Proof. If ϕ̂S < (ηL/ηS)y the small party is disadvantaged. Otherwise from

D(ϕ̂S)ηS = V

we �nd
∂(ϕ̂SηS)

∂ηS
= −D(ϕ̂S)

D′(ϕ̂S)
+ ϕ̂S

so that

∂(ϕ̂SηS)

∂ηS
=

1

D′(ϕ̂S)

(
ϕ̂SD

′(ϕ̂S)−D(ϕ̂S)
)

=
1

D′(ϕ̂S)

(
yD′(y) +

ˆ ϕ̂S

y
ϕD”(ϕ)dϕ

)
.
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If D(φ) is convex this is positive. Hence, we see that increasing ηS weakly increases ϕ̂SηS until we
reach ηS = ηL at which point ϕ̂SηS = ϕ̂LηL so we conclude that when we started ϕ̂SηS ≤ ϕ̂LηL.
Since by assumption the two are not equal at the starting point the small party is disadvantaged
there. In the case where D(ϕ) is concave, let D” denotes the smallest (largest absolute) value of
D”(y) for ŷ ≤ y ≤ y. Since D(ŷ) < V/ηL < D(y) we have ŷ < ϕ̂L < y and in the limit case where
ηS = ηL we then have ϕ̂SηS = ϕ̂LηL. Taking derivatives, we have that

∂(ϕ̂SηS)

∂ηS
=

1

D′(ϕ̂S)

(
ϕ̂SD

′(ϕ̂S)−D(ϕ̂S)
)
≤ yD′(y) +D”

ŷ2 − y2

2
< 0,

where the last inequality follows from our assumption on the curvature of D. Hence reducing ηS
by a su�ciently small amount must strictly advantage the small party. Moreover,

∂ϕ̂S
∂ηS

= − D(ϕ̂S)

D′(ϕ̂S)ηS
< 0

so as ηS decreases ϕ̂S increases implying that ∂(ϕ̂SηS)/∂ηS remains negative, so the small party
remains advantaged until it hits the boundary at ϕ̂S = y and then remains advantaged still until
ηSy = ηLϕ̂L. Notice that, for ηS close to ηL, a necessary and su�cient condition for the small party
being advantaged is

D−1(V/ηS)D′(D−1(V/ηS))− V/ηS < 0.

The probability of winning for party k is
´ ηdϕ̂d

ηSy
F−k(b)Fk(db) with Fk(ηkϕk) = 1−

´ ηdϕ̂d

ηkϕk
Fk(db).

Observe that the density fk(b) = D′(b/η−k)/V is higher for the large party if D is convex and
higher for the small party if D is concave. In the former case the large party is advantaged, in the
latter case we consider only the case in which the small party is advantaged. In either case we have
f−d(b) > fd(b). Since only the advantaqed party can have an atom at ηdϕ̂d it follows in both cases

that for ηkϕk > ηLy we have
´ ηdϕ̂d

ηkϕk
F−d(db) >

´ ηdϕ̂d

ηkϕk
Fd(db). Hence also for ηkϕk > ηLy it follows´ ηdϕ̂d

ηkϕk
Fd(b)F−d(db) >

´ ηdϕ̂d

ηkϕk
F−d(b)Fd(db) since each term under the integral on the left is larger

than on the right.
It remains to evaluate

´ ηLy
ηSy

Fk(b)F−k(db), that is, parties turning out only their committed

voters. Since f−d(b) > fd(b) and only the advantaged party can have an atom at ηdϕ̂d the disad-
vantaged party must have a higher probability of turning out only its commited voters. Moreover,
when it does so it always loses, so

´ ηLy
ηSy

Fd(b)F−d(db) >
´ ηLy
ηSy

F−d(b)Fd(db). Adding the two inequal-

ities gives the desired result.

Appendix II: Con�ict Resolution Model

Theorem. 7 An equilibrium of the con�ict resolution model exists.

Proof. This is essentially the theorem of Glicksberg (1952), except that we do not requireDk(ϕk, F−k)
to be linear in F−k. However inspection of Glicksberg's proof shows that only continuity in F−k
is needed - Glicksberg uses only the fact that the objective function is weakly concave in Fk so
that the best-response correpondence is convex-valued and the fact that it is jointly continuous
in Fk, F−k so that it is upper hemi-continous. Weak concavity in Fk follows here as it does in
Glicksberg because the objective function is linear in Fk - the linearity of the objective in F−k is
used by Glicksberg only to establish continuity in Fk, F−k which we have by assumption.
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Theorem. 8 Suppose that pNS (ηSϕS , ηLϕL), DN
S (ϕS , FL), DN

L (ϕL, FS) converges to the all-pay auc-
tion DS(ϕS), DL(ϕL), that FNk are equilibria of the con�ict resolution models and that Fk is the
unique equilibrium of the all-pay auction. Then FNk → Fk.

Proof. Since the space of distributions is compact in the given topology there is a convergent
subsequence. Hence it is su�cient to assume FNk → F∞k and show that F∞k = Fk. We do this by
showing that F∞k is an equilibrium relative to the tie-breaking rule that advantaged party wins if
there is a tie where the disadvantaged party turns out all voters and the party that can turn out the
most committed voters wins when it turns out exactly its committed voters. Since the equilibrium
of the all-pay auction is unique, it must then be that F∞k is in fact Fk. Note that it then follows
that F∞k is also an equilibrium with respect to only the �rst half of the tie-breaking rule, since that
is the case for Fk.

By assumption for any ε2 the convergence is uniform on the set |ηSϕS − ηLϕL| ≥ ε2. Hence we
may assume that for any ε and for large enoughN if ηSϕS > ηLϕL+ε2 then pNS (ηSϕS , ηLϕL) > 1−ε2
and ηSϕS < ηLϕL − ε2 then pNS (ηSϕS , ηLϕL) < ε2 .

Let d be the disadvantaged party in the all-pay auction. We observe the obvious fact that
F∞k places no weight above (ηd/ηk)ϕ̂d nor below y

k
so we certainly have convergence outside these

intervals. It is similarly obvious for any γ > 0 there is an N large enough that FNk places no weight
above (ηd/ηk)ϕ̂d + γ nor below y

k
− γ, so in examining FNk we may restrict attention to those

intervals.
The assumption on the slopes of DN

S (ϕS , FL), DN
L (ϕL, FS) implies that there are constants

∞ > D,D > 0 such that for for any ε and κ and all large enough N for ϕk + κε > ϕ′k > ϕk

DN
k (ϕ′k, F−k)−DN

k (ϕk, F−k) < Dε

and for ϕk ≥ yk and ϕ
′
k > ϕk + ε/κ

DN
k (ϕ′k, F−k)−DN

k (ϕk, F−k) > Dε

Let ` denote the party with the largest value of ηkyk.
Consider �rst the intervals ((η`/ηk)y`, (ηd/ηk)ϕ̂d). Fix a point ϕ̃S = (ηL/ηS)ϕ̃L in this interval

where there is a tie and consider an ε open square around of this point, ΦS × ΦL (we may assume
that these open intervals are entirely contained in the set in question by choosing ε small enough).
Choose εmaxk vk < D at least. Consider that one of the parties k has no greater than a 1/2 chance
of winning the contest in this interval. If Π−k is the probability F

N
−k assigns to Φ−k then if k shifts

any weight in Φk to the top of the interval he gains at least (1/2)Π−kvk − ε2vk − Dε, so that if
Πk > 0 then Π−k ≤ (2/vk)(D − εvk)ε < Πε. If Πk = 0 certainly Πk ≤ Πε. Hencewe see that there
is a constant Π such that in each square of the type described we must have Πk ≤ Πε for at least
one of the two parties k.

Now consider Πk for the other party for which this bound is not necessarily satis�ed, and
consider ϕ−k lying below Φ−k. Shifting to the top of the interval yields a gain by the previous
argument of at least Πkv−k − ε2v−k −D(ϕ̃−k − ϕ−k − ε). From this we see that there is another
constant κ > 0 such that for ϕ̃−k−ε ≥ ϕ−k ≥ ϕ̃−k−ε−κΠk party −k places no weight. If κΠk > ε/κ
then shifting all the weight in Φk to ϕ̃−k− ε−κΠk causes k to gain DκΠk− (Πε+ ε2)vk ≤ 0. Hence
there is a constant Π such that Πk ≤ Πε for both parties k.

If ϕ̂d < 1(= yd) then exactly the same argument works when we extend the upper limit slightly
((ηL/ηk)yL, (ηd/ηk)ϕ̂d)+γ), and we already know it is true for ((ηd/ηk)ϕ̂d)+γ, ηd/ηk] so the bound
holds for ((η`/ηk)y`, ηd/ηk].
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Suppose instead that one party is turning out all voters at the upper bound: in this case it must
be disadvantaged and the other party must be larger. We observe that since for any γ we already
know that FN−d places no weight above (ηd/η−d) + γ so F−∞−d places no weight above ηd/η−d. In
the intervals ((ηd/ηk)− ε, ηd/ηk] if W−d is the probability that −d wins conditional on that interval
then the gain to −d by shifting to (ηd/ηk) + ε is (1−W−d)v−d − 2εD. There are two possibilities:
either Π−d = 0 in which case we have Πk ≤ Πε for both parties in ((η`/ηk)y`, 1], or W−d ≥ 1−Wε.

Now consider the lower bound (η`/ηk)y`. The argument above that one party has to satisfy
Πk ≤ Πε remain valid since it relies on deviating to the top of the interval and the upper bound on
the cost derivative D which is globally valid. The party that with the most committed voters does
not bid below (η`/ηk)y` − γ so if it is the party that satis�es Πk ≤ Πε then the other party has a
chance of winning by bidding below (η`/ηk)y` of at most 2Πγ, while if it were to bid y

S
it would

save nearly D((η`/ηk)y` − yS) so for small enough γ it would not choose to bid in this interval.
Hence we conclude that the party with the least committed voters must satisfy the bound Πk ≤ Πε
in (y

`
, (ηd/ηk)ϕ̂d).

Now we are in a position to consider the sequence of equilibrium expected utilities UNk which,
if necessary by passing to a subsequence may be assumed to converge to some U∞k . For any ε we
observe that in the compact region in which the di�erence between bids is at least ε the objective
function in the limit is continuous, so in this region the integral de�ning expected utility converges
to the identical value as computed from the limit distributions. In case ϕ̂d < 1(= yd) we also see
that the region where the di�erence between bids is smaller than ε the probability of that region is
at most Cε2 for all large enough N so that this does not matter for computing utility in the limit.
Hence in this case U∞k = Uk the utility computed from the limit distributions (and in this case
the tie-breaking rule does not matter). In case ϕ̂d = 1(= yd) if we exclude a neighborhood of the
tie at ηd/ηk again utility converges to the right limit, moreover, we have shown that in the region
near the tie in equilibrium (for N <∞) W−d ≥ 1−Wε which gives the same result in the limit as
N →∞ as the tie-breaking rule that −d always wins the tie.

Now consider deviations against the limit distributions. For deviations to a point where the
bound Πk ≤ Πε is satis�ed by the opponent a strict gain with respect to the limit distribution of the
opponent translates immediately in the usual way to a strict gain for large N so this is impossible.
The same reasoning applies in case ϕ̂d = 1(= yd) to deviations by the advantaged party to ηS/ηL
since it must win before the limit is reached with probability at least W−d ≥ 1−Wε.

Finally, in the case ϕ̂d = 1(= yd) if is pro�table for the disadvantaged party to deviate to 1
since by the tie-breaking rule it loses for sure it could equally well make a strict pro�t by bidding
slightly less than 1. Nor can it be advantageous for the small party to deviate to (ηL/ηS)y

L
since

by the tie-breaking rule it loses for sure.
Hence we conclude that F∞k is in fact an equilibrium with respect to the proposed tie-breaking

rule.

Web Appendix: The Uniform Case

Suppose that for ϕ ≥ y cost is given by c(ϕ) = α(ϕ − y)α−1 for some α > 1, or equivalently

that C(ϕ) = (ϕ− y)α. Then

D(ϕ) = (ϕ− y)α + αθ(1− ϕ)(ϕ− y)α−1

D(ϕ) = (ϕ− y)α + αθ(1− y)(ϕ− y)α−1 − αθ(ϕ− y)(ϕ− y)α−1
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D(ϕ) = (1− αθ)(ϕ− y)α + αθ(1− y)(ϕ− y)α−1

It follows that

D′(ϕ) = α(1− αθ)(ϕ− y)α−1 + α(α− 1)θ(1− y)(ϕ− y)α−2

which is smallest when φ− y is biggest so bounded below by

D′(ϕ) ≥ α ((1− αθ) + (α− 1)θ)

D′(ϕ) ≥ α (1− θ) .

Next we consider equilibrium in the limiting case of α → 1 where let c(1) ≤ P̄ ,so that ȳ = 1

and θ < 1. In this case for ϕ > y we have

D(ϕ) = (ϕ− y) + θ(1− ϕ) = θ(1− y) + (1− θ)(ϕ− y) = D(ϕ) = (θ − y) + (1− θ)ϕ.

We consider only the case in which ϕ̂S > (ηL/ηS)y so that we can have contested elections in

equilibrium. In the limit as α→ 1 the limiting value of ϕ̂k is derived from D(ϕ̂k) = vk so we may

�nd from (θ − y) + (1− θ)ϕ̂k = vk that

ϕ̂k =
y − θ + vk

1− θ
.

This satis�es ϕ̂k < ȳ = 1 if and only if 1− y ≥ vk, so either this is the case or ϕ̂k = 1. If the small

party is disadvantaged and cannot mobilize all voters in the party, that is ϕ̂S < min{1, (ηL/ηS)ϕ̂L},
we know from Theorem 2 that in equilibrium the small party has an atom at ηSy of limit size

lim α→11−
D((ηS/ηL)ϕ̂S)

vL
=
ηLvL − ηSvS + (ηL − ηS)(y − θ)

ηLvL
< 1.

Furthermore, in the limit, for ηkϕk ∈ (ηLy, ηdϕ̂d) the mixed strategies of the players have no atom

and are described by continuous densities which approach the uniform distribution:

lim α→1fk(ηkϕk) =
1− θ
η−kv−k

.

If the small party is advantaged, the discontinuity of D(ϕ) at ηLy is re�ected through an additional

atom for the small party at ηLy of size

φS(ηLy) = lim
ηSϕS→ηLy

lim
α→1

FS(ηSϕS) = lim
ηSϕS→ηLy

lim
α→1

D((ηS/ηL)ϕS)

vL
=

lim
ηSϕS→ηLy

lim
α→1

(1− αθ)((ηS/ηL)ϕS − y)α + αθ(1− y)((ηS/ηL)ϕS − y)α−1

vL
=

lim
ηSϕS→ηLy

(1− θ)((ηS/ηL)ϕS − y) + θ(1− y)

vL
=
θ(1− y)

vL
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with the small advantaged party always winning the tie.

Observe that in the case of a large advantaged party, having a greater chance of winning a

contested election means a greater chance of winning the election. In the case of a small advantaged

party we must consider the extra atom of the small advantaged party at ηLy. Call such an election

strictly contested if it is contested and the small party bids strictly above ηLy. If the small party

has a greater chance of winning a strictly contested election, then the atom at ηLy for the small

party must have lower probability than for the large party (since a small party cannot have an

atom at the top these are the only atoms). Hence the overall probability of the small party winning

must be greater. Hence the result that the advantaged party wins the election more than half the

time when η−dv−d/ηdvd ≥ 1 follows from

lim α→1fk(ηkϕk) =
1− θ
η−kv−k

,

since this implies that the advantaged party wins at least half the time the contested elections if it

is the large party, and it wins at least half the time the strictly contested if it is the small party.

Finally we show that when θ = 0, ηL = 2.5ηS , vL = 2/9, vS = 6/9 and y = 1/9 the large

party is advantaged yet the small party wins the election more than half the time. Note that in

this case ηLvL/ηSvS ≡ (2.5 ∗ 2/9)/(6/9) = 5/6. That is, the condition that η−dv−d/ηdvd ≥ 1 fails

as we know it must. Despite the fact that the large party attaches a lower value to the object

than the small party it is never-the-less advantaged. First we recall from above that ϕ̂k < 1 if

and only if 1 − y ≥ vk. For the small party 6/9 = vS ≤ 1 − y = 8/9 and for the large party

2/9 = vL ≤ 1− y = 8/9 so for both partys ϕ̂k < 1. Using

ϕ̂k =
y − θ + vk

1− θ

we then compute for the small party ϕ̂S = (1/(1− θ))(y − θ + vS) = 7/9, while for the large party

ϕ̂L = (1/(1 − θ))(y − θ + vL) = 3/9. Hence, since ηSϕ̂S = ηS(7/9) = (ηL/2.5)(7/9) < ηL(3/9) =

ηLϕ̂L, indeed the small party is disadvantaged. Notice also that ηLy = ηS(5/18) < ηSϕ̂S =

ηS(14/18) so that the small party does always not concede. Now we compute the probability the

small party wins the election. It is

ΠS =

ˆ ηSϕ̂S

ηLy
fS(ηϕ)FL(ηϕ)d(ηϕ) =

1− θ
ηLvL

ˆ ηSϕ̂S

ηLy
FL(ηϕ)d(ηϕ) =

1− θ
ηLvL

(
ηSϕ̂S − ηLy

) [
FL(ηLy) +

1− θ
2ηSvS

(
ηSϕ̂S − ηLy

)]
Since FL(ηLy) + (1− θ)

(
ηSϕ̂S − ηLy

)
/ηSvS = 1 we have

ΠS =
1− θ
ηLvL

(
ηSϕ̂S − ηLy

) [
FL(ηLy) +

(
1− FL(ηLy)

)]
=
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1− θ
2ηLvL

(
ηSϕ̂S − ηLy

) (
1 + FL(ηLy)

)
=

ηSvS
2ηLvL

(
1− FL(ηLy)

) (
1 + FL(ηLy)

)
=

ηSvS
2ηLvL

(
1− FL(ηLy)2

)
.

From the proof of Theorem 2 we also have

FL(ηLϕL) =
D((ηL/ηS)y)

vS
=

(1− θ)ηLy − ηS
(
y − θ

)
ηSvS

so that for the given parameters impying ηLy = ηS(5/18)

FL(ηLy) =
(5/18)− y

vS
=

(5/18)− (2/18)

(12/18)
= 1/4

Hence ΠS = (3/5)(15/16) = 9/16 > 1/2.

Theorem. 6 If the large party is advantaged, mandatory voting enhances parties competition.
If the small party is advantaged, mandatory voting enhances parties competition if and only if
ηL/ηS < (1 + y + vS)/(1 + y + vL).

Proof. In the uniform case we have that D(ϕ) = ϕ(1 + f)− y − f and

ϕ̂k =
y + f + vk

1− f
.

Hence
∂ϕ̂S
∂f

>
∂ϕ̂L
∂f

if and only if
ηL
ηS

>
1 + y + vS

1 + y + vL
,

and ηSϕ̂S > ηLϕ̂L if and only if
f + y + vS

f + y + vL
>
ηL
ηS
.

If the large party is advantaged and vL > vS it must be that

ηL
ηS

> 1 >
1 + y + vS

1 + y + vL
.

If the large party is advantaged and vL < vS , then

ηL
ηS

>
f + y + vS

f + y + vL
>

1 + y + vS

1 + y + vL
,

since f < 1and (f + y + vS)/(f + y + vL) is decreasing in f if and only if vL < vS . On the other
hand, tha fact that the small party is advantaged does not necessary imply that

∂ϕ̂L
∂f

>
∂ϕ̂S
∂f

which instead follows from ηL/ηS < (1 + y + vS)/(1 + y + vL).
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