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Problems on Reputation

1. Reputation
A sequence of consumers must choose what product to buy from Gigantic Corporation:  a
mediocre product or a special improved brand.  The mediocre product yields a utility to the
consumer of 1 and a profit to Gigantic of 1.  The special improved brand yields a utility of 2 and
a profit of 2.  However, Gigantic has the option of producing a cheap imitation brand that is
indistinguishable from the special improved brand.  This yields a utility of 0 and a profit of 4.  If
a consumer buys a special improved brand, he finds out whether or not it is the cheap imitation,
and reveals this information to later consumers.

a.  Show that there is a sequential equilibrium in which Gigantic produces only cheap
imitations and consumers always buy the mediocre product.

b.  If Gigantic is very patient and there is a positive probability that it is "honest" and does
not produce imitations, does this make a difference?

c.  Would it make a difference if Gigantic has also the option of producing defective
products that are indistinguishable from mediocre products?  These yield a utility of -1 and a
profit of 0.

d.  What if in part c) all pure strategy types have equal probability?.

2. Inference and Martingales
A single decision-maker picks a sequence of actions at ∈ A, a finite set.  He is drawn from a

finite set of types Ω.  If h a a at t= ( , , )1 2 K  is the history of his play through t his strategy may be
described by a probability distribution over A at time t, σ ωt th( , )−1 , which depends on the history

and his type.  You observe the play of this player, and place probability µ(ω ) > 0 on his being
type ω .

Consider  µ ω( | )ht .  By Bayes law
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  Fix a type ω + , and let Ω Ω+ +≡ \ω  be the set of

all other types.  We may define random variables p qt t,   by
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We also define Lt  recursively by
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a.  What are pt and  qt
 .

b.  Show by induction that
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c.  Show that
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This means (by definition) that Lt  is a supermartingale; obviously Lt ≥ 0 .
d.  It is known that if Lt

  is a non-negative supermartingale, with probability one, the
sequence (L0,L1,L2,...) converges to a limit.  How can you interpret this fact?

3.  The Chain Store Paradox-Paradox
Consider the Kreps-Wilson version of the chain store paradox:  An entrant may stay out and get
nothing (0), or he may enter.  If he enters, the incumbent may fight or acquiesce.  The entrant gets
b if the incumbent acquiesces, and b-1 if he fights, where 0<b<1.  There are two types of
incumbent, both receiving a>1 if there is no entry.  If there is a fight, the strong incumbent gets 0
and the weak incumbent gets -1; if a strong incumbent acquiesces he gets -1, a weak incumbent
0.

Only the incumbent knows whether he is weak or strong; it is common knowledge that
the entrant a priori believes that he has a π0  chance of facing a strong incumbent.  Define
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a.  Sketch the extensive form of this game.
b.  Define a sequential equilibrium of this game.
c.  Show that if γ ≠ 1, there is a unique sequential equilibrium, and that if γ > 1 entry

never occurs, while if γ < 1 entry always occurs.
d.  What are the sequential equilibria if γ = 1?
e.  Now suppose that the incumbent plays a second round against a different entrant who

knows the result of the first round.  The incumbent’s goal is to maximize the sum of his payoffs
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in the two rounds.  Show that if γ > 1 there is a sequential equilibrium in which the entrant
enters on the first round and both types of incumbents acquiesce.  Be careful to specify both the
equilibrium strategies and beliefs.


