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1. Introduction

Two themes of Nicholas Yannelis's scienti�c work are the importance of
fundamental results of practical importance and the insistence that they not
depend upon special or arbitrary assumptions. So, for example, his work on the
existence of competitive equilibrium with large commodity spaces in Yannelis
and Zame (1986) does not rest upon arbitrary assumptions about preferences,
but it does include the commodity spaces which are important to economists.
This paper is about political economy rather than competitive equilibrium, but
the analysis and results are in the spirit of Nicholas Yannelis.

Models of two contestants exerting e�ort to win a prize are common - and
of particular importance in the political economy of con�ict, such as voting or
lobbying. A key element of the analysis is the contest success function giving the
probability of winning as a function of the e�ort of the contestants. This function
plays as fundamental a role in the theory of contests as does the production
function in the theory of the �rm, yet beyond the existence of equilibrium few
general results are known. This paper seeks to remedy that gap.

Assumptions about the contest success function vary. In the all-pay auction
the greatest e�ort wins the prize. The widely used Tullock function supposes
that the chance of winning is proportional to e�ort. A great deal is known about
the unique mixed strategy equilibrium in the all-pay auction and a great deal is
known about pure strategy equilibria when they exist.4 However, equilibrium
generally involves mixed strategies and except in the case of the all-pay auction
and some special cases such as the Tullock function with linear costs very little
is known about the structure of mixed strategy equilibria. Here we address the
basic question of when it is that lower cost of e�ort results in greater success
- that is a greater probability of winning or a greater payo� - across equilibria
and contest success functions.

In the spirit of Nicholas Yannelis we do not assume particular functional
forms. Rather, we allow general contest success functions of the type that are
important to economists including the possibility that there is a discontinuous
probability of winning when there is a tie, and we allow for general continuous
cost functions. Nash equilibria always exist: this follows from a fundamental
result that Nicholas Yannelis developed together with Pavlo Prokopovych in
Prokopovych and Yannelis (2014). We take as our measure of success of a
contestant her equilibrium utility as a fraction of the prize - that is, how close
the contestant is to achieving the goal of winning the prize at no cost.

We observe �rst that when the contest success function is continuous and
costs are high enough, there will be a unique equilibrium in which neither con-
testant chooses to provide any e�ort so that lower cost does not provide greater
success. More generally, we should be concerned that it might be the case - as
it is in alternative models such as the war of attrition - that there can be pre-
emptive equilibria in which the higher cost contestant provides a high e�ort and

4See the survey of Corchón (2007).
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by doing so discourages the lower cost contestant. Then, we prove four main
results. First, there cannot be a pre-emptive equilibrium in which the higher
cost contestant has greater success. Second, a contestant with a su�ciently
great cost advantage always has greater success. Third, if the cost advantage
is a homogeneous one, then the lower cost contestant always has greater suc-
cess. Finally, if we retain the generalized convexity and insensitivity property of
the generalized all-pay auction but assume a homogeneous cost advantage the
contest is payo� equivalent to the generalized all-pay auction.

We further study the robustness of equilibrium by proving a basic upper
hemi-continuity result. The underlying mathematics derives from the study
of the convergence of monotone functions on rectangles. This enables us to
conclude, for example, that contest success functions that converge pointwise to
the all-pay auction do not have pure strategy equilibria. More broadly it shows
that greater success is a robust property shared by neighboring contest success
functions.

A fundamental result of Whitney (1934) enables us to approximate discon-
tinuous contest success functions by real analytic contest success functions. This
is important because most functional forms used by economists are real analytic.
Remarkably, considering that little is known in general about the structure of
mixed strategy equilibria in games with a continuum of actions, we establish
that when the contest success function is real analytic, the support of mixed
strategy equilibria must be �nite. Hence, for example, if the contest success
function is the normal cumulative distribution applied to the di�erence in e�ort
levels, and the variance decreases to zero so that the contest success function
approaches the all-pay auction, then equilibria have �nite support converging
weakly in the limit to the continuous uniform distribution that is the unique
equilibrium of the all-pay auction.

2. The Model

Two contestants j ∈ {1,−1} compete for a prize worth Vj > 0 to contestant
j. Each contestant chooses an e�ort level ej ≥ 0. The probability of contestant
j winning the prize is given by a contest success function 0 ≤ p(ej , e−j) ≤ 1 that
is symmetric in the sense that it depends on the e�orts of the two contestants
and not on their names.

The contest success function is assumed to be continuous for ej 6= e−j ,
non-decreasing in ej , and it must satisfy the adding-up condition p(ej , e−j) +
p(e−j , ej) = 1. Note that we allow for a discontinuous upward jump in the
winning probability when we move away from ej = e−j , but require that when
there is a tie the probability of winning is 1/2. Two standard contest resolution
functions have this type of discontinuity: the all-pay auction in which the highest
e�ort wins for sure and the Tullock function where the probability of winning
is given by eβj /(e

β
j + eβ−j) with β > 0 which is discontinuous when there is a tie

at zero.
The cost of e�ort ej is Vjcj(ej) and it is incurred regardless of the outcome

of the contest. The function cj(·) measures cost relative to the value of the
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prize Vj > 0. We assume that cj(·) is continuous, non-decreasing, it satis�es
cj(0) = 0, and for some wj called the willingness to bid cj(wj) = 1 and if
ej > wj then cj(ej) > 1. To avoid degeneracy we assume that for contestant
−1 the cost function c−1(·) is strictly increasing at the origin.

The objective function of contestant j is given by Vjp(ej , e−j) − Vjc(ej).
Since choosing e�ort higher than the willingness to bid is strictly dominated by
choosing zero e�ort, we may restrict the choice of e�ort to [0,W ], where W >
max{wj , w−j}. Hence, a strategy for contestant j is a cdf Fj on [0,W ]. De�ne

p(Fj , F−j) ≡
´W

0

´W
0
p(ej , e−j)dFj(ej)dF−j(e−j) and cj(Fj) ≡

´W
0
cj(ej)dFj(ej).

A Nash equilibrium is a pair of strategies (Fj , F−j) such that for each contestant

j and all strategies F̃j we have

p(Fj , F−j)− cj(Fj) ≥ p(F̃j , F−j)− cj(F̃j).

Since this is an expected utility model this de�nition is equivalent to restricting
deviations to pure strategies ej .

Existence of Pure and Mixed Equilibrium

The crucial �rst step in our analysis is the existence of equilibrium. Our
�rst result establishes that equilibia exist and provides some basic information
about what they are like.

Theorem 1. A Nash equilibrium exists and in every Nash equilibrium the prob-
ability of a tie at a point of discontinuity is zero. If both contestants have the
same costs there is a symmetric Nash equilibrium. However, if p(e, e) is a point
of discontinuity for all 0 ≤ e ≤ W the symmetric equilibrium is not in pure
strategies.

Proof. First, suppose that (W,W ) is a point of continuity of p(bj , b−j). Exis-
tence follows from two conditions. The �rst is that the sum of utilities of both
contestants is continuous. The second is Monteiro and Page (2007)'s uniform
payo� security condition. The latter is satis�ed since at a point of discontinuity
(e, e) a higher e�ort e1 = e+ ε implies that the utility (e1, e−1) cannot be much
worse than from (e, e) if e−1 is close enough to e. Prokopovych and Yannelis
(2014) show that these conditions imply the su�cient conditions of Baye, Tian
and Zhou (1993) for the existence of a mixed equilibrium. Second, if (W,W )
is a point of discontinuity of p(bj , b−j) we can modify the contest success func-
tion in any rectangular neighborhood of (W,W ) so that no additional points
of discontinuity are introduced and the modi�ed function is a contest success
function that is continuous at (W,W ). Hence an equilibrium exists in the modi-
�ed game. If we take the rectanglar neighborhood su�ciently small it is strictly
dominated to put positive weight on e�ort there so the equilibrium strategies of
the modi�ed game are also equilibrium strategies of the original game.

Symmetry is not typically studied in the existence literature, but proofs are
easily adapted by restricting the best response correspondence to the subset of
symmetric best responses. In addition, as it is a simple implication of the tools
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we develop for studying robustiness, we give an alternative proof of existence
below in Section 7.

Next we show that if p(e, e) is a point of discontinuity then both contestants
cannot have an atom at e so the probability of (e, e) is zero. Notice that this
immediately implies that if p(e, e) is a point of discontinuity for all 0 ≤ e ≤ W
a symmetric equilibrium cannot be in pure strategies.

To show that both contestants cannot have an atom at e we show that if
F−j has an atom at e < W and p(e, e) is a point of discontinuity then ej = e is
not a best-response by j to Fj . If e = W this is obvious since that e�ort level
is strictly dominated by 0.

De�ne p+(e) = limε→0+ p(e + ε, e). First we show that if p(e, e) is a point
of discontinuity of e then p+(e) > 1/2. Discontinuity implies that there is a
sequence en → (e, e) with lim p(en) 6= p(e). From symmetry we may assume
lim p(en) > 1/2. Fix e + ε where ε > 0. For n su�ciently large en1 < e + ε.
Hence p(e + ε, en−1) ≥ p(en1 , e

n
−1). Since p(e + ε, e) is a point of continuity

of p(e1, e−1) we have p(e + ε, e) = lim p(e + ε, en−1) ≥ lim p(en1 , e
n
−1). Hence

p+(e) = limε→0+ p(e+ ε, e) ≥ lim p(en1 , e
n
−1) > 1/2.

The remainder of the proof is to show that when p+(e) > 0 it would be better
to choose a little bit more e�ort than e so as to break the tie and get a jump in
the probability of winning at trivial additional cost. Speci�cally, suppose that
−j has an atom f−j(e) at e. If j provides e�ort e+ ε instead of e then j gains
at least

f−j(e)(p
+(e)− 1/2) + c(e)− c(e+ ε).

In the limit as ε→ 0 this is strictly positive proving the result.5

3. Cost and Success

We are interested in the case in which 1 has a cost advantage. We should
emphasize here that as we have normalized by the value of the prize, our notion
of cost advantage in all cases is one of relative cost advantage. Our goal is to
analyze the extent to which this translates to greater success in the contest. One
measure of success is a greater probability of winning: we say that j has outcome
success if p(Fj , F−j) > 1/2 or equivalently p(Fj , F−j) > p(F−j , Fj). This,
however, fails to take into account the cost of the resources used in achieving
success, so we say that j has greater success if p(Fj , F−j)−cj(Fj) > p(F−j , Fj)−
c−j(F−j), that is, j gets a greater fraction of achievable utility than −j. Notice
that while success is de�ned for arbitrary strategies Fj , F−j it will be of interest
only when those strategies are equilibrium strategies.

The simplest notion of cost advantage is that of a pure cost advantage: here
e > 0 results in c1(e) < c−1(e). We �rst analyze the generalized all pay auction

5It may be a bit puzzling when e = wj to think of contestant j deviating to e+ ε. Clearly
this cannot be optimal. However, the argument shows that although such a deviation to a
strictly dominated strategy is suboptimal it does better than e, which is just another way of
saying e was not a terribly good idea in the �rst place.
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where ej > e−j results in p(ej , e−j) = q > 1/2. Here higher e�ort guarantees a
greater chance of winning, but the loser also has a chance of winning: for exam-
ple this could model an electoral process where there is a chance of corruption.
The following result generalizes a well known result6 for the standard all pay
auction for which q = 1.

Theorem 2. In the generalized all-pay auction if 1 has a pure cost advantage
then in any equilibrium 1 has greater success.

Proof. De�ne e−1 ≡ max suppF−1. Consider the strategy for 1 of providing
e�ort eε ≡ e−1 + ε. In the all-pay auction this guarantees a win, so

p(F1, F−1)− c1(F1) ≥ q − c1(eε).

By the continuity of c1 this implies

p(F1, F−1)− c1(F1) ≥ q − c1(e−1).

Because 1 has a pure cost advantage, the right hand side of the inequality is
strictly larger than q−c−1(e−1). Because e(F−1) ∈ suppF−1 there is a sequence
en → e−1 with

p(en, F1)− c−1(en) = p(F−1, F1)− c−1(F−1).

By the continuity of c−1 this implies

q − c−1(e−1) ≥ p(F−1, F1)− c−1(F−1).

Hence it is indeed the case that 1 has greater success.

Our goal is to understand how this result extends to more general contest
success functions. First of all, however, we want to rule out uninteresting cases
where the result of Theorem 2 trivially does not extend.

4. Peaceful Equilibria

Consider the following example.

Example 1. Suppose that c1(e1) = e1, c−1(e−1) = 2e−1 so that 1 has a pure
cost advantage but that p(ej , e−j) ≡ 1/2 so that e�ort does not matter. Then
the unique equilibrium is for each to provide zero e�ort so both get 1/2 and
neither is more successful.

We de�ne peaceful equilibria those in which both contestants choose to incur
zero cost of e�ort and have a probability of winning of 1/2 and, recalling our
utility normalization, utility equal to 1/2. In particular neither contestant has
greater success or greater outcome success regardless of any cost advantages.

6See, for example,Siegel (2014).
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To have a contested equilibrium in which this is not the case we must rule out
situations such as Example 1 in which the cost function rises too fast relative
to the steepness of the contest success function. We begin with the relevant
de�nitions.

We start with the possibility that contestant j �nds it strictly dominant to
provide zero e�ort, that is, p(0, e−j)− cj(0) > p(ej , e−j)− cj(ej) for all ej > 0
and all e−j . Since cj(0) = 0 we can rewrite this as cj(ej) > supe−j

p(ej , e−j)−
p(0, e−j). This separates the cost from the contest success function, and the
right hand side is the same for both contestants. If p(ej , e−j) is continuous at 0
with respect to ej for every e−j then all su�ciently large cj(ej) will satisfy this
condition, so we call the condition very high cost.

A second possibility is that the strict best response to zero e�ort is zero e�ort,
that is, p(0, 0) − cj(0) > p(ej , 0) − cj(ej) for all ej > 0. This we can rewrite
as cj(ej) > p(ej , 0) − p(0, 0). Again the right hand side is the same for both
contestants, and if p(ej , 0)−p(0, 0) is continuous at 0 all su�ciently large cj(ej)
will satisfy this condition. Since supe−j

p(ej , e−j)− p(0, e−j) ≥ p(ej , 0)− p(0, 0)
very high cost implies this condition, so we call it high cost. Notice that when p
is discontinuous at (0, 0) as it is in the all-pay auction or the Tullock case, high
cost (and by implication very high cost) is ruled out because cj(ej) is continuous
and cj(0) = 0.

By contrast, we say that contestant j has low cost if for some ej we have
cj(ej) < p(ej , 0)− p(0, 0), and in particular high cost and low cost are mutually
exclusive.

Theorem 3. If 1 has high cost and −1 has very high cost then the unique
equilibrium is peaceful and neither provides e�ort. If both have high cost there
is a peaceful equilibrium in which neither provides e�ort. If 1 has low cost all
equilibria are contested.

Proof. Since −1 having very high cost −1 provides zero e�ort because this is
strictly dominant, while 1 having high cost means the unique best response by 1
is also to provide zero e�ort, so the equilibrium is unique and peaceful. Similarly
if both have high cost then each �nds it optimal to provide zero e�ort when the
other is doing so. Finally, at a peaceful equilibrium since c−1(e−1) is assumed
to be strictly increasing at the origin, as we noted above, it must be that −1
provides zero e�ort. The condition for 1 having low cost may be written as
p(e1, 0) − c1(e1) > p(0, 0) − c1(0) implying that 1 gets strictly more than 1/2
in equilibrium. This requires that the chance of 1 winning is greater than 1/2
contradicting the de�nition of a peaceful equilibrium.

Note that while this result establishes necessary conditions for a contested
equilibrium and su�cient conditions, there is a gap between the two conditions.

5. Contested Equilibria

We now focus on contested equilibria. We �rst show that even in this case
pure cost advantage is not in general su�cient for the cost advantaged contestant
to have greater success.
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Example 2. Here we construct a contested pure strategy equilibrium in which
1 has a pure cost advantage but −1 has greater success. Take p(ej , e−j) =
(1/2)+(1/2)(ej−e−j) truncated by 0 below and 1 above. The cost function for
1 is c1(e1) = (4/7)(e1 − 1) for e1 ≥ 1 and 0 otherwise. For −1 it is c−1(e−1) =
(3/7)e−1 for 0 ≤ e−1 ≤ 2 and 6/7 + (4/7)(e−1− 2) otherwise. At e = 0 we have
c1 = c−1 = 0. At e = 1 we have c1 = 0, and c−1 = 3/7. At e = 2 we have
c1 = 4/7, and c−1 = 6/7. Above 2 the cost di�erence remain equal to 2/7 in
favor of −1. So 1 has a pure cost advantage. We claim that (e1, e−1) = (1, 2) is a
pure strategy equilibrium. Here 1 loses for certain and has no cost so gets 0 while
−1 wins for sure and has a cost of 6/7 so gets 1/7. Hence certainly −1 is more
successful. To see this is an equilibrium observe that 1 is indi�erent to reducing
e�ort below 1: there is no cost and no chance of winning there. Increasing e�ort
above 1 increases the chances of winning at the rate of 1/2 while it increases
costs at the rate of 4/7 so in fact e1 = 1 is optimal for contestant 1. For −1
reducing e�ort below 2 reduces the chances of winning at the rate of 1/2 but
decreases costs only at the rate of 3/7. Increasing e�ort above 1 has no e�ect
on the chances of winning but simply increases costs. Hence e−1 = 2 is optimal
for contestant −1.

We introduce two strengthened notions of cost advantage

1. 1 has a marginal cost advantage if for e2 > e1we have c1(e2) − c1(e1) <
c−1(e2)− c−1(e1)

2. 1 has a homogeneous cost advantage if c1(e) = αc−1(e) for some 0 < α < 1

Given these notions, we have that homogeneous cost advantage implies marginal
cost advantage, and marginal cost advantage implies pure cost advantage. An
important special case of homogeneous cost advantage occurs when both con-
testants have the same absolute cost: for all e we have V1c1(e) = V−1c−1(e). In
this case 1 has a homogeneous cost advantage if and only if the prize is valued
more highly: V1 > V−1.

The notions of pure, marginal, and homogeneous cost advantage are de�ned
independent of the contest success function. An alternative approach is to relate
the size of the cost advantage to measures of the steepness of the contest success
function. When the contest success function is very steep, as in the all pay
auction, intuitively we expect that very little cost advantage is needed.

A simple but quite strong form of cost advantage is the following: we say
that 1 has a strong cost advantage over −1 if for some e1 > w−1, where wj is
the willingness to bid de�ned earlier, we have c1(e1) < p(e1, w−1) − 1/2. To
understand this condition better �x w−1, −1's willingness to bid. If contest
success has a strict increase above this point, a su�ciently low cost for 1 will
always have a strong cost advantage. On the other hand, strong cost advantage
in the all pay auction requires that c1(w−1) < 1/2, while we know that greater
success requires only that c1(w−1) < 1.

For this reason we introduce a weaker condition applied over a broader range
of e�ort levels. We say that 1 has a uniform cost advantage over −1 if for any 0 ≤
e−1 ≤ w−1 there is an e1 > e−1with c1(e1) < c−1(e−1)−(p(e−1, 0)− p(e1, e−1)).
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Notice that this condition is satis�ed in the all-pay auction provided that 1 has
a cost advantage. It is also satis�ed in a di�erence model in which p(e1, e−1) =
p(e1−e−1, 0) if c1(2e1) < c−1(e1). One particularly important case of a uniform
cost advantage arises when there is a common underlying strictly increasing cost
function c2(e) but contestant 1 has an e�ort advantage of e1 > 0, meaning that
the probability that 1 wins with underlying e�ort ẽ1 is given by p(ẽ1 + e1, e−1).
This is known in the literature as a �head start advantage.� This can be made
equivalent to the original model by de�ning c1(e1) = c̃2(e1− e1) for e1 ≥ e1 and
0 otherwise. Notice that in this case the cost advantage cannot be homogeneous.

Finally, we generalize the notion of pure strategy equilibrium. We say that
F1, F−1 is a preemptive equilibrium if either one distribution �rst order stochas-
tically dominates the other or the two are equal. Equipped with these new
de�nitions we can state our �rst main result:

Theorem 4. In a contested equilibrium 1 has greater success in equilibrium if
any of the following conditions are satis�ed

(0) she has a pure cost advantage and −1 does not have outcome success,
(i) she has a marginal cost advantage and the equilibrium is preemptive,
(ii) she has a homogeneous cost advantage,
(iii) she has a strong cost advantage,
(iv) she has a uniform cost advantage.

Notice that in Example 2 while 1 had a pure cost advantage in the range
[1, 2], 1 also had higher marginal cost than −1. This possibility is ruled out
by marginal cost advantage. With this assumption 1 has greater success in
all preemptive equilibria. For pure strategies this trivially �works� since all
pure strategy equilibria are preemptive. Unfortunately pure strategy equilibria
do not always exist and we do not have general results about when equilibria
are preemptive. If we further strengthen the cost advantage assumption to
homogeneous cost advantage then we get a general result for all equilibria pure
or mixed.

Proof. Suppose that F1, F−1 are an equilibrium. From optimality of Fj and
symmetry we have

p(Fj , F−j)− cj(Fj) ≥ p(F−j , F−j)− cj(F−j) = 1/2− cj(F−j). (1)

By subtraction we also have

p(Fj , F−j)− 1/2 ≥ cj(Fj)− cj(F−j). (2)

First, we show (0). Suppose that 1 has a pure cost advantage but does not
have greater success. Then

p(F−1, F1)− c−1(F−1) ≥ p(F1, F−1)− c1(F1) ≥ 1/2− c1(F−1). (3)

Where the �rst inequality follows from the fact that 1 does not have greater
success, and the second from equation 1. Suppose �rst−1 is not providing e�ort.
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Then c−1(F−1) = c1(F−1) = 0 so 3 implies p(F−1, F1) ≥ 1/2. Moreover p non-
decreasing implies p(F−1, F1) = p(0, F1) ≤ 1/2 so p(F−1, F1) = 1/2. Since this
is not a peaceful equilibrium it must be that c1(F1) > 0 so p(F1, F−1)−c1(F1) =
1/2− c1(F1) < 1/2 while choosing e1 = 0 gives a utility of 1/2 contradicting the
fact that 1 is playing optimally. Suppose second that −1 is providing e�ort. By
the pure cost advantage equation

1/2− c1(F−1) > 1/2− c−1(F−1)

From equation 3 this gives p(F−1, F1) > 1/2. Consequently −1 has outcome
success. This proves (0).

To show (i), notice that from equation 2 with j = 1 we have

p(F1, F−1)− 1/2 ≥ c1(F1)− c1(F−1).

From symmetry this gives

−p(F−1, F1) + 1/2 ≥ c1(F1)− c1(F−1)

or
p(F−1, F1)− 1/2 ≤ c1(F−1)− c1(F1). (4)

From equation 2 with j = −1 we have

p(F−1, F1)− 1/2 ≥ c−1(F−1)− c−1(F1)

Hence
c1(F−1)− c1(F1) ≥ c−1(F−1)− c−1(F1). (5)

Suppose that 1 has a marginal cost advantage. If F1 �rst order stochastically
dominates F−1 or the two are equal then −1 does not have a outcome ad-
vantage so 1 has greater success by (0). Suppose instead that F−1 �rst order
stochastically dominates F1. For e2 > e1 the condition for marginal cost ad-
vantage can be written as c−1(e2) − c1(e2) > c−1(e1) − c1(e1). It follows that
c−1(F−1) − c1(F−1) > c−1(F1) − c1(F1). This contradicts equation 5. This
shows (i).

Next, we show (ii). Suppose that 1 has a homogeneous cost advantage. From
equation 5

c1(F−1)− c1(F1) ≥ c−1(F−1)− c−1(F1) = (1/α) (c1(F−1)− c1(F1)) .

Since α < 1 it follows that c1(F−1)− c1(F1) ≤ 0. From equation 4

p(F−1, F1)− 1/2 ≤ c1(F−1)− c1(F1) ≤ 0

so −1 does not have an outcome success. There are two possibilities. First, if 1
does not have an outcome success either, then, it must be that p(F−1, F1) = 1/2
so that also p(F1, F−1) = 1/2. By (0) we may assume that −1 does not provide
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zero e�ort with probability one so by cost advantage

p(F1, F−1)− c1(F−1) > p(F1, F−1)− c−1(F−1) = p(F−1, F1)− c−1(F−1)

and indeed 1 instead has greater success. The second possibility is that 1 does
have outcome success. In this case by (0) 1 also has greater success. This proves
(ii).

We now show (iii). If 1 has a strong cost advantage then there is a ê1 with
c1(ê1) < p(ê1, w−1) − p(w−1, w−1) = p(ê1, w−1) − 1/2. Hence p(ê1, w−1) −
c1(ê1) > 1/2. Observe that F−1 ≤ w−1 so p(ê1, w−1) ≤ p(ê1, F−1). Finally,
from optimality

p(F1, F−1)− c1(F1) ≥ p(ê1, F−1)− c1(ê1) ≥ p(ê1, w−1)− c1(ê1) > 1/2

which as both contestants cannot have a utility greater than 1/2 implies greater
success. This proves (iii)

Finally we prove (iv). Let ê−1 be the top of the support of the equilibrium
F−1. Let e

n
−1 ≤ ê−1 with en−1 → ê−1 and p(en−1, F1)− c−1(en−1) = p(F−1, F1)−

c−1(F−1). Since at points of discontinuity of p the jump is up this implies

p(F−1, F1)− c−1(F−1) ≤ p(ê−1, 0)− c−1(ê−1).

From the de�nition of a uniform cost advantage there is a ê1 such that

p(F−1, F1)− c−1(F−1) < p(ê1, ê−1)− c1(ê1).

Moreover because ê1 is the top of the support of F−1 we get

p(F−1, F1)− c−1(F−1) < p(ê1, F−1)− c1(ê1)

By optimality of F1 this gives

p(F−1, F1)− c−1(F−1) < p(F1, F−1)− c1(F1)

that is to say, greater success.

The following special case of parts (i) and (ii) of Theorem 4 is useful in a
variety of applications.

Corollary 1. In a contested equilibrium 1 has greater success if either of the
following two conditions is satis�ed:

(i) Cost is linear for both contestants and 1 has a pure cost advantage.7

(ii) 1 has a marginal cost advantage and one contestant provides no e�ort.

7This assumption is very popular in the literature.
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6. Convexity and An All-Pay Auction Result

Hirshleifer (1989) points out that it is likely to be the case in practice that
e�ort makes the greatest di�erence when the contest is close. If this is the case,
we would expect that the contest success function p(ej , e−j) should be convex in
ej for ej < e−j . He argues that in this case one contestant should be expected
to provide zero e�ort. We now examine this possibility more closely.

Consider a real valued function h(e) on [0,∞). If the function is continuously
di�erentiable then strict convexity implies that if h(e) ≥ h(0) for e > 0 then
h′(e) > 0. We generalize this idea by calling h(e) generalized convex up to e if
for e ∈ (0, e] and h(e) ≥ h(0)

h+(e) ≡ lim sup
ε→0+

h(e+ ε)− h(e)

ε
> 0.

Generalized convex functions cannot achieve a maximum in (0, e] since h(e) ≥
h(0) implies h+(e) > 0.

A contest is generalized convex if for each contestant j and all e−j > 0 the
objective p(ej , e−j)−cj(ej) is generalized convex as a function of ej up to e−j . If
cost is strictly positive for e1 > 0 the all-pay auction is generalized convex: the
condition p(ej , e−j)− cj(ej) ≥ p(0, e−j) is never satis�ed for 0 < ej < e−j ,while
at ej = e−j the right derivative is positive in�nity.

Hirshleifer (1989)'s argument suggests that contest success functions should
be generalized convex. This condition is satis�ed by many standard contest
success functions. Ewerhart (2017) studies continuously di�erentiable contest
success functions and shows that if the elasticity of the odds ratio with respect to
own e�ort is globally larger than 2 then generalized convexity holds. He shows
that if β > 2 this elasticity condition is satis�ed by the Tullock function. He
shows in that case that it is also satis�ed by the serial contest success function
p(ej , e−j) = (1/2)(ej/e−j)

β for ej < e−j studied by Alcalde and Dahm (2007).8

Generalized convexity not only applies to discontinuous contest success func-
tions, it is weaker than the elasticity condition even for continuously di�eren-
tiable functions. For example, while the serial contest success fails the elasticity
condition for β ≤ 2 it is continuously di�erentiable and for ej ≤ e−j and β > 1
strictly convex in ej so it is generalized convex even for 1 < β ≤ 2.

If the contest success function is generalized convex and the cost functions
are not �too convex,� and certainly if they are weakly concave, then the contest
will be generalized convex.9

Let us say that a contest is insensitive if for each contestant j and e−j > 0
we have p(0, e−j) = q < 1/2. This is a strong condition but is satis�ed in cases
such as the Tullock and serial cases where q = 0.

If Fj , F−j are an equilibrium, we write ûj = p(Fj , F−j)− cj(Fj) for the cor-
responding normalized utility. We can then generalize the results of Hirshleifer

8Feddersen and Sandroni (2006) study β = 1 with quadratic cost.
9For example cost functions are linear in Ewerhart (2017).
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(1989), Alcalde and Dahm (2007) and Ewerhart (2017)

Theorem 5. (i) If a contest is generalized convex then in any equilibrium there
is at least one contestant who provides e�ort with positive probability in every
interval containing zero.

(ii) If in addition the contest is insensitive then in any equilibrium Fj , F−j
neither contestant uses a pure strategy and there is a less successful contestant
−j who receives û−j = q and and more successful contestant j who receives
ûj = (1− F−j(0))q + F−j(0)(1− q).

(iii) If in addition 1 has a homogeneous cost advantage c1(e1) = αc−1(e1)
then in any equilibrium 1 is more successful and F−1(0) = 1− α.

Part (iii) says is that if we retain the generalized convexity and insensitivity
property of the generalized all-pay auction but assume a homogeneous cost
advantage the contest is payo� equivalent to the generalized all-pay auction
with the same costs and q.

Proof. Suppose the contest is generalized convex. De�ne ej to be the lowest
point of support in the equilibrium Fj . If ej > 0 then for −j the objective
p(e−j , Fj) − c−j(e−j) is generalized convex up to ej meaning that it is strictly
suboptimal for −j to provide e�ort in (0, ej ]. This implies that either one of
the ej 's is zero or both are equal. If both are equal, Theorem 1 and Lemma 7
in the Appendix imply that for one j the function p(ej , F−j) is continuous in
ej at ej hence so is the objective function. Since ej is strictly suboptimal and
p(ej , F−j) is continuous there, it follows that there is an ε > 0 such that ej is
strictly suboptimal in [ej , ej + ε] contradicting the de�nition of ej .

Suppose next that e−j = 0, that the contest is insensitive and that ej > 0.
We will show this is impossible.

Since p(0, e−j) is constant for e−j > 0 and −j does not provide e�ort in
(0, ej ] de�ne the function vj(ej) = p(ej , F−j) − cj(e−j) for ej > 0 and vj(0) =
limej→0 p(ej , F−j)− cj(ej). This is generalized convex up to ej .

If p is discontinuous at (ej , ej) and −j has an atom there then j does not by
Theorem 1. It follows from Lemma 7 that there is an ε > 0 such that such that
ej is strictly suboptimal in [ej , ej + ε]. Hence vj is in fact generalized convex
up to ej + ε, so for êj ∈ [ej , ej + ε] we have vj(êj) < limej→0 p(ej , F−j)− cj(ej).
Hence êj is not optimal. This contradicts the de�nition of ej .

If either p is continuous at (ej , ej) or −j has no atom there, the generalized
convexity of vj up to ej implies that vj(ej) < limej→0 p(ej , F−j) − cj(ej). By
Lemma 7 it follows that there is an ε′ so that for êj ∈ [ej , ej+ε

′] we have vj(êj) <
limej→0 p(ej , F−j)− cj(ej). Hence again êj is not optimal, again contradicting
the de�nition of ej . As all cases have been covered, we conclude that ej = 0 for
both contestants.

We next derive the equilibrium normalized utility under the insensitivity
assumption. Choose a positive sequence enj , e

n
−j → 0 such that pj(e

n
j , e

n
−j)→ p0.

Since ej = 0 for both contestants we can choose a sequence ẽnj ≤ enj in the
support of Fj in which pj(ẽ

n
j , F−j)− cj(ẽnj ) = ûj . Since cost is continuous
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ûj = lim inf pj(ẽ
n
j , F−j) = lim inf

ˆ
0<e−j

min{p0, pj(ẽ
n
j , e−j)}dF−j(e−j)+F−j(0)(1−p0)

+

ˆ
0<e−j<en−j

[
pj(ẽ

n
j , e−j)−min{p0, pj(ẽ

n
j , e−j)}

]
dF−j(e−j)

≤ (1− F−j(0))q + F−j(0)(1− q).

Since at least (1−F−j(0))q+F−j(0)(1− q) is obtained by providing zero e�ort,
it follows that in fact

ûj = (1− F−j(0))q + F−j(0)(1− q). (6)

Since insensitivity implies discontinuity at zero, by Theorem 1 both contestants
do not have an atom at zero. If j has no atom then −j gets q. If −j provides
zero e�ort with probability one then j has no best response so this is not an
equilibrium. Since ej = 0 it must be that j is mixing as well. This proves (ii).

To prove (iii) observe that if cost is homogeneous it follows from Theorem 4
(ii) that 1 must be more successful. The �nal part of the argument is derived
from Ewerhart (2017) and Alcalde and Dahm (2007). Consider the contest in
which 1 has cost (α/(1−F−1(0)))c−1(e1). Then the strategies F1 and F−1/(1−
F−1(0)) on e−1 > 0 are an equilibrium of this modi�ed game. Moreover both
contestants get p0 as neither has an atom at zero. By Theorem 4 this implies
α/(1− F−1(0)) = 1.

7. Robustness and the Equilibrium Correspondence

In order to prove existence we will now deal with sequences of contests
pn(e1, e−1), c1n(e1), c−1n(e−1). To make sense of this, we now give a slightly
more formal de�nition of a contest. A contest on W is a contest success func-
tion p(ej , e−j) ≥ 0 for 0 ≤ e1, e−1 ≤ W , which is non-decreasing in the �rst
argument, continuous except possibly at ej = e−j , and satisfying the adding-
up condition p(ej , e−j) + p(e−j , ej) = 1 together with a pair of cost functions
cj(ej) ≥ 0 non-decreasing and continuous with cj(0) = 0, cj(W ) > 1, and c−1

strictly increasing at 0. For a contest on W we take the strategy space to be of
cumulative distribution functions on [0,W ]. Theorem 13 in the Appendix shows
that

Theorem 6. Suppose pn, p0, cjn, cj0 are a sequence of contests in W with
pn(e1, e−1) → p0(e1, e−1), cjn(ej) → cj0(ej) for each 0 ≤ e1, e−1 ≤ W and
that F1n, F−1n are equilibria for pn, cjn converging weakly to F10, F−10. Then
pn(Fjn, F−jn) → p0(Fj0, F−j0), cjn(Fjn) → cj0(Fj0) and F10, F−10 is an equi-
librium for p0(e1, e−1), cj0(ej).

We should emphasize that this result requires only the pointwise conver-
gence of pn, cjn. Pointwise convergence is easy to check, but, as shown in the
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Appendix, has strong consequences for non-decreasing functions on rectangles.
If the limit is continuous the convergence is uniform. Even if the limit is discon-
tinuous on the diagonal - as we allow for contest success function - convergence
is uniform on the set of e�ort pairs that is bounded away from the diagonal.

As an example the Tullock contest success function converges pointwises to
the all-pay auction as β → ∞, so in any sequence of equilibria the payo� of
−1 converges to zero and that of 1 to 1 − c1(w−1). This is a known result.
The following implication is new. Say for b > 0 that a con�ict resolution func-
tion is perturbed Tullock if p(ej , e−j) = (b + ej)

β/
(
(ej + b)β + (e−j + b)β

)
.10

Alternatively, a con�ict resolution function is perturbed serial if p(ej , e−j) =
(1/2)((ej + b)/(e−j + b))β for ej < e−j . Notice that both of these functions are
continuous but fail the insensitivity condition of Theorem 5, never-the-less that
theorem together with Theorem 6 imply the following:

Corollary 2. Suppose that the con�ict resolution function is perturbed Tullock
with β > 2 or perturbed serial with with β > 1 and that 1 has a homogeneous
cost advantage c1(e1) = αc−1(e1). Then in the limit as h → 0 in any sequence
of equilibria the utility of 1 converges to 1− α and of −1 to zero.

We say that a contest is well-behaved if p(ej , e−j) > 0, p is strictly increasing
in the �rst argument, cj is strictly increasing, and both have an extension to an
open neighborhood of [0,W ]× [0,W ] that is real analytic. Some contest success
functions studied in the literature have real analytic extensions. This is true of
the perturbed Tullock function. The logit function

p(ej , e−j) =
exp(βej)

exp(βej) + exp(βe−j)

introduced by Hirshleifer (1989) is another example. Notice that like the Tullock
function as β →∞ the logit function converges pointwise to the all-pay auction.
Another example can be found in Shachar and Nalebu� (1999) who take

pj(ej , e−j) = H

(
1

2
+

exp(ej)− exp(e−j)

exp(ej) + exp(e−j)

)
where H is a cdf with support in [0, 1]. If the cdf H is symmetric around 1/2
then pj(ej , e−j) is a contest success function, and if in addition H admits a real
analytic extension to (−ε, 1 + ε) then so does pj(ej , e−j).

Other contest success functions studied in the literature are not well-behaved
either being discontinuous as is the case with the all-pay auction and Tullock
function, or having discontinuities in the derivatives as is the case with the
quasi-linear function P (ej − e−j) which is linear when it is not 0 or 1. Never-
the-less in Appendix 12 we show that all contests can be approximated by well
behaved contests:

10As for example in Amegashi (2006).
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Theorem 7. If p, cj is a contest on W then there is a sequence of well-behaved
contests pn, cjn on W with pn(ej , e−j) → p(ej , e−j), cjn(ej) → cj(ej) for every
(e1, e−1) ∈ [0,W ]× [0,W ].

Since real analytic functions are continuous, as an immediate corollary we
have:

Corollary 3. Nash equilibria exist. If both contestants have the same costs
there is a symmetric Nash equilibrium.

We are interested in understanding properties of contests that are robust.
By a property we mean a statement Π(p, c, F ) such as: there is complete rent
dissipation, contestant 1 has greater success, or one contestant has zero utility.
We say that a property is true in a contest if it is true for all equilibria of the
game. We say that a Π(p, c, F ) in p, c is robust if whenever it is true in p, c then
for every sequence pn, cn converging pointwise to p, c and for n su�ciently large
the property is true in pn, cn.

Corollary 4. Any strict inequality concerning equilibrium utility, probability of
winning, or cost is robust.

Proof. Suppose not. Then there exists a subsequence in which Π(pn, cn, Fn)
is false. Since the space of strategies is compact every subsequence contains a
further subsequence that converges weakly to some F . By Theorem 6 F is an
equilibrium and utility, winning probability, and cost converge. Hence as the
strict inequality is presumed to be satis�ed for F for all su�ciently large n it
was satis�ed for Π(pn, cn, Fn), a contradiction.

An important implication of Theorem 6 and Corollary 4 is that if pn con-
verges to the all-pay auction holding �xed costs cj then utilities and the prob-
ability of winning approach those of the all-pay auction. If we assume that the
costs are linear then Ewerhart (2017) shows that if pn is close enough to the
all-pay auction as measured by �decisiveness� then the utility and probability of
winning are in fact identical to those of the all-pay auction.

Finite Support

In Appendix 15 we show that well-behaved contests have a relatively simple
equilibrium structure:

Theorem 8. Suppose that c1(e1) = 0 for 0 ≤ e1 ≤ w1 and if w1 > 0 we require
that p(ej , e−j) is strictly increasing in the �rst argument (so in particular in
any equilibrium limw→w−

1
F1(w) = 0). If p(ej , e−j), cj(ej) have real analytic

extensions to an open neighborhood of [w1,W ] × [0,W ] then every equilibrium
has �nite support.

We note that this result holds also for some contests that are not well-
behaved. Che and Gale (2000) show that with quasi-linear contest success
and linear costs there is an equilibrium with �nite support and they explicitly
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compute it. Ashworth and Bueno De Mesquita (2009) extend that analysis to
the case where one contestant has a head start advantage. Ewerhart (2015) who
developed the technique we use in the appendix analyzed the symmetric Tullock
contest for large β. That function is not well-behaved since it is discontinuous
at zero and without the extension of analyticity below zero the �niteness result
fails: with linear costs Ewerhart (2015) shows that the support is countable with
a single accumulation point at zero and explicitly computes the equilibrium.

8. Rent Dissipation

An important idea in the literature on contests is that of complete rent
dissipation, meaning that both contestants get zero, competing so hard that
the gains are cancelled by the costs. This is the case in the symmetric all pay
auction. Notice that this is ruled out if one contestant provides zero e�ort, since
the other cannot get less than one half as this is obtainable by providing zero
e�ort, and by a contested equilibrium in which one contestant has a greater
success.

Example 3. Although complete rent dissipation is often associated with sym-
metry and the all pay auction, interestingly symmetry, discontinuity, and mixed
strategy equilibria are not needed for complete rent dissipation. If p(bj,b−j) is
a contest success function with p(0, b−j) = 0 and continuous for (bj , b−j) 6= 0,

for example the Tullock function, and b̂j , b̂−j > 0 then there are cost functions

cj(bj), c−j(b−j) such that (b̂j , b̂−j) is a pure strategy equilibrium with complete

rent dissipation. An example is to take cj(bj) = pj(bj , b̂−j) on [0, 2b̂j ] and

cj(bj) = pj(bj , b̂−j) + bj for bj > 2b̂j .

Also important in the literature has been the weaker situation in which one
contestant gets nothing - this is the case in every all pay auction, symmetric or
not. It turns out that the possibility of a contestant getting nothing is quite
exceptional. We say that a property is generic if it is robust and if for any
p, c1, c−1 for which it is not true there is a sequence pn, cjn converging pointwise
to p, cj in which it is true.

We formally de�ne properties corresponding to dissipation:

1. no dissipation: in equilibrium c1(F1) + c−1(F−1) = 0

2. partial dissipation: in equilibrium 0 < c1(F1) + c−1(F−1) < 1

3. some dissipation: in equilibrium 0 < c1(F1) + c−1(F−1)

4. complete dissipation: in equilibrium c1(F1) + c−1(F−1) = 1

5. γ-dissipation: in equilibrium c1(F1) + c−1(F−1) > γ where 0 ≤ γ < 1

Notice that complete dissipation means γ-dissipation for every 0 ≤ γ < 1.
Moreover, contested equilibrium implies some dissipation. If in addition one
contestant has greater success then there is partial dissipation. Recall that
robustness and genericity concern a property that applies to all equilibria. We
have
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Theorem 9. Concerning rent dissipation:
(i) there is a subset of contests with no dissipation that are robust
(ii) the entire set of contests with some (or partial) dissipation is robust
(iii) contests without complete dissipation are generic
(iv) contests with γ-dissipation are robust

Proof. (i) The property of very high cost for j is cj(ej) > supe−j
p(ej , e−j) −

p(0, e−j) which is robust by Corollary 4. By Theorem 3 if both contestants have
very high cost there is a unique peaceful equilibrium and hence no dissipation.

Part (ii) follows directly from Corollary 4 and the fact that some (partial)
dissipation is de�ned by a strict cost inequality

For (iii) we show the slightly stronger result that both contestants getting
positive utility is generic. Strict inequality concerning utility is robust by Corol-
lary 4: this proves that both contestants getting positive utility is robust. We
will show that for any p0, cj0 there is a sequence pn, cjn converging uniformly to
p0, cj0 in which each contestant gets positive utility in every equilibrium, and
this will complete the proof.

For costs we take cjn = cj0. Then take 1 > λn > 0 to be a sequence
converging to zero and de�ne

pn(ej , e−j) = (1− λn)p0(ej , e−j) + λnΦ(ej − e−j)

where Φ is the standard normal cumulative distribution function. This obvi-
ously converges uniformly to p0(ej , e−j). Moreover, for 0 ≤ ej ≤ W we have
pn(ej , e−j) ≥ λnΦ(−W ). Hence providing zero e�ort gets at least λnΦ(−W ) >
0 so this is obtained by both contestants in any equilibrium.

The proof of (iv) follows from taking an anomalous subsequence and then
�nding one on which Fn converges.

Notice that (iii) states that complete dissipation is not robust and (iv) that
contests near those with complete dissipation - so for example close to symmetric
all pay - have nearly complete dissipation.

9. Extensions

Resource Limits

Some of the existing contest models truncate the e�ort level above: for
example, there might be only a limited number of voters or a budget constraint
like in Che and Gale (1996) and Pastine and Pastine (2012). This is ruled out
in our model, but as in Levine and Mattozzi (2020) we can approximate the
e�ect by assuming that cost grows rapidly, and in particular becomes greater
than the value of the prize, as the limiting e�ort level is approached. For these
approximations our assumptions are satis�ed so our results hold.

More generally, a model with a truncated e�ort level is equivalent to a model
in which cost is discontinuous at the truncation point, jumping to a level greater
than the value of the prize. Speci�cally, we now wish to consider the possibility
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that cj instead of being continuous on the whole support, it is continuous on
[0, ej ] where ej > 0, cj(ej) = cj < 1, and for ej > ej we have cj(ej) = cMax > 1.

Here it is crucial to emphasize that we did not use the continuity of the cost
function in proving our results on advantage, so those results extend to this
more general class of models. Furthermore, if the contest success function itself is
continuous, we show in Theorem 15 that our robustness results continue to hold.
This leaves the issue of robustness when both p and c are discontinuous, and here
we can go no further. The following example adapted from Levine and Mattozzi
(2020) shows that upper hemi-continuity of the equilibrium correspondence can
fail in that case.

Example 4. Let the contest success function be that of the all-pay auction,
and �x a cost function for both contestants that is linear with constant unit
marginal cost up to a resource limit of ej > 0. We normalize the value of the
prize to be 1, assume that ej + e−j = 1/2 and let cMax = 2. This means that
both contestants want to violate their resource limits.

Suppose �rst that e1 > e−1. In this case contestant 1 receives a utility of
at least 3/4 and contestant −1 gets a utility of 0. Moreover, it is well-known
from the earlier literature that in the unique equilibrium e�ort is uniform in
(0, e−1) and that −1 has an atom at zero and 1 has an atom at e−1. The
implication of the non-trivial atom at e−1 means, however, that the tie-breaking
rule that each contestant has an equal chance of winning in case of a tie is not
consistent with equilibrium. If that is the tie-breaking rule, then −1 should
chooses e−1, guaranteeing at least a 50% chance of winning, and so earning
at least 1/2 − 1/4 > 0 rather than zero as the equilibrium requires. In fact
the tie-breaking rule at e−1 must favor contestant 1 at least to the extent that
contestant −1 cannot pro�t from that e�ort level. In other words: when both
p and c are discontinuous we must allow for endogenous tie-breaking rules.

Second, consider what happens as we pass through the point of symmetry.
For e1 > e−1 contestant 1 earns at least 3/4 and contestant −1 earns nothing;
at e1 = e−1 both contestants earn 1/4, while for e1 < e−1 contestant 1 earns 0
and contestant −1 earns at least 3/4. In other words: both the individual and
aggregate payo� are discontinuous as we pass through the point of symmetry.

Finally, suppose that we approximate the discontinuous cost functions by
functions that are linear up to ej−ε then rise steeply to cMax as ej is approached.
Levine and Mattozzi (2020) show that in this case as long as e1 6= e−1 payo�s are
well-behaved in the limit. However, this is not the case when there is symmetry.
If e1 = e−1 then with continuous cost there is complete rent dissipation: both
players get zero. However, in the limit both contestants get 1/2 − 1/4 so we
have equilibria with complete rent dissipation converging to one where both
contestants get a positive rent.

Asymmetric contest success

We start by considering a broader class of models equivalent to ours. Given
the separability of the payo� function, the units of e�ort do not matter. While it
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might be natural from an economic point of view to identify e�ort with number
of voters, hours devoted to the cause, or amount of money contributed, the
model does not care about the units. Speci�cally, let h(e) denote a continuous
strictly increasing function with h(0) = 0, that is, a strictly increasing cost
function. We de�ne the contest p(h(ej), h(e−j)), cj(h(ej)) as equivalent to the
contest p(ej , e−j), cj(ej). Since h(e) is invertible this is an equivalence relation.

Lemma 1. Any equilibrium in a contest can be transformed to an equilibrium of
any equivalent contest with exactly the same probabilities of winning and costs.

Proof. If an equilibrium strategy of the h contest is denoted by Fhj(ej) we
can map the equilibrium strategies by Fhj(h(ej)) = Fj(ej) and Fhj(ej) =
Fj(h

−1(ej)).

Notice that if for contestant −1 the cost c−1(e−1) is strictly increasing, we
can take h(e−j) = c−1

−1(e−j) so that the cost function of −1 is linear and given by
ch−1(ej) = ej . In particlar the statement �cost is convex� has no real meaning:
we can change the units of cost so as to make cost concave or convex and get
an equivalent contest by suitably modifying the contest success function.

A particular implication of Lemma 1 is that it enable us to study asymmetric
contest success functions. Many models assume that one contestant has an ad-
vantage in providing e�ort. Let h1(e1) be a strictly increasing continuous func-
tion with h1(e1) ≥ e1 and consider the contest success function p(h1(e1), e−1)
where p satis�es our symmetry assumption. This represents the idea that ef-
fort by 1 is �worth more� than e�ort by −1: for example, in a political contest
because 1 has a more appealing platform or more attractive candidate. Using
Lemma 1 we can immediately map this back into our framework: the equivalent
model is p(e1, e−1) with the cost for 1 given as c1(h−1(e1)) for e1 ≥ h(0) and 0
otherwise.11

Not all asymmetries have this form. In the Shachar and Nalebu� (1999)
formulation their model can only be reduced to a standard contest if the cdf
H is symmetric around 1/2. In a similar way the model of Coate and Conlin
(2004) maps to a standard contest only if the parties are of equal expected size.
By contrast Herrera, Levine and Martinelli (2008) allow only e�ort advantage
so their model is equivalent to a standard contest for all parameter values.

External costs

Some models have objective functions of the form p(ej , e−j)−cj(ej)−bj(e−j)
where bj(e−j) represents external costs to j of e−j possibily collateral damage
in�icted on j by the e�ort of −j . The ethical voter or rule utilitiarian model
of Feddersen and Sandroni (2006) has this form, although subsequent authors
such as Coate and Conlin (2004) have dropped the exteral e�ect.

11Since it may be that there is an advantage even at zero we need to allow the possibility
that c1 is �at up to h(0).
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The point here is that subtracting a function that depends only on the
other contestant's choice changes the payo�s of the game but has no e�ect
on equilibrium strategies. In particular, if we agree that it is still sensible to
measure achievement of goals by p(ej , e−j) − cj(ej), that is net of collateral
damage about which j can do nothing, then bj(e−j) does not matter. It does
matter, however, for assessment of the e�ciency of di�erent contest success
functions: low collateral damage is obviously socially desirable. For example, in
choosing between an election and a military con�ict both designed to exactly
mimic the contest success, the former is preferred because it avoids collateral
damage.

10. Conclusion

The goal of this paper has been to establish general results about contests.
We characterize cost functions for which there are peaceful and contested equi-
libria. We then prove four main results. First, a contestant with a su�ciently
great cost advantage always has greater success. Second, if the cost advantage
is a homogeneous one, then the lower cost contestant always has greater suc-
cess. Third, if we retain the generalized convexity and insensitivity property of
the generalized all-pay auction but assume a homogeneous cost advantage the
contest is payo� equivalent to the generalized all-pay auction. Finally, we study
the robustness of equilibrium. We prove a basic upper hemi-continuity result
and examine approximation by real analytic functions. This enables us to show
that properties involving strict inequality are robust and that large classes of
examples have equilibria with �nite support.
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11. Appendix: Upper Hemi-Continuity

Mathematical Preliminaries

We use the standard order on <M so that x ≥ x′ means that this is true
for each component. Suppose that X is a compact rectangle in <M , that
fn(x), f0(x) are uniformly bounded non-decreasing real valued functions on X
Denote by D the set of discontinuities of f0(x) and by D the closure of D.

Lemma 2. Suppose that Do ⊃ D is an open subset of X. If for all x ∈ X we
have fn(x)→ f0(x) then fn converges uniformly to f on X\Do.

Proof. If X\Do is empty this is true trivially. Otherwise as X\Do is compact
if the theorem fails there is a sequence xn ∈ X\Do with xn → x ∈ X\Do and
fn(xn) → z 6= f0(x). There are two cases as z < f0(x) and z > f0(x). Denote
the bottom corner of X as y0 and the top corner as y1. Notice that since Do is
open and contains the closure of D, then x has an open neighborhood in which
f0 is continuous.

If z < f0(x) and x 6= y0 since f0 is continuous near x there is a y < x
with f0(y) > z and an N such that for n > N we have xn > y. Since fn is
non-decreasing fn(xn) ≥ fn(y). Hence z ≥ f0(y) a contradiction. If x = y0

then fn(y0) → f0(y0) while fn(xn) ≥ fn(y0). Taking limits on both sides we
get z ≥ f0(y0) a contradiction

If z > f0(x) and x 6= y1 we have y > x such that f0(y) < z and an N such
that for n > N we have xn < y. This gives fn(xn) ≤ fn(y) implying z ≤ f0(y)
a contradiction. If x = y1 we have fn(x1) → f0(x1) and fn(xn) ≤ fn(x1) and
taking limits on both sides we get z ≤ f0(x1) a contradiction.

We say that an open set Do encompasses f0 if there is a closed set D1 ⊂ Do

such that the interior of D1 contains D. Let Do denote the closure of Do.

Theorem 10. Suppose that the probability measures µn converge weakly to µ0.
If there is a sequence of sets Dm

a , D
m
g with Dm

a ∪Dm
g encompassing f0 such that

lim supm lim supn supx∈Dm
a
|fn(x)−f0(x)| = 0 and lim supm lim supn µn(D

m

g ) =

0 then lim
´
fndµn =

´
f0dµ0.

Proof. By Urysohn's Lemma there are continuous functions 0 ≤ gm(x) ≤ 1
equal to 1 for x ∈ X\Dm

0 and equal to zero for x ∈ Dm
1 . Setting Dm

o = Dm
g ∪Dm

a

|
ˆ
fndµn −

ˆ
f0dµ0| ≤ |

ˆ
gmfndµn −

ˆ
gmf0dµ0|+

+|
ˆ

(1− gm)fndµn −
ˆ

(1− gm)f0dµ0| ≤

≤ |
ˆ
gmfndµn −

ˆ
gmf0dµ0|+ |

ˆ
D

m
0

fndµn −
ˆ
f0dµ0|.

If φn, φ0 are real numbers and mn,m0 are non-negative real numbers we have
the inequality |φnmn − φ0m0| ≤ |φn − φ0|(mn +m0) so
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|
ˆ
fndµn−

ˆ
f0dµ0| ≤ |

ˆ
gmfndµn−

ˆ
gmf0dµ0|+

ˆ
D

m
o

|fn− f0|d(µn +µ0).

First we show that
´
D

m
o
|fn − f0|d(µn + µ0)→ 0. Let f = sup |fk(x)|. we have

ˆ
D

m
o

|fn − f0|d(µn + µ0) ≤
ˆ
D

m
a

|fn − f0|d(µn + µ0) +

ˆ
D

m
g

|fn − f0|d(µn + µ0)

≤ sup
x∈Dm

a

|fn(x)− f0(x)|+ f
(
µn(D

m

g ) + µ0(D
m

g )
)
.

The �rst term converges to 0 by hypothesis. For the second, as D
m

g is closed

and µn converges weakly to µ0 we have µ0(D
m

g ) ≤ lim supµn(D
m

a ) so

lim sup
n
f
(
µn(D

m

g ) + µ0(D
m

g )
)
≤ 2f lim sup

n
µn(D

m

g )

giving the �rst result. Second, write

|
ˆ
gmfndµn−

ˆ
gmf0dµ0| ≤ |

ˆ
gm|fn−f0|dµn+ |

ˆ
gmf0dµ0−

ˆ
gmf0dµn|.

Since gmf0 is continuous by construction we have limn |
´
gmf0dµ0−

´
gmf0dµn| =

0 by weak convergence of µn to µ0.
Finally, we show that limn |

´
gm|fn − f0|dµn = 0. Denote by Dmo

1 the
interior of Dm

1 and Xm
1 = X\Dmo

1 . By Lemma 2 |fn(x) − f0(x)| ≤ εmn for
x ∈ Xm

1 where limn ε
m
n = 0. As gm(x) = 0 for x ∈ Dm

1 ⊃ Dmo
1 we have

gm|fn − f0| ≤ εmn so that
´
gm|fn − f0|dµn ≤ εn.

Recall that D denote the closure of D.

Theorem 11. Suppose that X is a compact rectangle in <M , that fn(x), f0(x)
are uniformly bounded non-decreasing real valued functions on X, that fn(x)→
f0(x) and that the probability measures µn converge weakly to µ0. If µ0(D) = 0
then lim

´
fndµn =

´
f0dµ0.

Proof. Take the sets Dm
o = Dm

g to be the open εm → 0 neighborhoods of D and

take Do
a = ∅. We may take Dm

1 sets to be the closed ε/2 neighborhoods of D:
this clearly contains D in its interior and is contained in Dm

o . Take Dm
2 to be

the open 2εm neighborhoods of D: as these contain D
m

o is su�ces to show that
lim supm lim supn µn(Dm

2 ) = 0. Since Dm
2 is open and µn converges weakly to µ

we have lim supn µn(Dm
2 ) ≤ µ0(Dm

2 ), so we need only prove lim supm µ0(Dm
2 ) =

0. Since ∩mDm
2 = D we have limm µ0(Dm

2 ) = µ0(D) = 0.

Upper Hemi-Continuity of the Equilibrium Correspondence

We now consider a convergence scenario. Here pn(e1, e−1) → p0(e1, e−1),
cjn(ej) → cj0(ej) is a sequence of contests on W . We take F1n, F−1n to be
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equilibria for n converging weakly to F10, F−10 with µjk the corresponding
measures. We say that the convergence scenario is upper hemi-continuous if
pn(Fjn, F−jn)→ p0(Fj0, F−j0), cjn(Fjn)→ cj0(Fj0) for both j and F10, F−10 is
an equilibrium for p0(e1, e−1), cj0(ej).

Theorem 12. If pn(Fjn, F−jN )→ p0(Fj0, F−j0) for both j then the convergence
scenario is upper hemi-continuous.

Proof. By Theorem 11 cjn(Fjn)→ cj0(Fj0) on the relevant domain 0 ≤ ej ≤W .
This shows that ujn(Fjn, F−jn)→ uj0(Fj0, F−j0). Next consider j deviating to
ej ∈ [0,W ]. Suppose �rst that ej is an atom of F−j0. Then this is not a best
response. Suppose second that ej is not an atom of F−j0. Hence the function of
e given by p0(ej , e) has measure zero with respect to F−j0. If follows from Theo-
rem 11 that pn(ej , F−jn)→ p0(ej , F−j0), so also ujn(ej , F−jn)→ uj0(ej , F−j0).
If ejwas a pro�table deviation, that is, uj0(ej , F−j0) > uj0(Fj0, F−j0), it fol-
lows by the standard argument that for su�ciently large n we would have
ujn(ej , F−jn) > ujn(Fjn, F−jn) contradicting the optimality of Fjn.

In what follows all sequences are of strictly positive numbers.

Lemma 3. If γm → 0 then there are sequences Gn, Hm → 0 such that on
[0,W + 2 max γm] we have maxe∈[0,W ] cjn(e+ 2γm)− cjn(e) ≤ Gn +Hm.

Proof. By Lemma 2 we have cjn converging uniformly to cj0 so that

max
e∈[0,W ]

cjn(e+ 2γm)− cjn(e) ≤ max
e∈[0,W ]

cj0(e+ 2γm)− cj0(e) +Gjn

Since cj0 is uniformly continuous on compact intervals maxe∈[0,W ] cj0(e+2γm)−
cj0(e) ≤ Hjm. Then take Gn = maxGjn, H

m = maxHjm.

Lemma 4. Fix sequences γm, θm → 0. Then there exists a sequence un → 0
and γm ≥ ωm such that for 0 ≤ e−j − e ≤ ωm:

(i) If p(e+ γm)− 1/2 < θm then sup0≤ek−e≤ωm |pn(ej , e−j)− p0(ej , e−j)| ≤
2θm + un.

(ii) If p(e+ γm)− 1/2 ≥ θm then pn(e+ γm + ωm, e−j)− 1/2 ≥ θm/2− un.

Proof. Wemay apply Theorem 10 to the functions pn(ej ,−x−j), p0(ej ,−x−j) on
the rectangle [0,W ]× [−W, 0] with Do = {(ej , x−j) ||ej + xj | < γm } to conclude
that pn(ej ,−x−j) converges uniformly to p0(ej ,−x−j) there. Hence there exists
a constant um such that for ej−e−j ≥ γm we have |pn(ej , ej−1)−p0(ej , ej−1)| ≤
un.

Fix e. For (i) Take ωm = γm. Take 0 ≤ ek − e ≤ ωm. Observe that

p0(ej , e−j) ≤ p0(e+ ωm, e) < 1/2 + θm.

Since e + ωm − e ≥ γm we also have |pn(e + ωm, e) − p0(e + ωm, e)| ≤ un this
implies

pn(ej , e−j) ≤ 1/2 + θm + un.
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Reversing the role of j and −j we see that

|p0(ej , e−j)− 1/2| < θm, |pn(ej , e−j)− 1/2| < θm + un.

Hence |pn(ej , e−j)− p0(ej , e−j)| < 2θm + un.
For (ii), observe that p0(ej , e−j) is uniformly continuous on ej − e−j ≥ γm.

Hence we may �nd a ωm > 0 which without loss of generality we may take to be
smaller than γm such that for |e−j − e| ≤ ωm we have |p0(ej , e−j)− p0(ej , e)| <
θm/2. Since pn(e + γm + ωm, e−j) is non-increasing in e−j we put this all
together:

pn(e+γm+ωm, e−j) ≥ pn(e+γm+ωm, e+ωm) ≥ p0(e+γm+ωm, e+ωm)−un

≥ p0(e+ γm +ωm, e)− θm/2−un ≥ p(e+ γm)− θm/2−un ≥ 1/2 + θm/2−un.

Lemma 5. For any γm → 0 there are sequences Gn, Hm → 0 such that for any
θm and ωm ≤ γm and any e with pn(e+ γm + ωm, e−j)− 1/2 ≥ θm/2− un > 0
for all 0 ≤ e−j − e ≤ ωm we have

min
j
µjn([e, e+ ωm]) ≤ Gn +Hm

θm/2− un

Proof. Given γm → 0 choose the sequences Gn, Hm by Lemma 3.
De�ne mj ≡ µjn([e, e + ωm]). If for one j we have mj = 0 then certainly

the inequality holds. Otherwise, consider that if each j plays µjn/mj in [e, e+
ωm] then one of them must have probability no greater than 1/2 of winning.
Say this is j. Consider the strategy for j of switching from µjn to µ̂jn by not
providing e�ort in [e, e+ ωm] and instead providing e�ort with probability mj

at e+ γm + ωm. This results in a utility gain of at least

m−j (θm/2− un)− (cjn(e+ γm + ωm)− cjn(e))

≥ m−j (θm/2− un)−(cjn(e+ 2γm)− cjn(e)) ≥ m−j (θm/2− un)−(Gn +Hm) .

As the utility gain cannot be positive, this implies 0 ≥ m−j (θm/2− un) −
(Gn +Hm) giving the desired inequality.

Theorem 13. Convergence scenarios are upper hemi-continuous.

Proof. By Theorem 12 it su�ces to show pn(Fjn, F−jn)→ p0(Fj0, F−j0).
Observe that pn(ej , e−j), p0(ej , e−j) are non-decreasing in the �rst argument

and non-increasing in the second so that the functions on the rectangle [0,W ]×
[−W, 0], given by fk(x) ≡ pk(xj ,−x−j), are uniformly bounded. De�ne µn =
µ1n × µ−1n and µ0 = µ10 × µ−10. From Fubini's Theorem µn converges weakly
to µ0. so Theorem 10 applies if we can show how to construct the sets Dm

a , D
m
g .

Fix a sequence γm → 0. Choose sequences Gn, Hm by Lemma 5 and choose
θm → 0 so that Hm/θm → 0. Then choose un → 0 and ωm ≤ γm by Lemma 4.
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We cover the diagonal with open squares of width ωm. Speci�cally, for ` =
1, 2, . . . , L we take the lower corners κ` of these squares to be 0, 2ωm/3, 4ωm/3, . . .
until the �nal square overlaps the top corner at (W,W ). There are two types
of squares: a-squares where p(κ` + γm) − 1/2 < γm and g-squares where
p(κ` + γm)− 1/2 ≥ γm.

We take Dm
a to be the union of the a-squares and Dm

g to be the union of the
g-squares. Then for each square ` we may take a closed square with the same
corner but 3/4rths the width and de�ne D1 to be the union of these squares.
Then Dm

o = Dm
a ∪Dm

b ⊃ D1 ⊃ D so that indeed Dm
o encompasses p0.

SinceDm
a is the union of a-squares, by Lemma 4 (i) we have supx∈Dm

a
|fn(x)−

f0(x)| ≤ 2θm + un, so indeed lim supm lim supn supx∈Dm
a
|fn(x)− f0(x)| = 0 as

required by Theorem 10.
For a g-square ` we have 0 ≤ e−j − e ≤ ωm so by Lemma 4 pn(e + γm +

ωm, e−j)− 1/2 ≥ θm/2− un. Then by Lemma 5

min
j
µjn([κ`, κ` + ωm]) ≤ Gn +Hm

θm/2− un
.

We now add up over the g-squares four times, once for the odd numbered ones
and once for the even numbered ones. This assures that each sum is over disjoint
squares. In each case we �rst add those for which j = 1 has the lowest value of
µjn([κ`, κ` + ωm]) and once for j = −1. In each set of indices Λ we get a sum∑

`∈Λ

µjn([κ`, κ` + ωm])µ−jn([κ`, κ` + ωm]) ≤

Gn +Hm

θm/2− un
∑
`∈Λ

µ−jn([κ`, κ` + ωm]) ≤ Gn +Hm

θm/2− un
.

This gives a bound

µn(D
m

g ) ≤ Gn +Hm

θm/2− un
.

We then have

lim sup
n
µn(D

m

g ) ≤ Hm

θm/2

and since we constructed the sequences so that Hm/θm → 0 the result now
follows from Theorem 10.

12. Appendix: Smoothing Con�ict Resolution Functions

Theorem 14. If p, cj is a contest on W then there is a sequence of well-behaved
contests pn, cjn on W with pn(ej , e−j) → p(ej , e−j), cjn(ej) → cj(ej) for every
(e1, e−1) ∈ [0,W ]× [0,W ].

To prove this theorem we �rst state and prove
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Lemma 6. Suppose that pn(ej , e−j)→ p0(ej , e−j) and pmn(ej , e−j)→m pn(ej , e−j).
Then there is M(n) such that pM(n)n(ej , e−j)→ p0(ej , e−j).

Proof. De�ne d(p, q) = inf{γ| sup|ej−e−j |≥γ |p(ej , e−j)− q(ej , e−j)| ≤ γ}. Then
d(p, q) = 0 if and only if p = q, d(p, q) = d(q, p) and d(p, q) + d(q, r) ≤
2 max{d(p, q), d(q, r)}. Moreover, d(pn, p0) → 0 if and only if pn(ej , e−j) →
p0(ej , e−j). Let εn → 0 and take M(n) such that for m ≥ M(n) we have
d(pmn, pn) < εn. Then d(pM(n)n, p0) ≤ 2 max{εn, d(pn, p0)} → 0.

We now prove Theorem 14.

Proof. By Lemma 6 we can do the perturbations sequentially.
Step 1: Perturb p to get it strictly increasing with strictly positive in�mum:

take pn(ej , e−j) = (1 − λn)p(ej , e−j) + λnΦ(ej − e−j) where Φ is the standard
normal cdf.

Step 2: Given p strictly increasing and positive perturb it to get it strictly
increasing, positive and C2. Let gn(xj |ej) = (1/W )hn(xj/W |ej) where hn(•|ej)
is the Dirichlet distribution with parameter vector

8n3
[
(1− 1/n

2
√

2
)(ej/W ) +

1/n

2
√

2

1

2

]
, 8n3

[
(1− 1/n

2
√

2
)(1− ej/W ) +

1/n

2
√

2

1

2

]
.

This is C∞ in bj and gn(0|ej) = gn(W |ej) = 0 and taking pn(bj , b−j) ≡´∞
0
p(xj , x−j)gn(xj |bj)gn(x−j |b−j)dxjdx−j this is certainly strictly positive and

C2. To see that it is strictly increasing observe that increasing bj increases
gn(xj |ej) in �rst order stochastic dominance. Finally, it is shown in the Web
Appendix of Dutta, Levine and Modica (2018) that Pr(|xj − ej | > 1/n) ≤ 1/n
so that we have pointwise convergence at every continuity point of p. Pointwise
convergence on the diagonal is by de�nition.

Step 3: Given p strictly increasing, positive and C2 perturb it to get it strictly
increasing, positive on [0,W ]×[0,W ] and real analytic in an open neighborhood.
By Whitney (1934) Theorem 1 we can extend p to be C1on all of R2. Take an
open neighborhood W of [0,W ]× [0,W ] so that p is strictly positive there. By
Whitney (1934) Lemma 5 for each ε > 0 we can �nd a real analytic function
q(bj , b−j) with |q − p| < ε and |Dq −Dp| < ε on the closure of W. Then de�ne
Q(bj , b−j) = q(bj , b−j)/(q(bj , b−j) + q(b−j , bj)).

Remark: The case of cj is similar but easier. In the �nal step the real
analytic function qj(bj) is not necessarily zero at zero so we de�ne Qj(bj) =
qj(bj)− qj(0).

13. Appendix: Continuity For Ties

Lemma 7. Suppose that either F−j does not have an atom at e or p is con-
tinuous at (e, e). Then p(ej , F−j) as a function of ej is right continuous at
ej = e.
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Proof. Let enj ↓ e and write

p(enj , F−j) =

ˆ
p(enj , e−j)dF−j(e−j) =

ˆ
|e−j−e|>ε

p(enj , e−j)dF−j(e−j)+

ˆ
|e−j−e|≤ε

p(enj , e−j)dF−j(e−j).

For the �rst term from Theorem [monotone-uniform]

ˆ
|e−j−e|>ε

p(enj , e−j)dF−j(e−j)→
ˆ
|e−j−e|>ε

p(e, e−j)dF−j(e−j) ≤
ˆ
e−j 6=e

p(e, e−j)dF−j(e−j).

Hence there is a sequence εn → 0 such that

lim sup

ˆ
|e−j−e|>εn

p(enj , e−j)dF−j(e−j) ≤
ˆ
e−j 6=e

p(e, e−j)dF−j(e−j).

If F−j does not have an atom at e

ˆ
|e−j−e|≤εn

p(enj , e−j)dF−j(e−j) ≤
ˆ
|e−j−e|≤εn

dF−j(e−j)→ 0.

Hence limn→∞ p(enj , F−j) ≤ p(e, F−j).
If p is continuous at (e, e) and letting µ−j be the measure corresponding to

F−j ˆ
|e−j−e|≤εn

p(enj , e−j)dF−j(e−j)→ p(e, e)µ−j(e).

Hence limn→∞ p(enj , F−j) ≤
´
e−j 6=e>ε p(e, e−j)dF−j(e−j)+p(e, e)µ−j(e) = p(e, F−j).

Since by monotonicity p(enj , F−j) ≥ p(e, F−j) right continuity follows from
limn→∞ p(enj , F−j) ≤ p(e, F−j).

14. Appendix: Resource Limits

A resource constrained contest on W is a contest success function p(ej , e−j)
together with a pair of cost functions cj(ej) that satisfy the de�nition of being
a contest except that p is required to be continuous and we allow the possibility
that cj instead of being continuous on the entire support is continuous on [0, ej ]
where ej > 0, cj(ej) = cj < 1, and for ej > ej we have cj(ej) = cMax > 1. Our
goal is to prove:

Theorem 15. Suppose pn(e1, e−1) → p0(e1, e−1), cjn(ej) → cj0(ej) for ej 6=
ej0 are a sequence of resource constrained contests inW , that F1n, F−1n are equi-
libria for n converging weakly to F10, F−10. Then pn(Fjn, F−jn)→ p0(Fj0, F−j0),
cjn(Fjn) → cj0(Fj0) for both j and F10, F−10 is an equilibrium for p0(e1, e−1),
cj0(ej).

Proof. If cj0 is continuous then cjn(ej)→ cj0(ej) for all ej there is nothing new
to be proven. We take then the discontinuous case. There are two new things
that must be shown. First, we must show that if a deviation to ej0 against
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Fj0 is pro�table then, because we do not have pointwise convergence at ej0,
there is another deviation that is also pro�table. Second, we must show that
cjn(Fjn)→ cj0(Fj0).

The �rst is simple: if we take a sequence ejm → ej0 strictly from below, the
continuity of p0, cj0 imply that uj0(ejm, F−j) → uj0(ej0, F−j) so that for large
enough m the deviation ejm 6= ej0 is also pro�table.

To prove the second we �rst choose 0 < ε < (cMax − 1)/2. We observe
that for each n (including n = 0) the fact that cjn is weakly decreasing and left
continuous means that {ej |cjn(ej) ≤ cj0+ε} = [0, ejn(ε)] and {ej |cjn(ej) > cj0+
ε} = (ejn(ε),W ] where it is apparent that ej0(ε) = ej0. Moreover, we can show
that limn ejn(ε) = ej0. To see that for any γ > ej0 we have limn cjn(γ) = cMax

implying lim sup ejn(ε) ≤ γ. For any γ < ej0 we have limn cjn(γ) ≤= cj0(γ) ≤
cj0 implying lim infn ejn(ε) ≥ γ.

Second, since p0 is continuous, pointwise convergence of pn to p0 implies
uniform convergence and since W is compact, p0 is uniformly continuous. It
follows that ∆(ε) = inf{0 ≤ e1

j − e2
j |pn(e2

j , e−j)− pn(e1
j , e−j) ≤ ε} is positive.

Third, we show that for su�ciently large n we have

µjn((ejn(ε), ej0 + ∆(ε/2)/2]) = 0.

Suppose that ej ∈ (ejn(ε), ej0 + ∆(ε/2)/2]). Then cjn(ej) ≥ cj0 + ε while
cjn(ej0 − ∆(ε/2)/2]) ≤ cj0(ej0 − ∆(ε/2)/2]) + ηn where ηn → 0. Since ej −
(ej0 −∆(ε/2)/2]) ≤ ∆(ε/2) it follows that pn(ej , F−j)−pn(ej0−∆(ε/2)/2], F−j) ≤
ε/2, while cjn(ej)− cjn(ej0 −∆(ε/2)/2]) ≥ ε− ηn. Hence for ηn < ε/2 it is not
optimal to play ej .

Fourth, we show that for su�ciently large n we have µjn((ejn(ε),W ]) = 0.
To do so we need only show that for su�ciently large n we have µjn((ej0 +
∆(ε/2)/2,W ]) = 0. Since cjn(ej0 + ∆(ε/2)/2) → cMax for all su�ciently large
n we have cjn(ej0 + ∆(ε/2)/2) > 1 and since cjn is non-decreasing cjn(ej) > 1
for all ej ≥ ej0 + ∆(ε/2)/2 . Of course it cannot be optimal to play such an ej .

Fifth we show that µj0((ej0,W ]) = 0. This follows from the fact that it is
the countable union of the sets

(ej0 + |ejn(ε)− ej0|,W ] ⊂ (ejn(ε),W ].

Sixth, we construct approximating functions c̃jn. Since cj0is continuous on
[0, ej0] we may choose γ < ej0 so that cj0(ej0)− cj0(γ) < ε. Then for ej ≤ γ we
take c̃jn(ej) = cjn(ej) and for ej > γ we take c̃jn(ej) = cjn(γ). Certainly then
c̃jn is non-decreasing and converges pointwise to the non-decreasing function
c̃j0. It follows that the convergence is uniform, hence c̃jn(Fjn)→ c̃0n(Fj0).

Seventh, we bound
|c̃jn(Fjn)− cjn(Fjn)|

≤
ˆ

[0,γ]

|c̃jn(ejn)− cjn(ejn)| dFjn +

ˆ
(γ,ejn(ε)]

|c̃jn(ejn)− cjn(ejn)| dFjn
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+

∣∣∣∣∣
ˆ

(ejn(ε),W ]

(c̃jn(ejn)− cjn(ejn)) dFjn

∣∣∣∣∣
=

ˆ
(γ,ejn(ε)]

|c̃jn(ejn)− cjn(ejn)| dFjn

≤ sup
(γ,ejn(ε)]

|c̃jn(ejn)− cjn(ejn)|

= cjn(ejn(ε))− cjn(γ)

≤ |cjn(ejn(ε))− cj0(ej0)|+ |cj0(ej0)− cj0(γ)|+ |cj0(γ)− cjn(γ)|

≤ 2ε+ ηn

where ηn → 0.
Finally, we put this together to see that for all 0 < ε < 1/2 and su�ciently

large n we have

|cjn(Fjn)− cj0(Fj0)| ≤ |c̃jn(Fjn)− c̃j0(Fj0)|+ 4ε+ 2ηn.

It follows that lim sup |cjn(Fjn)− cj0(Fj0)| ≤ 4ε. This proves the result.

15. Appendix: Finite Support

Theorem 16. Suppose that c1(e1) = 0 for 0 ≤ e1 ≤ w1 and if w1 > 0 we
require that p(ej , e−j) is strictly increasing in the �rst argument (so in par-
ticular in any equilibrium µ1([0, w1)) = 0). Suppose as well that cj(W ) > 1.
If p(ej , e−j), cj(ej) have real analytic extensions to an open neighborhood of
[w1,W ]× [0,W ] then every equilibrium has �nite support.

Proof. Take w−1 = 0 and consider

Uj(ej) ≡
ˆ W

wj

p(ej , e−j)dF−j(e−j)− cj(ej).

We �rst show that this is real analytic in an open neighborhood of [wj ,W ]. For
cj this is true by assumption so we show it for the integral

Pj(ej) ≡
ˆ W

wj

p(ej , e−j)dF−j(e−j).

In Ewerhart (2015) the extensibility properties of p(ej , e−j) were known.
Here we must establish them. Let W be the open neighborhood of [w1,W ] ×
[w−1,W ] in which p is real analytic. Then for each point e ∈ W the function p
has an in�nite power series representation with a positive radius of convergence
r1, r−1for e1, e−1 respectively. Hence the extension of p to a function of two
complex variables has the same radius of convergence there. Take an open square
around ej in the complex plane small enough to be entirely contained in the
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circle of radius min{r1, r−1} and lying inside ofW. The product of these squares
is an open cover of the compact set [w1,W ]× [w−1,W ], hence has a �nite sub-
cover. Choose the smallest square from this �nite set, say with length 2h. Hence
p(ej , e−j) is complex analytic in the domain ((w1 − h,W + h)× (−h,+h)) ×(
(w−1 − h,W + h)× (−h,+h)

)
.

The remainder of the proof follows Ewerhart (2015) in showing that we may
extend Pj(ej) to a complex analytic function in the domain (wj − h,W + h)×
(−h,+h). As this is a convex domain, take a triangular path ∆ in this domain
and integrate 

∆

Pj(ej) =



∆

ˆ W

wj

p(ej , e−j)dF−j(e−j).

Everything in sight is bounded so we may apply Fubini's Theorem and inter-
change the order of integration to �nd



∆

Pj(ej) =

ˆ W

wj


∆

p(ej , e−j)

 dF−j(e−j).

By Cauchy's Integral Theorem since p is analytic
ı

∆
p(ej , e−j) = 0. Henceı

∆
Pj(ej) = 0 so by Morera's Theorem Pj(ej) is analytic, and in particular real

analytic when restricted to (wj − h,W + h)× 0.
Hence the gain from deviating to ej is given by a real analytic function

Uj(ej) − maxj Uj(ẽj). That implies it is either identically zero or has �nitely
many zeroes. We can rule out the former case since maxj Uj(ẽj) ≤ 1 and
c(W ) > 1. Hence Fj must place weight only on the �nitely many zeroes.


