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Abstract

A learning rule is uncoupled if a player does not condition his strategy on

the opponent�s payo¤s. It is radically uncoupled if a player does not condition

his strategy on the opponent�s actions or payo¤s. We demonstrate a family of

simple, radically uncoupled learning rules whose period-by-period behavior

comes arbitrarily close to Nash equilibrium behavior in any �nite two-person

game.
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1 Learning equilibrium

A consistent theme of the learning literature is the di¢ culty of devising rules

that converge to Nash equilibrium in general �nite games. Hart and Mas-

Colell have shown, for example, that there exists no deterministic uncoupled

learning process, whose state variable is the joint empirical distribution of

play, that converges to Nash equilibrium in every �nite game [18]. More

recently, they have shown that there exists no stochastic uncoupled learning

process that is stationary with respect to histories of bounded length, and

that guarantees almost sure convergence of the behavioral strategies to Nash

equilibrium in every �nite game [19].

Implicit in these results is some form of bounded rationality, because fully

rational players need not condition their behavior on histories of bounded

length. Do analogous impossibility theorems hold when players are Bayesian

and fully rational? A well-known result of Kalai and Lehrer would seem

to show the opposite: Bayesian rational play converges almost surely to an

approximation of Nash equilibrium behavior, provided that players�strategies

are absolutely continuous with respect to their opponents�beliefs [22]. Note

that Bayesian learning is uncoupled, because a player�s posterior beliefs are

determined by the opponent�s observed pattern of play, not by any direct

observation of the opponent�s payo¤s.

The hitch is that absolute continuity can be very di¢ cult to satisfy when

the opponent�s payo¤s are unknown. The reason, roughly speaking, is that

a player�s prior must not rule out events that have positive probability un-

der the opponent�s strategy, which by assumption must be optimal given

the opponent�s beliefs. Thus, in e¤ect, absolute continuity requires a form

of mutual consistency between the player�s prior and the opponent�s payo¤

function [25, 26]. In other words, although Bayesian learning is uncoupled

for given beliefs, the absolute continuity condition amounts to an implicit

coupling between one person�s beliefs and the other person�s payo¤s. When

neither side knows the other�s payo¤ function, this can lead to situations

in which the absolute continuity condition fails "generically." In particular,



4

there exist two-person games of incomplete information such that, given any

priors over the opponent�s strategy, Bayesian rational play almost surely does

not approximate Nash equilibrium behavior, and the absolute continuity con-

dition fails to hold for almost all payo¤ realizations [11, 20, 21].

Given these negative results, it is not clear whether there exist any

plausible learning rules that lead to Nash equilibrium behavior from out-of-

equilibrium conditions. In fact, however, the di¢ culties can be surmounted

if one abandons perfect rationality in favor of certain forms of bounded ra-

tionality combined with random search. In a previous paper, for example, we

showed that Nash equilibrium behavior can be learned by a form of statistical

hypothesis testing [12]. In this approach, each player periodically examines

the pattern of his opponent�s behavior over recent history, say over the lastm

periods, and tests whether his current (probabilistic) model of that behavior

is reasonably consistent with actual play. If it is not, he chooses a new model

of the opponent from the space of memory-m models, where his choice of

new model has a random component that allows the entire model space to

be searched with positive probability.

The players are assumed to be boundedly rational in the sense that, at

each point in time, they choose smoothed best responses given their current

models. Furthermore, they do not update after every play, but only after a

sizeable amount of data (m periods�worth) has accumulated. With a suitable

choice of parameters, it can be shown that the realized behaviors in such a

process come close to Nash equilibrium behavior a very large proportion of

the time (though they need not converge to Nash equilibrium). Notice that

the process is not stationary with respect to the length-m histories, because

the players� behavior depends on their current hypotheses, which change

over time. Nor is behavior fully rational (though it is certainly purposeful).

Thus the learning process dispenses with certain key conditions on which the

above-mentioned impossibility results depend.

In this paper we introduce a new type of learning process, called regret

testing, that also solves the �learning to play Nash�problem but in a di¤erent
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and even simpler way. Like reinforcement and aspiration models, regret test-

ing depends solely on a player�s realized payo¤s and requires no observation

of the opponent or even knowledge of the opponent�s existence [2, 4, 5, 7, 8,

23]. It di¤ers from these models by incorporating some degree of random,

undirected search. We shall �rst de�ne the approach informally in order to

emphasize its computational simplicity and complete lack of dependence on

the actions or payo¤s of the opponent. In section 3 we shall de�ne the rule

more formally and discuss its connections with other learning rules in greater

detail.

2 Regret testing

Consider an individual who lives alone. He hasm possible actions, the names

of which are written on slips of paper stored in a hat. The hat contains h

papers. Since a given action can be written on multiple papers, the hat is a

device for generating probability distributions over actions. Every probability

distribution that is expressible in integer multiples of 1=h is represented by

one hat. The larger h is, the more closely any given distribution can be

approximated by one of these hats.

Step 1. Once each period (say once a minute) he reaches into his current

hat, draws a slip, and takes the action prescribed. He then returns the slip

to the hat.

Step 2. At random times this routine is interrupted by telephone calls.

During a call he absent-mindedly chooses an action uniformly at random

instead of reaching into the hat.

Step 3. Every time he takes an action he receives a payo¤. At the end of

day t, he tallies the average payo¤, b�t, he received over the course of the day
whenever he was not on the phone. For each action j, he compares b�t with
the average payo¤, b�j;t, he received when he chose j and was on the phone.
Step 4. If at least one of the di¤erences brj;t = b�j;t � b�t is greater than

his tolerance level � > 0 he chooses a new hat, where each hat has a positive
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probability of being chosen. Otherwise he keeps his current hat and the

process is repeated on day t+ 1.

Any procedure of this form will be called a regret testing rule. The reason

is that b�j;t amounts to a statistical estimate of the payo¤ on day t that the
player would have received from playing action j all day long, hence the

di¤erence brj;t = b�j;t � b�t is the estimated regret from not having done so.2

(Recall that the regrets cannot be evaluated directly because the opponent�s

actions are not observed.) The logic is simple: if one of the payo¤-averagesb�j;t during the experimental periods is signi�cantly larger than the average
payo¤ in the non-experimental periods, the player becomes dissatis�ed and

chooses a new strategy, i.e., a new hat from the shelf. Otherwise, out of

inertia, he sticks with his current strategy.

The revision process (Step 4) allows for many possibilities. The simplest

is to choose each hat with equal probability, but this lacks behavioral plau-

sibility. Instead, the player could exploit the information contained in the

current payo¤s, say by favoring strategies (hats) that put high probability on

actions with high realized payo¤ b�j;t. Consider, for example, the following
revision rule: with probability 1 - " adopt the pure strategy that puts proba-

bility one on the action j that maximizes b�j;t; and with probability " choose
a strategy at random. This is a trembled form of best response strategy

revision, where the tremble is not in the implementation of the strategy but

in the choice of strategy. In particular, a strategy that is far from being

a best response strategy can be chosen by mistake, but the probability of

such a mistake is small. While the use of recent payo¤ information may be

sensible, however, we do not insist on it. The reason is that the process will

eventually approximate Nash equilibrium behavior irrespective of the revi-

sion rule, as long as every hat is chosen with a probability that is uniformly

bounded away from zero at all revision opportunities. This allows for a great

deal of latitude in the speci�cation of the learning process.

We hasten to say that this rule is intended to be a contribution to learn-

2A similar estimation device was used in [9, 16, 17, 18].
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ing theory, and should not be interpreted literally as an empirical model of

behavior, any more than �ctitious play or regret matching should be. Never-

theless it is composed of plausible elements that are found in other learning

rules. One key element of regret testing is inertia: if there is no particular

reason to change, play continues as before. In fact, inertia is built into the

rule at two levels: there is no change of strategy while data is being collected

over the course of a day, and change is implemented only if a signi�cant im-

provement is possible� in other words, the alternative payo¤s must exceed

the current average payo¤ by more than some positive amount � .

Inertia is an important aspect of aspiration learning [2, 4, 7, 23] as well as

several other learning rules in the literature, including hypothesis testing [12]

and Hart and Mas-Colell�s regret matching [17, 18]. In the latter procedure,

a player continues to choose a given action with high probability from one

period to the next. When change occurs, the probability of switching to each

new action is proportional to its conditional regret relative to the current

action.3 Hart and Mas-Colell show that under this procedure average be-

havior converges to the set of correlated equilibria (though period-by-period

behaviors need not do so).

A second key element of regret testing is that, when a change in strategy

occurs, the choice of new strategy has a random component that allows for

wide-area search. Except for hypothesis testing, this feature is not typical of

other learning rules in the literature. For example, under regret matching, a

player�s strategy at any given time is either almost pure, or involves switching

probabilistically from one almost-pure strategy to another. Similarly, under

aspiration learning, a player switches from one pure strategy to an alternative

pure strategy when the former fails to deliver payo¤s that meet a given

aspiration level. In both of these situations there are probabilistic changes

among particular classes of strategies, but not a wide-area search among

3The conditional regret of action k relative to action j is the increase in average per-

period payo¤ that would have resulted if k had been played whenever j actually was

played. (The conditional regret is set equal to zero if k would have resulted in a lower

average payo¤ than j.)
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strategies.

These two elements - inertia and search - play a key role in the learning

process. Inertia stabilizes the players�behavior for long enough intervals

that the players have a chance to learn something about their opponent�s

behavior. Search prevents the process from becoming trapped in adjustment

cycles, such as the best response cycles that bedevil �ctitious play in some

settings. Intuitively, the way the process operates is that it discovers a (near)

equilibrium through random search, then stays near equilibrium for a long

time due to inertia. While it may seem obvious that this ought to work, it is

a di¤erent matter to show that it actually does work. One di¢ culty is that

the players�search episodes are not independent. Searches are linked via

the history of play, so there is no guarantee that the joint strategy space will

be searched systematically. A second di¢ culty is that, even when a search

is successful and an equilibrium (or near equilibrium) has been found, the

players do not know it. This is because they are ignorant of the opponent�s

payo¤ function, hence they cannot tell when a equilibrium is in hand, and

may move away again. The essence of the proof is to show that, nevertheless,

the expected time it takes to get close to equilibrium is much shorter than

the expected time it takes to move away again.

3 Formal de�nitions and main result

Let G be a two-person game with �nite action spaces X1 and X2 for players

1 and 2 respectively. Let jXij = mi and let ui : X1 � X2 ! R be i�s

utility function. In what follows, we shall always assume (for computational

convenience) that the von Neumann Morgenstern utility functions ui(x) have

been normalized so that all payo¤s lie between zero and one:

min
x2X1�X2

ui(x) � 0 and max
x2X1�X2

ui(x) � 1: (1)

Let�i denote the set of probability mixtures over themi actions of player

i. Let hi be the size of i�s hat (a positive integer). The set of distributions in
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�i that are representable as integer multiples of 1=hi will be denoted by Pi.

Note that every strategy in �i can be closely approximated by some strategy

in Pi when hi is su¢ ciently large. Let � i > 0 denote i�s tolerance level, let

�i 2 (0; 1) be the probability that a call is received by a player i during any
given play of the game, and let s be the number of plays per day.

The state space is Z = P1 � P2; which we shall sometimes refer to as
the probability grid. The state of the learning process at the start of a given

day t is zt = (pt; qt) 2 P1 � P2. For each action j of player i, let b�ij;t =b�ij;t(zt) be the average payo¤ on day t in those periods when i played action
j and was on the phone. Let b�it = b�it(zt) be i0s average payo¤ on day t when
not on the phone, and let b�it = (b�it; b�i1;t; � � � ; b�imi;t

). Note that b�it contains
enough information to implement a wide variety of updating rules, including

trembled best response behavior, trembled better response behavior, and so

forth. Finally, let

brit(zt) = max
1�j�mi

b�ij;t(zt)� b�it(zt): (2)

A regret-testing rule for player 1 has the following form: there is a number


1 > 0 such that, for every t, and every state zt = (pt; qt),br1t (zt) � � 1 ) pt+1 = pt (3)br1t (zt) > � 1 ) P (pt+1 = pjpt;b�1t ) � 
1 for all p 2 P1:
The analogous de�nition holds for player 2. Note that we must have


i � 1= jPij because the conditional probabilities in (3) sum to unity. The

case 
i = 1= jPij corresponds to the uniform distribution, that is, all strategies
in Pi are chosen with equal probability when a revision occurs. The class

of regret testing rules is more general, however, because it allows for any

conditional revision probabilities as long as they are uniformly bounded below

by some positive constant.

A pair (p; q) 2 �1 � �2 is an "-equilibrium of G if neither player can

increase his payo¤ by more than " through a unilateral change of strategy.
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Theorem 1 Let G be a �nite two-person game played by regret testers and

let " > 0. There are bounds on the tolerances � i; exploration rates �i; hat

sizes hi, and frequency of play s such that, at all su¢ ciently large times t, the

players�joint behavior at t constitutes an "-equilibrium of G with probability

at least 1� ".

Speci�c bounds on the parameters are given in Section 5 below.

Remark 1
It is not necessary to assume that the players revise their strategies

simultaneously, that is, at the end of each day. For example, we could

assume instead that if player i�s measured regrets exceed his tolerance � i; he

revises his strategy with probability �i 2 (0; 1), and with probability 1 � �i
he continues to play his current strategy on the following day. One could

also assume that the players use di¤erent amounts of information. Suppose,

for example, that player i looks at the last ki days of payo¤s (ki integer),

and revises with probability 0 < �i < 1 whenever the estimated regrets

exceed � i. With �xed values of ki and �i this does not change the conclusion

of theorem 1 or the structure of the argument in any signi�cant way.

Remark 2
Another learning rule with qualitatively similar properties is hypothesis

testing [12]. Like regret testing, this approach combines inertia with

occasional random search. Unlike regret testing, however, it requires

observation of the opponent� indeed the whole object of hypothesis testing

is to discern what the opponent�s strategy actually is. Regret testing, by

contrast, involves no observation of the opponent, no prediction about

the opponent, and no optimization against the opponent. It is essentially

a one player rule that is well-de�ned whether or not an opponent even exists.

Remark 3
Theorem 1 does not assert that the learning process converges to an "-
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equilibrium of G; rather, it says that the players�period-by-period behaviors

are close to equilibrium with high probability when t is large. By annealing

the learning parameters at a suitable rate, one can achieve convergence in

probability to the set of Nash equilibria, as we show in the concluding section.

(With some further re�nements of the approach one can actually achieve

almost sure convergence, as shown in [15]). Although these are probabilistic

forms of convergence, the results are quite strong because they hold for the

players� period-by-period behaviors. Regret matching, by contrast, only

guarantees that the players�time-average behaviors converge, and then only

to the set of correlated equilibria.4

Before giving the proof of theorem 1 in detail, we shall give an overview

of some of the technical issues that need to be dealt with. Regret testing

de�nes one-step transition probabilities P (z ! z0) that lead from any given

state z on day t to some other state z0 on day t + 1. Since these transition

probabilities do not depend on t; they de�ne a stationary Markov process

P on the �nite state space Z. A given state z = (p; q) induces a Nash

equilibrium in behaviors if and only if the expected regrets in that state are

non-positive. Similarly, (p; q) induces an "-equilibrium in behaviors if and

only if the expected regrets are " or smaller. Note that this is not the same

as saying that (p; q) itself is an "-equilibrium, because the players�behaviors

include experimentation, which distorts the probabilities slightly.

If a given state z does not induce an "-equilibrium, the realised regretsbrij;t will be larger than " with fairly high probability for at least one of the
players. This player will then revise his strategy. Since no strategy on his grid

is excluded when he revises, there is a positive probability he will hit upon

a strategy that is close to being a best response to the opponent�s current

strategy. This is not good enough, however, because the new strategy pair

does not necessarily induce an "-equilibrium. What must be shown is that

4Other rules whose long run average behavior converges to the correlated equilibrium

set are discussed in [6, 10, 13, 14]. See [27] for a general discussion of the convergence

properties of learning rules.
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the players arrive simultaneously at strategies that induce an "-equilibrium,

a point that is not immediately obvious. For example, one player may revise

while the second stays put, then the second may revise while the �rst stays

put, and so forth.

Even if they do eventually arrive at an "-equilibrium simultaneously, they

must do so in a reasonably short period of time compared to the length of

time they stay at the "-equilibrium once they get there. Again this is not

obvious. One di¢ culty is that the players do not know when they have

arrived� they cannot see the opponent�s strategy, or even his action, so they

cannot determine when an "-equilibrium is in hand. In particular, the realized

regrets may be large (due to a series of bad draws) even though the state is

close to equilibrium (or even at an equilibrium), in which case the players will

mistakenly move away again. A second di¢ culty is that revisions by the two

players are uncoupled, that is, they cannot coordinate the search process. In

reality, however, their searches are linked because the regrets are generated

by their joint actions. Thus, the fact that each player conducts a search of

his own strategy space whenever he revises need not imply that the joint

strategy space is searched systematically.

4 Entry and Exit Probabilities

The �rst step in proving theorem 1 is to compare the probability of entering

the set of "-equilibrium states with the probability of leaving them. As a

preliminary, we need to re�ne the concept of "-equilibrium as follows. Given a

pair of nonnegative real numbers ("1; "2); say that a pair of strategies (p; q) 2
�1 ��2 is an ("1; "2)-equilibrium if

8p0 2 �1; u1(p0; q)� u1(p; q) � "1
8q0 2 �2; u2(p; q0)� u2(p; q) � "2:

(4)

When "1 = "2 = ", the terms "-equilibrium and ("1; "2)-equilibrium will

be used interchangeably. For any two real numbers x; y let x^y = minfx; yg
and x _ y = maxfx; yg:
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Lemma 1 Let m = m1 _m2; � = � 1 ^ � 2 and � = �1 ^ �2; and suppose that
0 < �i � �=8 � 1=8 for i = 1; 2. There exist positive constants a, b, and c
such that, for all t,

i) If state zt = (pt; qt) is a (� 1=2; � 2=2)-equilibrium, a revision occurs at

the end of period t with probability at most ae�bs for all s:

ii) If zt is not a (2� 1; 2� 2)-equilibrium, each player revises at the end of

period t with probability greater than 1=2 and both revise with probability

greater than 1=4, provided that s � c:

It su¢ ces that a = 12m; b = �� 2=256m, and c = 103m2=�� 2.

Remark: The proof will show, in addition, that if just one of the players,
say i, can increase his payo¤by more than 2� i, then i revises with probability

greater than 1=2 whenever s � c. Similarly, if one of the players i cannot

increase his payo¤ by more than � i=2, then i revises with probability at most

ae�bs. We shall sometimes use this unilateral version of lemma 1 in what

follows.

The proof of lemma 1 involves a straightforward (but somewhat tedious)

estimation of tail event probabilities, which is given in the Appendix. While

it is a step in the right direction, however, it is not su¢ cient to establish

theorem 1. In particular, it is not enough to know that the process takes a

long time (in expectation) to get out of a state that is very close to being

an equilibrium; we also need to know how long it takes to get into such a

state from somewhere else. What matters is the ratio between these entry

and exit probabilities. This issue is addressed by the following general result

on stationary, �nite Markov chains.

Lemma 2 Consider a stationary Markov chain with transition probability
function P on a �nite state space Z. Suppose there exists a nonempty subset

of states Z0 and a state w =2 Z0 such that:
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i) in two periods the process moves from w into Z0 with probability

at least � > 0;

ii) once in Z0 the process stays there for at least one more period

with probability at least 1� �:

Then for any stationary distribution � of P; �w � 2�=�:

Proof: Let � be a stationary distribution of P: By de�nition �P = �; hence

�P 2 = �, that is, � is also a stationary distribution of P 2: Condition i) of

the lemma says that X
z2Z0

P 2(w ! z) � �: (5)

Condition ii) implies that the probability of staying in Z0 for at least two

successive periods is at least 1� 2�, that is,

8y 2 Z0;
X
z2Z0

P 2(y ! z) � 1� 2�: (6)

Since � is a stationary distribution of P 2; the stationarity equations imply

that

8z 2 Z0;
X
y2Z0

�yP
2(y ! z) + �wP

2(w ! z) � �z: (7)

Summing inequality (7) over all z 2 Z0 and using (5) and (6) we obtain

(1� 2�)
X
y2Z0

�y + �w� �
X
z2Z0

�z: (8)

Hence,

�w� � 2�
X
z2Z0

�z � 2�: (9)

It follows that �w � 2�=� as claimed.
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5 Proof of Theorem 1

We begin by restating theorem 1, giving explicit bounds on the parameters.

First we need some additional notation. Given � � 0; a strategy p 2 �1 is

�-dominant for player 1 if

8p0 2 �1;8q 2 �2; u
1(p0; q)� u1(p; q) � �:

The analogous de�nition holds for player 2. Let d(G) be the least � � 0 such
that one or both players have a �-dominant strategy. Note that a strategy is

0-dominant if it is a best reply irrespective of the opponent�s strategy. (This

is slightly weaker than weak dominance, because a 0-dominant strategy is

merely as good as any other strategy without necessarily ever being strictly

better). Let � = � 1 ^ � 2; � = �1 ^ �2; 
 = 
1 ^ 
2; and m = m1 _m2:

Theorem 1 (restatement) Let G be a two-person game on the �nite

action space X = X1 � X2 and let " > 0: If the players use regret testing

with strictly positive parameters satisfying the following bounds, then at all

su¢ ciently large times t their joint behavior at t constitutes an "-equilibrium

of G with probability at least 1� " :

� i � "2=48 (10)

� i � d2(G)=48 if d(G) > 0 (11)

�i � �=16 (12)

hi � 8
p
m=� (13)


i � 1= jPi(hi)j (14)

s � (103m2=�� 2) ln(105m="2
7): (15)

The need for some such bounds may be explained as follows. The toler-

ances � i must be su¢ ciently small relative to " that the players reject with

high probability when their behaviors are not an "-equilibrium. The �i must

be su¢ ciently small, relative to " and � , that the behaviors are close to equi-

librium, and rejection is very unlikely, whenever the state (p; q) is su¢ ciently
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close to equilibrium. The hi must be su¢ ciently large that the state space

actually contains points that are close to equilibrium. The 
i can be no larger

than 1= jPi(hi)j ; where jPi(hi)j is the number of probability distributions that
can be accommodated by a hat of size hi: The amount of information col-

lected, s; must be large enough that the probability of strategy revision is

extremely small whenever the behaviors are su¢ ciently close to equilibrium.

In addition, s must be large enough for Lemma 1 to hold, which is the case

under assumption (15). Perhaps the most interesting point, however, is that

the tolerances � i must also be small enough to discriminate in situations

where some player has a �-dominant strategy (for small positive �) but nei-

ther player has a 0-dominant strategy, as in (11). The reason is that, when

d(G) > 0, the process may be too sluggish to enter an "-equilibrium and stay

there with high probability unless the tolerances are very much smaller than

d(G) in addition to being very much smaller than ":

Proof of Theorem 1. In state z = (p; q); player 1 is actually playing the

strategy ep = (1 � �1)p + (�1=m1)
!
1m1 ; where

!
1m1 is a length-m1 vector of

1�s. Similarly, player 2 is playing eq = (1 � �2)q + (�2=m2)
!
1m2. It follows

that if (p; q) is an "=2-equilibrium of G; then (ep; eq) is an "-equilibrium of G

provided that the �i are su¢ ciently small. Since the payo¤s lie between

zero and one (see assumption (1)), it su¢ ces that �1; �2 � "=4: This holds

because of assumptions (10) and (12).

Let E� be the set of states in Z that actually are "=2-equilibria of G

(ignoring experimentation): We shall show �rst that, for every stationary

distribution � of the process, X
z =2E�

�z � "=2;

equivalently, X
z2E�

�z � 1� "=2: (16)

From this and the preceding remark it follows that the players�induced
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behaviors (ep; eq) constitute an "-equilibrium at least 1� "=2 of the time (and
hence at least 1� " of the time).
We need to show more however: namely, that the behaviors at time t

constitute an "-equilibrium with probability at least 1� " for all su¢ ciently
large times t. To see why this assertion holds, let P be the transition

probability matrix of the process. If the process begins in state z0; then the

probability of being in state z at time t is P t(z0 ! z), where P t is the t-fold

product of P: We claim that P is acyclic; indeed this follows from the fact

that for any state z; P (z ! z) > 0: (Recall that, whenever a player revises,

he chooses his previous strategy with positive probability.) It follows from

standard results that the following limit exists

8z 2 Z; lim
t!1

P t(z0 ! z) = �z; (17)

and the limiting distribution � is a stationary distribution of P [24, Theorem

1.2]. From this and (16) it follows that

lim
t!1

X
z =2E�

P t(z0 ! z) � "=2: (18)

Hence

9T 8 t � T;
X
z2E�

P t(z0 ! z) � 1� ": (19)

Thus, for all t � T; the probability is at least 1�" that zt 2 E�; in which case
the induced behaviors at time t form an "-equilibrium of G: This is precisely

the desired conclusion. It therefore su¢ ces to establish (15) to complete the

proof of theorem 1. We shall consider two cases: d(G) > 0 and d(G) = 0:

Case 1 d(G) > 0: neither player has a 0-dominant strategy.

For every pair (p; q) 2 �1 ��2; there exists (p0; q0) 2 Z such that

jp0 � pj � pm1=h1 and jq0 � qj �
p
m2=h2: (20)
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By the lower bound (13) on the hi; it follows that there is a point (p0; q0) 2 Z
such that

jp0 � pj � � 1=8 and jq0 � qj � � 2=8: (21)

Now let (p; q) be a Nash equilibrium in the full space of mixed strategies,

�1��2. By (21) there is a state e� = (p�; q�) 2 Z such that jp� � pj � � 1=8
and jq� � qj � � 2=8: Since all payo¤s are bounded between zero and one,

e� is a (� 1=8; � 2=8)-equilibrium. In particular, e� 2 E�; because by (10),

� 1=8; � 2=8 � "=2: We shall �x e� = (p�; q�) for the remainder of the proof of
case 1.

It follows from Lemma 1, part (i), that

P (e� ! e�) � 1� ae�bs: (22)

The next step is to show that for all w =2 E�; the process enters E� in two
periods with fairly high probability; then we shall apply Lemma 2.

Case 1a. w =2 E� and each player can, by a unilateral deviation, increase
his payo¤ by more than "=2:

Suppose that zt = w = (p; q): Since each player i can increase his payo¤

by more than "=2; he can certainly increase it by more than 2� i (because of

the bound � i � "2=48): It follows from Lemma 1, part (ii) that the probability
is at least 1/4 that both players revise at the end of day t:

Conditional on both revising, the probability is at least 
2 that player 1

chooses p� and player 2 chooses q� in period t+ 1. Hence

P (w ! e�) � 
2=4; (23)

so by (22),

P 2(w ! e�) � (
2=4)(1� ae�bs): (24)
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Case 1b. w 62 E� and only one of the players can improve his payo¤ by
more than "=2.

This case requires a two-step argument: we shall show that the process

can transit from state w to some intermediate state x with the property that

each player i can increase his payo¤ by more than 2� i: As in the proof of

Case 1a, it follows that P (x! e�) � 
2=4.
We now establish the existence of such an intermediate state. Assume

without loss of generality that in state w = (p; q), player 1 can increase his

payo¤ by more than "=2, whereas player 2 cannot. In particular, if p0 2 �1

is a best response to q, then

u1(p0; q)� u1(p; q) > "=2: (25)

Let � = d(G): by de�nition neither player has a �0-dominant strategy for

any �0 < �. In particular, q is not �=2-dominant for player 2. Hence there

exists p0 2 �1 and q0 2 �2 such that

u2(p0; q0)� u2(p0; q) > �=2: (26)

Consider the strategy

p00 = (�=4)p+ (1� �=4)p0: (27)

By assumption, p0 is a best response to q, so u1(p0; q) � u1(p0; q) � 0. It

follows from (25) and (27) that

u1(p0; q)� u1(p00; q) = (�=4)[u1(p0; q)� u1(p; q)]
+(1� �=4)[u1(p0; q)� u1(p0; q)]

� (�=4)[u1(p0; q)� u1(p; q)]
> �"=8: (28)

By assumptions (10) and (11), � 1 � �2=48 and � 1 � "2=48; hence 48� 1 �
�"; which implies 6� 1 < �"=8: From this and (28) we conclude that, given

(p00; q); player 1 can deviate and increase his payo¤ by more than 6� 1:
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For player 2 we have, by de�nition of p00,

u2(p00; q0)� u2(p00; q) = (�=4)[u2(p; q0)� u2(p; q)]
+(1� �=4)[u2(p0; q0)� u2(p; q)]:

Since utilities are bounded between 0 and 1, the �rst term on the right-hand

side is at least ��=4. The second term is greater than (1��=4)(�=2) > 3�=8,
by (26). Hence

u2(p00; q0)� u2(p00; q) > �=8: (29)

Since � 2 � �2=48 < �=48; player 2 can deviate from (p00; q) and increase his

payo¤ by more than 6� 2: Hence (p00; q) is not a (6� 1; 6� 2)-equilibrium.

Although q is on player 2�s grid, the de�nition of p00 in (27) does not

guarantee that it is on player 1�s grid. We know, however, that there exists a

grid point (p000; q) such that jp000�p00j � pm1=h1. Since all payo¤s lie between

zero and one, the di¤erence in payo¤ between (p000; q) and (p00; q) is at most
p
m1=h1 for both players. From (13) it follows that

p
m1=h1 � �=8 � � i=8

for both players (i = 1; 2). Since (p00; q) is not a (6� 1; 6� 2)-equilibrium, it

follows that (p000; q) is not a (5� 1; 5� 2)-equilibrium (and is on the grid).

Let x = (p000; q). As in the proof of Case 1a, it follows that P (x! e�) �

2=4: Further, the process moves from state w to state x with probability at

least 
=2, because only player 1 needs to revise: w and x di¤er only in the

�rst coordinate. Hence,

P 2(w ! e�) � 
3=8: (30)

In case 1a we found that P 2(w ! e�) � (
2=4)(1� ae�bs); which is at least

2=8 provided that ae�bs � 1=2. This certainly holds under the assumptions
in Lemma 1 on a, b, and s. Since 
2=8 � 
3=8, it follows that in both cases

8w =2 E�; P 2(w ! e�) � 
3=8: (31)

In both cases we also have P (e� ! e�) � 1 � ae�bs, by (22). Now apply

Lemma 2 with Z0 = fe�g; � = 
3=8; and � = ae�bs:We conclude that in both
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case 1a and case 1b, for every stationary distribution � of P;

8w =2 E�; �w �
2ae�bs


3=8
= 16ae�bs=
3: (32)

There are at most 1=
2 states in Z altogether, soX
w=2E�

�w � 16ae�bs=
5: (33)

The right-hand side will be at most "=2 if ae�bs � 
5"=32; that is, if

s � (1=b) ln(32a=
5"): (34)

By Lemma 1, we can take a = 12m and b = �� 2=256m: Thus it su¢ ces that

s � 256m

�� 2
ln(384m=
5");

which is implied by the stronger bound in (15). This concludes the proof of

Case 1.

Case 2. d(G) = 0; some player has a 0-dominant strategy.

Fix a probability 0 < � < 1
2
that is much smaller than 
 and much larger

than ae�bs; later we shall specify � and s more exactly. De�ne the following

subset of states:

Z� = fz = (p; q) : 8t;8q0 2 P2; P (pt+1 6= pj zt = (p; q0)) � �g:

In words, Z� is the set of states such that the �rst player changes strategy

with probability at most � no matter what strategy the second player is using

on his grid.

Without loss of generality assume that player 1 has a 0-dominant strategy.

Then he has a pure 0-dominant strategy, say p�, which is in P1. We shall �x

p� for the remainder of the proof.

Let Z� be the set of states whose �rst coordinate is p�: Then player 1

rejects with probability at most ae�bs (see the remark after lemma 1), that

is,

P (zt+1 2 Z� jzt 2 Z�) � 1� ae�bs: (35)
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Hence Z� � Z� provided that ae�bs � �, which holds whenever s is su¢ -

ciently large (we shall assume henceforth that this is the case).

Let w 2 Z � E�: There are two possibilities: w =2 Z� and w 2 Z�:

Case 2a. w =2 E� and w =2 Z�.
Since w = (p; q) =2 E�; w is not an "=2-equilibrium, and hence is not a

(2� 1; 2� 2)-equilibrium. By lemma 1 the probability is at least 1=2 that there

will be a revision next period by at least one of the players. If player 1 revises,

a transition of form (p; q) ! (p�; �) 2 Z� occurs with probability at least 
.
After that, (p�; �) stays in Z� for one more period with probability at least
1� ae�bs; which is at least 1/2 because ae�bs < � < 1=2. Hence in this case

P 2(w ! Z�) � 
=4: (36)

If player 1 does not revise but player 2 does, then with probability at least


 we have a transition of form (p; q) ! (p; q0); where q0 2 P2 is a strategy
for player 2 that will make player 1 revise with probability greater than �.

(There is such a q0 because of our assumption that w =2 Z�.) In the following
period the transition (p; q0) ! (p�; �) occurs with probability greater than
�
. Hence in this case

P 2(w ! Z�) � �
2=2: (37)

Therefore, in either case,

P 2(w ! Z�) � (�
2=2 ^ 
=4) � �
2=4: (38)

Now apply lemma 2 with Z0 = Z�; � = ae�bs; and � = �
2=4: Since w =2 Z�

we conclude that

�w � 2ae�bs=(�
2=4) = 8ae�bs=�
2: (39)

Case 2b. w =2 E� and w 2 Z�.
By de�nition of Z�, player 1 revises with probability at most �, which

by assumption is less than 1=2: Since w = (p; q) =2 E�; some player i can
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increase his payo¤ by at least "=2, and hence by more than 2� i. This player

will revise with probability greater than 1=2 (see the remark after lemma

1), hence i cannot be player 1 (who revises with probability less than 1=2).

Therefore i must be player 2. By (13), there exists q00 on player 2�s grid that

is within � 2=8 of a best response to p. The probability is at least 
 that 2

chooses q00 when he revises. Putting all of this together, we conclude that

P ((p; q)! (p; q00)) � 
=4: (40)

By construction, state (p; q00) is a (�; � 2=8) - equilibrium, hence player 2 revises
with probability at most ae�bs (see the remark after lemma 1): By assump-

tion, (p; q) 2 Z�; so player 1 revises with probability at most � against any
strategy of player 2, including q00: Hence (p; q00) is also in Z�, and

P ((p; q00)! (p; q00)) � (1� �)(1� ae�bs) � (1� �)2 > 1� 2�: (41)

From this and (40) we have

P 2((p; q)! (p; q00)) � (
=4)(1� �)2 > 
=16;

the latter since � < 1
2
: Now apply lemma 2 with Z0 = f(p; q00)g; � = 
=16;

and � = 2�. It follows that for every stationary distribution � of P;

�w � 2(2�)=(
=16) = 64�=
: (42)

Combining (39) and (42), it follows that in both case 2a and case 2b,

8w =2 E�; �w � 64�=
 _ 8ae�bs=�
2: (43)

The size of the state space is at least 1=
2: Summing (43) over all w =2 E� it
follows that

�(Z � E�) � (1=
2)(64�=
 _ 8ae�bs=�
2): (44)

We wish to show that this is at most "=2. This will follow if we choose � and

s so that 64�=
3 = "=4 and 8ae�bs=�
4 � "=4: Speci�cally, it su¢ ces that

� = "
3=256 (45)
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and

s � (1=b) ln(8192a="2
7): (46)

By Lemma 1 we may choose a = 12m and b = �� 2=256m, hence it su¢ ces

that,

s � (256m=�� 2) ln(98; 304m="2
7):

This certainly holds under (15), which states that

s � (103m2=�� 2) ln(105m="2
7). This concludes the proof of the theorem.

6 Convergence in probability

Theorem 1 says that, for a given game G, regret testing induces an "-

equilibrium with high probability provided that the learning parameters sat-

isfy the bounds given in (10)-(15). But it does not imply that, for a given set

of parameters, an "-equilibrium occurs with high probability for all games

G. The di¢ culty is condition (11), which in e¤ect requires that d(G) not fall

into the interval (0;
p
48(� 1 _ � 2)): If we think of G as a vector of 2m1m2

payo¤s in Euclidean space, the excluded set will be small relative to Lebesgue

measure whenever the � i are small. Thus, if we tighten � 1; � 2 and the other

parameters in tandem, the learning process will eventually capture all games

in the �net,� that is, there will be no excluded cases. In this section we

shall show even more, namely, that by tightening the parameters su¢ ciently

slowly, the players�period-by-period behavioral strategies converge in prob-

ability to the set of Nash equilibria of G:

Fix an m1 �m2 action space X = X1 �X2 and consider all games G on

X with payo¤s normalized to lie between zero and one: For each " > 0; we

shall choose particular values of the parameters that satisfy all the bounds

except (11), namely,

� i(") = "
2=48; (47)
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�i(") = �=16 (48)

hi(") =
�
8
p
m=�

�
; (49)


i(") = 1= jPi(hi("))j (50)

s(") =
�
(103m2=�� 2) ln(105m="2
7)

�
: (51)

Recall that jPi(hi("))j is the number of distributions on i�s grid when his
hat size is hi(")): Hence (50) implies that each player chooses a new hat with

uniform probability whenever a revision is called for. This will prove to be

analytically convenient in what follows, although more general assumptions

could be made.

Let PG(") denote the �nite-state Markov process determined by G and

the parameters (� 1("); : : : ; s(")): Let EG(") be the �nite subset of states that
induce an "-equilibrium of G.

De�nition 1 Let P be an acyclic, �nite Markov process and A a subset of

states. For each " > 0, let T (P;A; ") be the �rst time (if any) such that, for
all t � T (P;A; ") and all initial states, the probability is at least 1 � " that
the process is in A at time t.

It follows from theorem 1 that T (PG("); EG("); ") is �nite for all games G
such that d(G) =2 (0;

p
48(� 1 _ � 2)). By assumption (47), this holds whenever

d(G) =2 (0; "). In this case, for all t � T (PG("); EG("); "), the probability is
at least 1� " that the behavioral strategies constitute an "-equilibrium of G

at time t.

The time T (PG("); EG("); ") may depend on the payo¤s, because these
a¤ect the details of the transition probabilities and the states that correspond

to "-equilibria of G. We claim, however, that for every " > 0 there is a time

T (") such that T (") � T (PG("); EG("); ") for all G such that d(G) =2 (0; ").
To see why this is so, consider the realization of plays on any given day. A

realization is a sequence of s(") actions for each player and a sequence of s(")

binary outcomes (say 0 or 1) that indicate whether a given action was taken
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by that player while on the phone or not. Hence there are (4m1m2)
s(") possi-

ble realizations. We may partition them into four disjoint classes: sequences

that are rejected by both players, sequences that are rejected by player 1

but not player 2, sequences that are rejected by player 2 but not player 1,

and sequences that are accepted by both. (Notice that this partition does

not depend on the day t or on the strategies (pt; qt) in force during that day,

but it does depend on the game G.) However, a player�s response given a

rejection does not depend on the sequence because we are assuming that each

player chooses a new strategy with uniform probability over all distributions

on his grid.

The number of length-s(") realizations is �nite, and there are �nitely

many ways of partitioning them into four classes. Further, the probability

that each sequence will be realized on a given day t is determined by the

state (pt; qt), and there are �nitely many states. Hence, over all G, there can

be only a �nite number of Markov transition matrices PG("). Further, there

are �nitely many subsets of states that can be used to de�ne EG("). Let us
enumerate all possible pairs (PG("); EG(")) as follows (P1; E1); : : : ; (Pk; Ek).
Now de�ne T (") = max1�j�k T (Pj; Ej; "). Then T (") has the property that,
for allG such that d(G) 62 (0; "), and for all t � T ("), the behavioral strategies
constitute an "-equilibrium at time t with probability at least 1� ".

De�nition 2 (annealed regret testing) Consider any positive sequence
"1 > "2 > "3 > : : : decreasing to zero. The annealed regret testing procedure

at stage k is the regret testing procedure with parameters (� 1("k), � 2("k),

�1("k), �2("k), h1("k), h2("k), 
1("k); 
2("k); s("k)) as in (47)-(51). Each

day that the process is in stage k, the probability of moving to stage k+1 on

the following day is

pk �
"2k+1

2k2T ("k+1)
(52)

Theorem 2 Fix an m1 � m2 action space X = X1 � X2. Annealed regret

testing has the property that, for every game G on X; the behavioral strategies

converge in probability to the set of Nash equilibria of G.
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Although annealed regret testing seems to require that each player has

an arbitrarily long memory, the process is actually of much lower dimension.

To see why, let us �x a particular player i. Create one �payo¤ register�

and one �counting register� for each of i�s actions, plus one general payo¤

register and one general counting register for all of his actions together. Let

k be a state variable that is common to all the players and indicates what

stage the process is in (i.e., what parameters are currently in force). At each

time t, i�s general payo¤ register contains the running total of the payo¤s he

received when not on the phone, and the general counting register contains

the number of times he was not on the phone. Similarly, each action-speci�c

register contains the running total of the payo¤s he received when he was

on the phone and played that action, and the number of times the action

was played while on the phone. When the sum over all counting registers

reaches s("k), player i conducts a test using the kth set of parameters, revises

his strategy if this is called for, and empties all the registers. The process is

then repeated. Thus player i needs only to keep track of 2mi + 3 numbers �

two for each of his actions, two in the general registers, and the current stage

k. Thus the learning process requires very little memory or computational

sophistication.

Proof of theorem 2: Given G, it su¢ ces to show that, for every " > 0,

there is a �nite time T" (possibly depending onG) such that for all t � T", the
probability is at least 1�" that the behavioral strategies (ept; eqt) constitute an
"-equilibrium of G. Indeed, for every � > 0 there exists 0 < "� � � such that
every "�-equilibrium lies within � of the compact set NG of Nash equilibria of

G. Hence, for all t � T"� ; the probability is at least 1�"� � 1�� that (ept; eqt)
lies within � of NG. Thus, the behavioral strategies converge in probability

to the set of Nash equilibria of G.

To facilitate the proof we will de�ne three integer-valued random variables

Nt, Tk, andWk that describe the process as it transitions through stages. Let

Nt be the stage that the process is in on day t. In other words, on day t the
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process is using the parameters (� 1("Nt), � 2("Nt), �1("Nt), �2("Nt), h1("Nt),

h2("Nt), 
1("Nt); 
2("Nt); s("Nt)). The distribution of the realizations of Nt
depends on the transition probabilities as follows:

N1 = 1

Nt+1 =

(
Nt with probability 1 - pNt
Nt + 1 with probability pNt

The �rst time that the system uses the kth set of parameters will be denoted

by Tk, that is, Tk � inftft : Nt � kg. Now de�ne Wt � t � TNt to be the
length of time since the parameters were last changed. In essence, the proof

consists of establishing two facts about Wt. First we will show that if Wt is

�large�for a given t, the behavioral strategies are nearly a Nash equilibrium

with high probability at time t: This follows by applying theorem 1 to

this setting. Second, we will show that the probability that Wt is �large�

converges to one as t converges to in�nity. This follows from our assumption

that the transition probabilities pk are small. We now establish these points

in detail.

For any game G on X, if d(G) > 0 then d(G) � "k for all su¢ ciently

large k, because the sequence f"kg decreases to zero. The least such k will
be called the critical index of G, and denoted by kG. In case d(G) = 0, we

will take kG = 1. Fix " > 0: De�ne k�G = kG _minkfk j "k � "=4g. It follows
that if Nt � k�G then "Nt � "=4 and d(G) � "Nt.

Since Nt !1 almost surely as t!1; there is a time T � such that, for
all t � T �; the probability is at least 1� "=4 that Nt � k�G: From now on we

shall only consider t � T �:
Given t � T �; consider two cases: Wt � T ("Nt) and Wt < T ("Nt). In the

�rst case, the process is an "Nt-equilibrium with probability at least 1� "Nt.
Since t � T �; Nt � k�G with probability at least 1 � "=4, in which case
"Nt � "=4: It follows that at time t the process is in an "=4-equilibrium, and
hence an "-equilibrium, with probability at least (1�"=4)(1�"=4) � 1�"=2:
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To complete the proof, it therefore su¢ ces to show that, for all su¢ ciently

large t, the second case occurs with probability at most "=2; that is, there

exists T �� such that

8 t � T ��; P (Wt < T ("Nt)) � "=2: (53)

To establish (53) we proceed as follows. Recall that in the kth stage of

the process, the parameter values are (� 1("k); � � � ; s("k)): By choice of pk;
the kth stage lasts for 2k2T ("k+1)="2k+1 periods in expectation. Say that the

kth stage is short if it lasts for at most T ("k+1)="2k+1 periods, which is 1=2k
2

times the expected number. This event has probability at most 1=k2: Hence,

given any positive integer k0; the probability that a short stage occurs at

some time after the kth0 stage is at most
P
k>k0

1=k2 �
R1
k0
dx=x2 = 1=k0: If we

let k��G = k
�
G_16=", it follows that the probability is at most "=16 that a short

stage ever occurs after stage k��G :

Now there exists a time T �� such that

8 t � T ��; P (Nt � k��G + 2) � 1� "=16: (54)

We shall show that (53) holds for this value of T ��:

For each time t � T ��; de�ne the event At to be the set of all realizations
such that there is at most one stage change between t � T ("Nt)="2Nt and t;
that is,

Nt � 1 +Nt�T ("Nt )="2Nt : (55)

Let Act denote the complement of At: Since t � T ��; the probability is at

least 1� "=16 that the process is at stage k��G +2 or higher at time t: Denote
this event by Bt. If Bt and Act both hold, then there were at least two stage

changes between t�T ("Nt)="2Nt and t, hence the previous stage change (before
the current stage) was short. But we already know that the probability of

a short stage at any time beyond stage k��G is at most "=16: Hence P (Act j
Bt) � "=16 and P (Bct ) � "=16: Therefore

8 t � T ��; P (Act) � P (Act j Bt) + P (Bct ) � 2("=16) = "=8: (56)
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We now compute the probability thatWt < T ("Nt): By the preceding we

know that

P (Wt < T ("Nt)) � P (Wt < T ("Nt) j At) + P (Act) (57)

� P (Wt < T ("Nt) j At) + "=8:

Hence to establish (53) it su¢ ces to show that

P (Wt < T ("Nt) j At) � 3"=8: (58)

Clearly,

P (Wt < T ("Nt) j At) =
P
k

P (Wt < T ("Nt) j Nt = k;At)P (Nt = k j At)

� max
k

P (Wt < T ("Nt) j Nt = k; At):
(59)

Let Nt = k. The event At is the disjoint union of the event A0t in which

no stage change occurs between t�T ("k)="2k and t, and the event A1t in which
exactly one stage change occurs.

When A0t occurs,Wt � T ("k)="2k > T ("k), hence P (Wt < T ("k) j A0t ) = 0:
It remains only to show that P (Wt < T ("k) j A1t ) � 3"=8:
The conditional distribution of Wt is

f(w) � P (Wt = w j Nt = k;A1t ) = ck(1� pk)T ("k)="
2
k�wpk(1� pk+1)w�1; (60)

where ck is a positive constant and 1 � w � T ("k)="2k. This follows because
under A1t a single stage change occurs during the interval, and it occurs ex-

actly Wt = w periods before period t: We may rewrite (60) in the form

f(w) = c0k

�
1� pk+1
1� pk

�w
(61)

for some c0k > 0: Since pk > pk+1; f(w) � f(w + 1). Hence for every T and
w in the interval 1 � T;w � T ("k)="2k;X

w<T

f(w) � Tf(T ) and
X
w�T

f(w) � (T ("k)="2k � T )f(T ): (62)
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In particular for T = T ("k) we have

P (Wt < T ("k)) =
X

w<T ("k)

f(w)

=
1

1 +

P
w�T ("k)

f(w)P
w<T ("k)

f(w)

� 1

1 +
T ("k)="

2
k�T ("k)

T ("k)

= "2k: (63)

Since t � T ��, "Nt = "k � "=4 with probability at least 1� "=4: Hence

P (Wt < T ("k)) � ("=4)2(1� "=4) + "=4 < 3"=8: (64)

This establishes (53) and completes the proof of theorem 2.
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Appendix

Here we prove lemma 1, which is restated for easy reference.

Lemma 1 Let m = m1 _m2; � = � 1 ^ � 2 and � = �1 ^ �2; and suppose
that 0 < �i � �=8 � 1=8 for i = 1; 2. There exist positive constants a, b, and
c such that, for all t,

i) If state zt = (pt; qt) is a (� 1=2; � 2=2)-equilibrium, a revision occurs at

the end of period t with probability at most ae�bs for all s:

ii) If zt is not a (2� 1; 2� 2)-equilibrium, each player revises at the end of

period t with probability greater than 1=2 and both revise with probability

greater than 1=4, provided that s � c:

It su¢ ces that a = 12m; b = �� 2=256m, and c = 103m2=�� 2.

Proof: The player�s strategy revisions are triggered by the size of their re-

alized regrets brit: Hence we need to estimate the distribution of brit conditional
on the state at time t; namely, zt = (pt; qt): Recalling the de�nitions of b�ij;t
and b�it from Step 3 of regret testing, let

�ij;t � E(b�ij;tj(pt; qt)) (A1)

and

�it � E(b�itj(pt; qt)): (A2)

Recall that player 2 draws from his hat with probability 1��2; and plays an
action uniformly at random with probability �2. (The uniform distribution

over actions when experimenting contrasts with the possibly non-uniform

distribution over hats when a rejection occurs). Hence when player 1 chooses

action j at time t, his expected payo¤ is

�1j;t =
X
k

((1� �2)(qt)k + �2=m2)u
1
j;k:
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Similarly, 1�s expected payo¤ at time t is

�1t =
X
j;k

(pt)j((1� �2)(qt)k + �2=m2)u
1
j;k:

Similar expressions hold for �2j;t and �
2
t . De�ne

rit � max
j
�ij;t � �it: (A3)

Since E(b�ij;tj(pt; qt)) = �ij;t and E(b�itj(pt; qt)) = �it we can think of the

di¤erence, brit = max
j
b�ij;t � b�it;

as being an estimator of rit.

De�ne the estimation error in state (pt; qt) to be

jbrit � ritj: (A4)

Next we estimate the distribution of the realized regret estimates brit.
Claim: If �i � 1=3, then for all � � 1=

p
2mi, and for all times t,

P
�
jbrit � ritj > �� � 6mie

�s�i�
2

16mi : (A5)

Proof: Fix a player i and let (pt; qt) be the state on day t. Let N i
j;t be the

number of times action j is played on day t while player i is on the telephone.

The average payo¤ during these times, b�ij;t, is an average of N i
j;t items, each

of which is bounded between zero and one. By Azuma�s inequality [1],

P (jb�ij;t � �ij;tj > � j (pt; qt); N i
j;t) � 2e�N

i
j;t�

2=2: (A6)

Let N i
t =

P
j N

i
j;t: The number of times i was not on the phone on day t

is s�N i
t ; hence again by Azuma�s inequality

P (jb�it � �itj > � j (pt; qt); N i
t ) � 2e�(s�N

i
t )�

2=2: (A7)
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Since for any two events A and B, P (A[B) � P (A)+P (B); it follows from

(A6) and (A7) that

P (jbrit�ritj > 2� j (pt; qt); N i
1;t; N

i
2;t; : : : ; N

i
mi;t
) � 2

miX
j=1

e�N
i
j;t�

2=2+2e�(s�N
i
t )�

2=2:

(A8)

The next step is to estimate the size of the tail of the random variable

Nj;t; which is binomially distributed B(�i=mi; s). We claim that:

P

�
jN i

j;t �
s�i
mi

j � s�i
2mi

�
� 2e�s�i=20mi : (A10)

This can be derived from Bennett�s inequality [3]. Consider a collection

of n independent random variables U1; : : : ; Un with sup jUij � M , E Ui = 0,
and

P
iE U

2
i = 1. Then for every � > 0,

P (
X
i

Ui � �) � exp
�
�

M
�
�
�

M
+

1

M2

�
log(1 +M�)

�
: (A11)

We will apply this to the case of n i.i.d. random variables X1; : : : ; Xn, with

Var(Xi) = �2 and jXij � 1: Let Ui = (1=�
p
n)(Xi � EX): Then jUij <

1=�
p
n;EUi = 0; and

Pn
i=1EU

2
i = 1: Letting � = (
=�)

p
n; M = 1=�

p
n,

and X =
P
Xi=n; it follows from (A11) that

P (X � EX � 
) � exp
�
n
 � n(
 + �2) log(1 + 
=�2)

�
: (A12)

If we take 
 = �2=2 and use the fact that log(3=2) � :4,

P (X � EX � �2=2) � exp(�n�2=10): (A13)

When the Xi�s are binomial (p; n) with 0 < p < :5, this implies

P (X � p � p=2) � e�np=20

and hence

P (jX � pj � p=2) � 2e�np=20; (A14)
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from which (A10) follows immediately.

Consider the event B in which all of the N i
j;t lie within their expected

value �is=mi plus or minus half their expected value:

B � \jfjN i
j;t � �is=mij � �is=2mig:

From (A10) it follows that the probability of the complementary event Bc

satis�es:

P (Bc) � 2mie
�s�i=20mi (A15)

Let A be the event jbrit � rit)j > 2�: From (A8) we have

P (AjB) � 2mie
��is�2=4 + 2e�(s�N

i
t )�

2=2: (A16)

But if B holds, then s � N i
t � s � 3�is=2 = (1 � 3�i=2)s: By hypothesis

�i � 1=3; hence s�N i
t > s=2 and

P (AjB) � 2mie
��is�2=4 + 2e�s�

2=4: (A17)

Since P (A) � P (AjB) + P (Bc); it follows from (A15) and (A17) that

P (A) = P (jbrit � rit)j > 2�) � 2mie
�s�i�2=4 + 2e�s�

2=4 + 2mie
�s�i=20mi

� 2(mi + 1)e
�s�i�2=4 + 2mie

�s�i=20mi : (65)

Changing from � to �=2 we obtain

P (jbrit � rit)j > �) � 2(mi + 1)e
�s�i�

2

16 + 2mie
� s�i
20mi : (A19)

By assumption, � � 1
p
2mi; so 1=20mi � �2=16 � �2=16mi. It follows that

e�s�i�
2=16mi � e�s�i�2=16 � e�s�i=20mi, hence (A19) implies

P (jbrit � rit)j > �) � (4mi + 2)e
�s�i�

2

16mi � 6mie
�s�i�

2

16mi : (A20)

This establishes (A5) as claimed.

Recall that in state (p; q) the actual behavioral probabilities are, for player

1, ep = (1� �1)p+ (�1=m1)
!
1m1 ;



36

and for player 2, eq = (1� �2)q + (�2=m2)
!
1m2 : (A21)

If (pt; qt) is an ("1; "2)-equilibrium, the expected regrets rit in state (pt; qt)

satisfy the bound

rit � "i + 2(�1 _ �2): (A22)

(This follows from (A21) and the assumption that the payo¤s are bounded

between 0 and 1.)

To prove Lemma 1, part (i), assume that zt = (pt; qt) is a (� 1=2; � 2=2)-

equilibrium. Since by assumption, �1; �2 � �=8; where � = � 1^� 2, it follows
from (A22) that

rit � � i=2 + � i=4 = 3� i=4: (A23)

In order for a rejection to occur, we must have brit > � i; which by the preceding
implies that jbrit � ritj > � i=4. Letting � = � i=4; it follows from (A5) that the

probability of this occurring is less than 6mie
�s�i�

2
i

256mi . Thus the probability

that one or both players reject is less than

2X
i=1

6mie
�s�i�

2
i

256mi � 12me�s��2=256m:

This establishes lemma 1, part (i).

To prove part (ii) of the lemma, suppose that in state zt at least one of

the players, say i, can improve his payo¤ by more than 2� i. This implies

rit > 2� i � � i=4 � 7� i=4. He rejects unless brit � � i, which implies jbrit �
ritj > 3� i=4. By (A5) we know that the probability of this is less than

6mie
�9s�i�

2
i

256mi � 6mie
�s�i�

2
i

30mi . Choose s large enough that

6mie
�s�i�

2
i

30mi < 1=3:

This holds if

s >
30mi

�i� 2i
ln(18mi):
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Noting that lnx � x for x � 1, this simpli�es to

s >
540m2

i

�i� 2i
:

Recalling that m = m1 _m2; � 1 ^ � 2; and � = �1 ^�2; we see that this holds
if s � c = 103m2=�� 2, as posited in the lemma. We have therefore shown

that, if player i is out of equilibrium by more than 2� i, then i accepts with

probability at most 1/3, and rejects with probability at least 2=3, which is

certainly greater than 1=2. If both players are in this situation (as posited in

part (ii) of the lemma), then each revises with probability at least 2=3. Since

the union of these two events has probability at most 1, their intersection has

probability at least 1/3 which is certainly greater than 1/4. This concludes

the proof of lemma 1 part ii). �
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