Copyright (C) 2013 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of the Creative Commons attribution license http://creativecommons.org/licenses/by/2.0/

Long Run versus Short Run Player

a fixed simultaneous move stage game

Player 1 is long-run with discount factor δ
actions $a^{1} \in A^{1}$ a finite set
utility $u^{1}\left(a^{1}, a^{2}\right)$

Player 2 is short-run with discount factor 0
actions $a^{2} \in A^{2}$ a finite set
utility $u^{2}\left(a^{1}, a^{2}\right)$

What it is about

the "short-run" player may be viewed as a kind of "representative" of many "small" long-run players

- the "usual" case in macroeconomic/political economy models
- the "long run" player is the government
- the "short-run" player is a representative individual

Example 1: Peasant-Dictator

Example 2: Backus-Driffil

Low
High

Low	High
0,0	$-2,-1$
$1,-1$	$-1,0$

Inflation Game: LR=government, SR=consumers consumer preferences are whether or not they guess right

	Low	High
Low	0,0 $0,-1$ High $-1,-1$	

with a hard-nosed government

Repeated Game

history $h_{t}=\left(a_{1}, a_{2}, \ldots, a_{t}\right)$
null history h_{0}
behavior strategies $\alpha_{t}^{i}=\sigma^{i}\left(h_{t-1}\right)$
long run player preferences
average discounted utility
$(1-\delta) \sum_{t=1}^{T} \delta^{t-1} u^{i}\left(a_{t}\right)$
note that average present value of 1 unit of utility per period is 1

Equilibrium

Nash equilibrium: usual definition - cannot gain by deviating
Subgame perfect equilibrium: usual definition, Nash after each history
Observation: the repeated static equilibrium of the stage game is a subgame perfect equilibrium of the finitely or infinitely repeated game

- strategies: play the static equilibrium strategy no matter what

"perfect equilibrium with public randomization"

may use a public randomization device at the beginning of each period to pick an equilibrium
key implication: set of equilibrium payoffs is convex

Example: Peasant-Dictator

normal form: unique Nash equilibrium high, eat

	eat	grow
Iow	$0^{*}, 1$	
high	$0^{*}, 1^{*}$	$3^{*}, 0$

Static Benchmarks

payoff at static Nash equilibrium to LR player: 0
precommitment or Stackelberg equilibrium precommit to low get 1
mixed precommitment to 50-50 get 2
minmax payoff to LR player: 0

Payoff Space

utility to long-run player
mixed precommitment/Stackelberg $=2$
best dynamic equilibrium = ?
pure precommitment/Stackelberg $=1$
Set of dynamic equilibria
static Nash $=0$
worst dynamic equilibrium = ?
$-\operatorname{minmax}=0$

Repeated Peasant-Dictator

finitely repeated game
final period: high, eat, so same in every period
Do you believe this??

- Infinitely repeated game
begin by low, grow
if low, grow has been played in every previous period then play low, grow
otherwise play high, eat (reversion to static Nash)
claim: this is subgame perfect

When is this an equilibrium?

clearly a Nash equilibrium following a history with high or eat SR play is clearly optimal
for LR player
may high and get $(1-\delta) 3+\delta 0$
or low and get 1
so condition for subgame perfection

$$
\begin{aligned}
& (1-\delta) 3 \leq 1 \\
& \delta \geq 2 / 3
\end{aligned}
$$

Equilibrium Utility

equilibrium utility for LR

General Deterministic Case

Fudenberg, Kreps and Maskin

```
max u}\mp@subsup{u}{}{1}(a
    mixed precommitment/Stackelberg
    \mp@subsup{v}{}{1}}\mathrm{ best dynamic equilibrium
    pure precommitment/Stackelberg
        Set of dynamic
        equilibria
    static Nash
    \underline { v } ^ { 1 } \text { worst dynamic equilibrium}
    minmax
    min}\mp@subsup{u}{}{1}(a
```


Characterization of Equilibrium Payoff

$\alpha=\left(\alpha^{1}, \alpha^{2}\right)$ where α^{2} is a b.r. to α^{1}
α represent play in the first period of the equilibrium
$w^{1}\left(a^{1}\right)$ represents the equilibrium payoff beginning in the next period
$v^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right)$
$v^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right), \alpha^{1}\left(a^{1}\right)>0$
$\underline{v}^{1} \leq w^{1}\left(a^{1}\right) \leq \bar{v}^{1}$

Simplified Approach

impose stronger constraint using n static Nash payoff
for best equilibrium $n \leq w^{1}\left(a^{1}\right) \leq \bar{v}^{1}$
for worst equilibrium $\underline{v}^{1} \leq w^{1}\left(a^{1}\right) \leq n$
avoids problem of best depending on worst
remark: if we have static Nash = minmax then no computation is neede for the worst, and the best calculation is exact.

max problem

fix $\alpha=\left(\alpha^{1}, \alpha^{2}\right)$ where α^{2} is a b.r. to α^{1}
$\bar{v}^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right)$
$\bar{v}^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right), \alpha^{1}\left(a^{1}\right)>0$
$n^{1} \leq w^{1}\left(a^{1}\right) \leq \bar{v}^{1}$
how big can $w^{1}\left(a^{1}\right)$ be in = case?

Biggest when $u^{1}\left(a^{1}, \alpha^{1}\right)$ is smallest, in which case
$w^{1}\left(a^{1}\right)=\bar{v}^{1}$
$\bar{v}^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta \bar{v}^{1}$

Summary

conclusion for fixed α
$\min _{a^{1} \mid \alpha\left(a^{1}\right)>0} u^{1}\left(a^{1}, \alpha^{2}\right)$
i.e. worst in support
$\bar{v}^{1}=\max _{\alpha^{2} \in B R^{2}\left(\alpha^{1}\right)} \min _{a^{1} \mid \alpha\left(a^{1}\right)>0} u^{1}\left(a^{1}, \alpha^{2}\right)$
observe:
mixed precommitment $\geq \bar{v}^{1} \geq$ pure precommitment

Peasant-Dictator Example

eat	grow	
low		
high	$0^{*}, 1$	$1,2^{*}$
$0^{*}, 1^{*}$	$3^{*}, 0$	

p (low)	BR	worst in support
1	grow	1
$1 / 2<p<1$	grow	1
$p=1 / 2$	any mixture	≤ 1 (low)
$0<p<1 / 2$	eat	0
$p=0$	eat	0

Check the constraints

$$
w^{1}\left(a^{1}\right)=\frac{\bar{v}^{1}-(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)}{\delta} \geq n^{1}
$$

$$
\text { as } \delta \rightarrow 1 \text { then } w^{1}\left(a^{1}\right) \rightarrow \bar{v}^{1} \geq n^{1}
$$

min problem

fix $\alpha=\left(\alpha^{1}, \alpha^{2}\right)$ where α^{2} is a b.r. to α^{1}
$\underline{v}^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right)$
$\underline{v}^{1} \leq w^{1}\left(a^{1}\right) \leq n^{1}$

Biggest $u^{1}\left(a^{1}, \alpha^{1}\right)$ must have smallest $w^{1}\left(a^{1}\right)=\underline{v}^{1}$
$\underline{v}^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta \underline{v}^{1}$
conclusion
$\underline{v}^{1}=\max u^{1}\left(a^{1}, \alpha^{2}\right)$
or
$\underline{v}^{1}=\min _{\alpha^{2} \in B R^{2}\left(\alpha^{1}\right)} \max u^{1}\left(a^{1}, \alpha^{2}\right)$, that is, constrained minmax

Worst Equilibrium Example

	L	M	R
U	$0,-3$	1,2	0,3
D	$0,3^{\star}$	2,2	0,0

static Nash gives 0
minmax gives 0
worst payoff in fact is 0
pure precommitment also 0

mixed precommitment

p is probability of up
to get more than 0 must get SR to play M
$-3 p+(1-p) 3 \leq 2$ and $3 p \leq 2$
first one
$-3 p+(1-p) 3 \leq 2$
$-3 p-3 p \leq-1$
$p \geq 1 / 6$
want to play D so take $p=1 / 6$
get $1 / 6+10 / 6=11 / 6$

Utility to long-run player

$-\max u^{1}(a)=2$
mixed precommitment/Stackelberg=11/16
\bar{v}^{1} best dynamic equilibrium=1
pure precommitment/Stackelberg=0
Set of dynamic
equilibria
static Nash=0
\underline{v}^{1} worst dynamic equilibrium=0
minmax=0
$\min u^{1}(a)=0$

calculation of best dynamic equilibrium payoff

p is probability of up

p	${ }^{2} R^{2}$	worst in support
$<1 / 6$	L	0
$1 / 6<p<5 / 6$	M	1
$p>5 / 6$	R	0

so best dynamic payoff is 1

Moral Hazard

choose $a^{i} \in A$
observe $y \in Y$
$\rho(y \mid a)$ probability of outcome given action profile
private history: $h^{i}=\left(a_{1}^{i}, a_{2}^{i}, \ldots\right)$
public history: $h=\left(y_{1}, y_{2}, \ldots\right)$
strategy $\sigma^{i}\left(h^{i}, h\right) \in \Delta\left(A^{i}\right)$
"public strategies", perfect public equilibrium

Moral Hazard Example

"mechanism design" problem
each player is endowed with one unit of income
players independently draw marginal utilities of income $\eta \in\{\bar{\eta}, \underline{\eta}\}$
player 2 (SR) has observed marginal utility of income player 1 (LR) has unobserved marginal utility of income

Decisions, decisions

player 2 decides whether or not to participate in an insurance scheme
player 1 must either announce his true marginal utility or he may announce $\bar{\eta}$ independent of his true marginal utility
non-participation: both players get $\gamma=\frac{\bar{\eta}+\underline{\eta}}{2}$
participation: the player with the higher marginal utility of income gets both units of income

normal form

> non-participation participate
truth
lie

γ, γ	$\frac{\bar{\eta}+\gamma}{2}, \frac{\bar{\eta}+\gamma}{2}$
γ, γ	$\frac{3 \gamma}{2}, \frac{\bar{\eta}}{2}$

$p^{*}=\frac{\eta}{\gamma}$ makes player 2 indifferent

$$
\left\{\begin{array}{l}
\max u^{1}(a)=\frac{3 \gamma}{2} \\
\text { mixed precommitment/Stackelberg }=\frac{\bar{\eta}+\gamma}{2}+\left(1-\frac{\eta}{\gamma}\right) \underline{\underline{\eta}} 2 \\
\bar{v}^{1} \text { best dynamic equilibrium }=\frac{\bar{\eta}+\gamma}{2} \\
\text { pure precommitment/Stackelberg }=\frac{\bar{\eta}+\gamma}{2} \\
\begin{array}{l}
\text { Seq of dynamic } \\
\text { equilibria }
\end{array} \\
\underline{v}^{1} \text { worst dynamic equilibrium }=\gamma \\
\min u^{1}(a)=\gamma, \text { minmax }=\gamma
\end{array}\right.
$$

moral hazard case

player 1 plays "truth" with probability p * or greater player 2 plays "participate"

$$
\begin{aligned}
& \bar{v}=(1-\delta) \frac{\bar{\eta}+\gamma}{2}+\delta\left(\frac{1}{2} w(\underline{\eta})+\frac{1}{2} w(\bar{\eta})\right) \\
& \bar{v} \geq(1-\delta) \frac{3 \gamma}{2}+\delta w(\bar{\eta}) \\
& \bar{v} \geq w(\underline{\eta}), w(\bar{\eta})
\end{aligned}
$$

$w(\bar{\eta})$ must be as large as possible, so inequality must bind; $w(\underline{\eta})=\bar{v}$

Solving

$$
\bar{v}=(1-\delta) \frac{3 \gamma}{2}+\delta w(\bar{\eta})
$$

solve two equations

$$
\begin{aligned}
& \bar{v}=\bar{\eta}-\frac{\gamma}{2} \\
& w(\bar{\eta})=\frac{\bar{v}-(1-\delta) 3 \gamma / 2}{\delta}
\end{aligned}
$$

Constraint check

check that $w(\bar{\eta}) \geq \gamma$
leads to $\delta \geq 2\left(2-\frac{\bar{\eta}}{\gamma}\right)$
from $\delta<1$ this implies
$\bar{\eta}>3 \underline{\eta}$

