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Abstract This paper investigates learning-based agents that are capable of mimicking
human behavior in game playing, a central task in computational economics. Although
computational economists have developed various game-playing agents, well-established
machine learning methods such as graphical models have not been applied before. Leverag-
ing probabilistic graphical models, this paper presents a novel sequential Bayesian network
(SBN) framework for building artificial game-playing agents. We show that many existing
agents, including reinforcement learning, fictitious play, and many of their variants, have
a unified Bayesian explanation within the proposed SBN framework. Moreover, we dis-
cover that SBN can handle various important settings of game playing, allowing for a broad
scope of its use in economics. SBN not only provides a unifying and satisfying framework
to explain existing learning approaches in virtual economies, but also enables the develop-
ment of new algorithms that are stronger or have fewer restrictions. In this paper, we derive
a new algorithm, Hidden Markovian Play (HMP), from the generic SBN model to handle an
important but difficult setting in which a player cannot observe the opponent’s strategy and
payoff. It leverages Markovian learning to infer unobservable information, leading to higher
quality of the agents. Experiments on real-world field experiments in evaluating economies
show that our HMP model outperforms the baseline algorithms for building artificial agents.
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1 Introduction

An important need for developing better economic policy prescriptions is an improved
method of validating theories. Originally, economics depended on field data from surveys.
Laboratory experiments have added a new dimension: a good theory ought to be able to pre-
dict outcomes in the artificial world of the laboratory. Modern economists have extended
this in two directions: to field experiments and Internet experiments. These innovations are
important, as they are easier, faster, and more practical to validate theories [35]. On the other
hand, all types of experiments have important limitations. The largest Internet experiment
is orders of magnitudes smaller than a small real economy: thousands of subjects rather
than millions of real decision-makers. Experiments are still time-consuming and subjects
are expensive to pay for large experiments. Finally, control in experiments is still and nec-
essarily imperfect. In particular, it is not practical to control for either risk aversion or social
preferences.

An alternative method of validating theories is through the use of artificial or virtual
agents. If a virtual world is an adequate description of a real economy, then a good economic
theory ought to be able to predict outcomes in that setting. An artificial environment offers
enormous advantages over the laboratory, field, and Internet, as it provides complete control
and great speed in creating economies and validating theories. In physical sciences, the large
computer models used in testing nuclear weapons are an analogy.

The state of the art in the study of virtual economies is agent-based modeling where
human behaviors are simulated by artificial gaming agents. Agent-based modeling methods
for building virtual economies have lots of benefits and are used in many real-world appli-
cations, including organizational simulation and market forecast [4]. The validity of using
artificial game-theoretic agents has been validated through numerous experiments [23, 25].
Hence, it is vital for economics study to improve the quality and versatility of the artificial
agents, produced by algorithms that learn from the playing history of human players.

In agent-based virtual economies, each artificial gaming agent plays its role and inter-
acts with other agents, from which we could witness and investigate human behavior. Game
theory is the study of strategic iteration among intelligent players, and widely used in eco-
nomical and industrial areas. However, game theory has traditionally been developed as a
theory of handling situations where players exhibit equilibrium behaviors [24]. For economy
or other real-world studies, it is not enough to analyze the equilibriums and it is important to
learn from real human behaviors. It is long known that human behaviors often deviate from
the Nash equilibrium, due to reasons such as information constraints, lack of total rational-
ity, and the potential of human collaboration in repeated play. With these limitations, there
even does not exist equilibrium in some cases [6]. Thus, it is important to develop models
to describe the game-playing process rather than just analyzing the equilibrium, by learning
from historical data of human subjects playing games.

Two major classes of such machine learning models are reinforcement learning1 [24]
and fictitious play [27]. However, they are rather simple rule-based models that are not
good representation of the sophisticated behaviors of human. Each of these models assumes
certain information that is often unavailable. Moreover, they cannot make use of certain
extra information to achieve better modeling quality even if it is available.

1The term “reinforcement learning” has broad meanings in various learning contexts. In this paper, we use
this term to refer to the specific technique for building game-playing agents.
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The diversity of human rationality and game-playing settings lead to different game-
playing processes. It is desirable to have a unifying framework, under which a broad class
of models capable of mimicking human behaviors under different settings are described.
In this paper, we explore the application of probabilistic graphical models in building such
agents. We propose a general sequential Bayesian network (SBN) model to capture behav-
ioral incentive structure of human players under different game-playing settings. Our work
shows that it is promising to apply established machine learning methods to agent-based
economics. This paper makes the following contributions:

– We propose a unifying SBN framework that can handle a broad class of game-theoretic
settings. SBN works across different settings and is able to take full advantage of all
the available data under these settings. In essence, we use statistical inference to derive
beliefs on unobservable variables based on observed data.

– Based on the SBN framework, we elucidate the close relationship between reinforce-
ment learning and fictitious play, two learning algorithms that have been developed in
separation. We discover that both algorithms as well as their variants have a unifying
Bayesian explanation.

– Based on the SBN framework, we further derive a new learning method, called Hidden
Markovian Play (HMP), which leverages Markovian learning to infer unavailable infor-
mation from observed data, leading to higher modeling quality of the artificial agents.
Moreover, the new algorithm requires less observable information than some existing
models.

– We apply the proposed HMP model to some real-world field experiments in evaluating
economies such as market entries. The results show that the HMP model outperforms
many existing algorithms for building artificial agents.

This paper is organized as follows. We formally define the problem of learning human
behaviors in game-playing process and the methodology for evaluating performance in
Section 2. Then, we survey the related work in Section 3. We describe our SBN framework
in Section 4 and explain how it encompasses previous learning approaches in Section 5.
Based on the SBN framework, we propose the HMP algorithm, a novel game-playing agent
in Section 6. We evaluate the performance of HMP, along with other existing agents, on data
from real-world field experiments in Section 7. Finally, we draw conclusions in Section 8.

2 Learning human behaviors in playing games

In this paper, we focus on repeated games which are the main type of games describing
long-term economical phenomena. Our task is to build artificial agents, models that pre-
dict human behavior statistics given a game-theoretic environment. It can be viewed as a
machine learning problem: we build an artificial model by learning from the existing data
of human players participating in games.

In a repeated game, players play a same game repeatedly. In each round, players simul-
taneously submit their strategies and receive payoff determined by the utility (payoff)
function. Consider a n-person normal form game where players are indexed by i, i =
1, 2, ..., k. The strategy space of player i contains mi discrete strategies, i.e.

S(i) =
{
s
(i)
1 , s

(i)
2 , ..., s

(i)

mi

}
.
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S = S(1) × ... × S(n) is the strategy profile based on which individual payoff is assigned in
each round. We use si to denote a strategy variable of player i and s−i to denote the strategy
combination of all players except i, i.e.

s−i = (s1, ..., si−1, si+1, ..., sn).

The utility function of player i is ui(si, s−i ), which maps the strategy profile to payoff.
The utility function could be deterministic or stochastic. For example, ui(si, s−i ) = 2 with
probability 0.7 and 0 otherwise. We denote the actual strategy selected by player i at round t

by si
t and the strategy vector chosen by all other players by s−i

t . We also denote the player i’s
received payoff in round t by ui

t . To give an intuition, Table 1 shows a simple 2-player game.
For example, for a round of the game in Table 1 (left) whose payoff is deterministic, if Player
1 plays strategy 1 and Player 2 plays strategy 2, they receive payoffs 8 and 2, respectively,
in that round. For a round of the game in Table 1 (right) whose payoff is stochastic, if Player
1 plays strategy 1 and Player 2 plays strategy 2, they receive a fixed amount of payoffs (say
3) with probability 0.7 and 0.1, respectively, and receive a payoff of 0 otherwise.

A general concept used by many existing learning algorithms is attraction. Denoted by
Ai

t (j), the attraction reflects the propensity of player i towards the j th strategy in round t .
Intuitively, a larger attraction denotes a larger chance of the player selecting the strategy in
question. An artificial agent probabilistically selects its strategy in each round according to
the attractions of the strategies. Attractions can change in each round as players learn from
the history and adjust. Table 2 summarizes some important notations in our paper.

To model human behaviors, we need to know the setting, i.e. what kind of information is
available to each player. Such information includes the player’s own strategy history, payoff
history and payoff function, and the opponent’s strategy, payoff history and payoff function.
Given a game, different settings may lead to different human behaviors.

To evaluate the performance of a model, the most common metric is the behavior statis-
tics of a game-playing process. As a repeated game is played for many rounds, we use the
term “block” to denote a number of consecutive rounds. The whole game-playing process
can be divided into blocks, where the behavior statistics are calculated for each block. The
most typical behavior statistics include the following: 1) strategy rate: the observed pro-
portion of times a player plays a certain strategy in each block. 2) efficiency: the observed
expected payoffs in each block. 3) alternation: the observed proportion of times a player
changes his strategy between two consecutive rounds.

To illustrate behavior statistics, Fig. 1 shows the proportion of choosing strategy 1 of each
human player at each block of 40 rounds, regarding the game in Table 1 (left). This curve is
called the aggregate learning curve which plots the behavior statistics for each block and is
used by [24] for illustration of game-playing process and evaluation of artificial agents. We

Table 1 Example payoff functions of 2-player games. Left: deterministic payoff. Right: Stochastic payoff.

Player 1
Player 2

Strategy 1 Strategy 2

Strategy 1 3,7 8,2

Strategy 2 4,6 1,9

Strategy 1 0.3,0.5 0.7,0.1

Strategy 2 0.4,0.8 0.1,0.9

Please note that the numbers in the right table represent the probability of receiving a pre-specified payoff



A unifying learning framework for building artificial

Table 2 A list of important notations and their meanings

si , ui Variable representing strategy and payoff of player i, respectively

S(i), U(i) The set of possible strategies and payoffs of player i, respectively

s
(i)
j , u

(i)
j The j th strategy and its payoff of player i, respectively

si
t , u

i
t The strategy and payoff, respectively, of player i at round t

s−i The combination of strategies of all players except player i

si
t,j 1 if si

t = s
(i)
j and 0 otherwise

Ai
t (j) Attraction of player i selecting the j th strategy at round t

P i
t (j) Probability of player i selecting the j th strategy at round t

also show the Nash equilibria for both players (0.875 and 0.375). We see that the behavior
of human players does not converge to the Nash equilibrium. Our task is to predict these
behavior statistics of each block. Evaluation is based on the deviation between the predicted
curve and the ground-truth curve. To do this, we set up a simulator in which artificial agents
play against each other. At each round, all agents simultaneously generate their strategies,
and receive a corresponding payoff. Then, each agent updates its learning model based on
the information it receives.

To sum up, building agents for simulating and predicting human behavior in game
playing can be casted as a supervised learning problem.

The learning procedure is as follows:

1. Data collection. The dataset should include a specification of the game-theoretic
environment as well as playing records of players. The game-theoretic environment
describes the payoff function of each player and the observability of game-playing
information.

2. Data preprocessing. We extract the behavior statistics at each block. Each game is
played by many groups of human players. All behavior statistics in each block of each
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Fig. 1 Human playing traces and Nash equilibrium (NE) for the game in Table 1 (left)
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game are calculated by averaging the ones of all groups playing it. Thus, the behavior
statistics reflect human’s aggregate behavior rather than individual ones.

3. Model building. Parameters in a learning model are selected to minimize the error
between the predicted and ground-truth behavior statistics of each block. It is also
possible to select other meta-parameters using cross-validation.

3 Related work

Two algorithms, fictitious play and reinforcement learning, form the basis of most existing
agent learning methods in experimental economics. We review these two basic algorithms
as well as other related variants and enhancements.

3.1 Fictitious play (FP)

In fictitious play [27], players are assumed to be able to observe their opponents’ strategy,
and play a best response to the past empirical frequencies of opponents’ strategies. This is
an example of belief learning in the sense that the frequencies can be viewed as beliefs by
the player about his opponents, to which he responds. More formally, player i starts with an
exogenous initial frequency function κi

0 : S−i → R+, and updates it as follows:

κi
t+1(s

−i ) = κi
t (s

−i) + I (s−i
t , s−i), (1)

where I () is an indicator function, and I (m,n) = 1 if m = n and 0 otherwise. Player i

believes that the probability of player −i playing strategy s−i in round t + 1 is

γ i
t (s−i ) = κi

t (s
−i)∑

ŝ−i∈S−i κi
t (ŝ

−i)
(2)

The player will then play the best response to this belief over opponents’ strategy
distribution next round, i.e.

P i
t+1(j) = I (j, BRi(γ i

t (s−i))) (3)

where P i
t+1(j) is the probability player i plays strategy j at round t + 1, and the best

response BRi(γ i
t (s−i)) = argmaxk

∑
s−i∈S−i γ i

t (s−i) · ui(k, s−i).
The equations of fictitious play above could also be organized in a fashion of sequentially

updating attractions and choosing the strategy with the greatest attraction at each round, as
follows:

Ai
t+1(j) = Ai

t (j) + ui(j, s−i
t ), (4)

when j = si
t , ui(j, s−i

t ) is equal to ui
t which is the payoff player i received in round t . When

j �= si
t , ui(j, s−i

t ) is called foregone payoff, which is the payoff when a player chooses
other strategies while his opponents’ strategies remain the same.2 Thus, fictitious play can
be applied only when the opponents’ strategy history is visible or one’s foregone payoff is
available.

2With a slight abuse of notation, j and s
(i)
j both refer to the j th strategy.
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3.2 Reinforcement Learning (RL)

The reinforcement learning [24] algorithm assumes that a player observes only his own pay-
off, and tracks behaviors rather than beliefs. Please note that the RL algorithms in this paper
was proposed within the context of economics [24], rather than the traditional reinforce-
ment learning in the context of AI [40]. Strategies are “reinforced” by their previous payoff.
This is done by updating attractions. The chosen strategy is then a stochastic function of
these attractions. Players who learn by reinforcement do not generally have beliefs about
what other players will do. In basic RL, each artificial agent i starts from an initial attraction
Ai

0(j) for each strategy j, j = 1, · · · ,mi , where mi is the number of strategies available
to player i. The initial attraction can be decided by schemes such as uniform initial attrac-
tion or cognitive hierarchy model. Then, the agent updates its attraction after each round of
playing. After round t , upon receiving a payoff ui

t , the attraction updating function is:

Ai
t+1(j) = Ai

t (j) + I (si
t , j )ui

t (5)

The probability of player i plays his j th strategy is:

P i
t (j) = Ai

t (j)
∑mi

k=1 Ai
t (k)

(6)

3.3 EWA

In general, psychologists focus more on reinforcement-based models such as RL while
decision and game theorists emphasize on belief-based models such as FP. Thus, these two
approaches have been regarded as fundamentally different [7]. A new algorithm called EWA
(Experience-Weighted Attraction) combined the two and claimed itself as the first hybrid of
both FP and RL. In the parametric EWA model [7], attractions are updated by

Ai
t+1(j) = φ · N(t) · Ai

t (j) + [δ + (1 − δ) · I (j, si
t )] · ui(j, s−i

t )

N(t) · φ · (1 − κ) + 1
(7)

where N(t) is updated by N(t) = φ · N(t − 1) · (1 − κ) + 1, φ is a discount factor on
previous experience, and δ is a discount factor on foregone payoff. Both φ and δ are between
0 and 1. κ is either 0 or 1, determining whether attractions would be normalized or not. The
probability of player i using strategy j at round t + 1 is updated by the following logistic
response rule:

P i
t+1(j) = eλ·Ai

t+1(j )

∑mi

k=1 eλ·Ai
t+1(k)

, (8)

where λ ≥ 0 reflects the sensitivity to attraction. Since EWA requires to know the foregone
payoff, it normally could only work in an environment where the foregone payoff is given
in each round or both the self payoff matrix and opponents’ strategy history are observable.
A parametric EWA model has five free parameters to be learnt: λ, φ, δ, Ai

0(j), κ .
Self-tuning EWA [29], a state-of-the-art model, is an improvement to the EWA model.

It allows all free parameters except for λ to be self tuned by heuristics. For example, self-
tuning EWA uses the cognitive hierarchy model [8] to provide the initial attractions Ai

0(j).
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3.4 Other works

Game theory has been widely used by the multi-agent learning community. [39] proposed
that two main goals of multi-agent learning models are being 1) computationally conve-
nient for some properties of games such as Nash equilibrium, and 2) descriptive of the
real human agents. Many attempts in the AI literature has been focusing on the first one:
the efficient computation or analysis of Nash equilibrium strategy [1, 17, 31], or making
agent as intelligent as possible [9, 12, 18]. However, few investigate the second aspect,
i.e. are these models descriptive of real human behaviors? The key observation that human
behaviors do not necessarily approach Nash equilibria is important in behavioral and experi-
mental economics. There have been efforts to connect artificial intelligence with economics
[5, 10, 11, 15], but few of them did research on learning human behaviors in repeated
games. For example, [43] proposes a method for computing optimal defender strategies in
a real-world security games against a quantal response (QR) attackers which reflects the
bounded rationality of humans. However, they mainly investigate the computational issues
of optimal strategies rather than learning human behaviors. There have been a few works
of applying graphical model in game theory [30, 32, 34]. However, most of them deal
with the issues of computing or approximating Nash Equilibrium solutions. Another line
of research studies game theory in the context of online learning, which focuses more on
the analysis of regret. The most prominent one is the multiplicative weights update method
which applies a multiplicative updating rule to maintain weights over a set of experts [2,
33]. In this paper we mainly consider the additive updating rules which are the domi-
nant choices in behavioral economics. Other related works include [14, 16] which models
recursive reasoning of human. [36] also applies I-POMDP to model multi-agent system
in repeated games. Our work is different in that we focus on repeated game and learn-
ing the aggregate learning curve of humans. [41] looks at two-player single-shot games
where the actual utility value received by players is not observed. Instead, the utility fea-
tures are observed whose linear combination is the utility received by players. They propose
a method to recover the utility function from a set of samples from the joint strategy
space. [42] also proposes a Bayesian framework for behavioral game theoretic models.
But they focus on learning the parameters in existing models while our work involves
explaining existing models as well as proposing new game-theoretic models within our
framework.

In the literature of experimental economics, the dominating modeling methods are RL
and FP. Based on RL and FP, variants include normalized reinforcement learning [22],
averaging reinforcement learning [20], stochastic fictitious play [27], normalized fictitious
play [26], self-tuning EWA [29], conditional fictitious play [28], moderated fictitious play
[38], and other no-regret learning algorithms [27]. Since in this paper we focus on agent-
based learning and decision-making models, some ensemble cognitive models such as
I-SAW [19] will not be considered.

Table 3 shows the assumptions of various models. We can see that FP and EWA only
work under some specific settings. RL can work under almost all kinds of settings, since
each player always knows his submitted strategy and received payoff at each round. How-
ever, when some information such as the opponent’s strategy at each round is available,
RL-based algorithms fail to make use of that information. All these mentioned models only
follow some rather simple rules, and are not suitable for modeling relatively intelligent
human players. In this paper, we propose a novel unifying framework. First, our framework
can handle a broad range of environmental settings. Second, this framework is able to derive
existing models such as RL-like and FP-like models that follow simple rules, as well as
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Table 3 Required information of various models. 0©:player’s payoff and strategy. 1©: player’s payoff
function. 2©:opponents’ strategy. 3©:opponents’ payoff function. 4©:player’s foregone payoff

Model Required information

Nash Equilibrium 1© and 3©
RL and its variants 0©
FP and its variants ( 0©, 1© and 2©) or ( 0© and 4©)

EWA and its variants ( 0©, 1© and 2©) or ( 0© and 4©)

models exploring complicated game-playing patterns by inferring unavailable information
from available information.

4 Sequential bayesian network: a unifying learning framework

Games in the real world are played under different settings. Existing learning approaches
confine themselves to some specific settings. For example, as shown in Table 3, tra-
ditional FP and EWA agents can work only when the opponents’ strategy history and
the self-payoff function are known, or the player’s forgone payoff is known. RL, on
the other hand, does not require such information. However, even when such informa-
tion (opponents’ strategy and payoff) is available, RL cannot exploit such important
data.

To study different artificial models of human behaviors, it is useful to have a frame-
work broad enough to encompass both FP and RL, as well as important variations such as
stochastic FP [27] and conditional FP [28]. In this paper, leveraging established graphical
learning methods [3, 37], we propose a unifying framework to cover a wide range of set-
tings in repeated games. This framework is based on a probabilistic graphical model with
a sequential structure. For simplicity, we consider 2-player repeated games where there are
various settings as follows (for the multi-player case, we can regard player 2 as the set of
other players):

– The opponent’s action is observable or unobservable.
– The opponent’s payoff function is observable or unobservable.
– The self-payoff function is observable or unobservable.
– The payoff function is stochastic or deterministic.
– The payoff function is discrete or continuous.
– The strategy is discrete or continuous.

There are 26 = 64 combinations. Though previous works might perform well in some
specific settings, they discard useful information or even fail in some other cases. In con-
trast, leveraging the properties of graphical models, our framework can accommodate all
these variations and make good use of available information.

Figure 2 shows our general graphical model, a sequential Bayesian network (SBN),
for 2-player repeated games. The SBN is a standard Bayesian network with a sequential
structure, and its nodes are assigned meanings as we will explain below. In order to prevent
the abuse of notations and keep simplicity of presentation, we use player 1 and 2 rather
than player i and −i in 2-player games. Without loss of generality, we assume the learning
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Fig. 2 A sequential Bayesian network (SBN) for learning in repeated 2-player games

model considers for player 1.3 This model represents player 1’s belief of his environment,
including his reasoning process on the payoff function and the opponent’s next pos-
sible strategy. Figure 2 follows the convention of graphical model where arrows in
the model represent causal dependencies. Two dependencies here are important. First,
player 1 believes that player 2’s strategy at the next round depends on the strat-
egy profile (combination of both players’ strategies) at this round. Second, at each
round the received payoff also depends on the strategy profile. These dependencies
are modeled as arrows in the SBN model. In different game-theoretic settings, each
player may not have full information of other players’ strategy and payoff history,
which means some nodes in Fig. 2 may be hidden. In this paper, all hidden nodes
are colored white and all known nodes are colored gray. As a general framework,
we color all nodes in Fig. 2 white. Below, we will show how nodes can be switched
between observable and hidden in order to accommodate different game-playing
settings.

Our framework addresses how to learn, update attraction and generate action for agents
at each round. The procedure of our framework is to first predict the strategy distribution
of player 2 in the next round, shown as the “s2

N+1” in Fig. 2. Then, based on this inference,
player 1 uses a “human response” to choose his own strategy in the next round. Possible
types of human response are discussed later.

For the learning part, the SBN model tracks three beliefs for player 1 at each round
(dependencies/arrows in Fig. 2):

– beliefs about player 2’s strategy distribution at the next round, P (s2
t+1|s1

t , s2
t )

– beliefs about player 1’s utility function, P (u1|s1, s2)

– beliefs about player 2’s utility function, P (u2|s1, s2).

Traditional techniques in probabilistic graphical models can be used for tracking these
three beliefs. If all random variables are observable, beliefs can be learned from the
observable data by simply calculating sufficient statistics.

When some of them are unobservable, the EM algorithm [3, 13] can be used to infer it.
For attraction update, the SBN model first computes the expected utility (payoff) of each

strategy based on the above beliefs. Denote the expected utility of player 1’s j th strategy at

3This means that each agent considers itself as player 1 and its opponent as player 2 while making inference.
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round t by ū1
t (j ). Let nj denote the number of times that the j th strategy has been used by

player 1. We define attractions

A1
t (j ) = f (nj )ū

1
t (j ) (9)

where f (nj ) is a scaling factor and has output f (nj ) = 1 or nj . When f (nj ) = 1, the
attraction is exactly the expected payoff of each strategy in the history. When f (nj ) = nj ,
the attraction of each strategy is equivalent to the accumulative payoff that strategy brings
to the agent.

For action generation, the agent probabilistically selects one of its strategies according
to their attractions. The probability of choosing a strategy at round t is given by one of the
following possible “human response” schemes:

– Best response. Player 1 deterministically chooses the strategy with the highest attrac-
tion. This corresponds to a highly intelligent agent that maximizes expected utility.

– Average response. Player 1 chooses his j th strategy with probability A1
t (j )∑

k A1
t (k)

. Note that

for this to make sense, attractions must be non-negative.
– Logistic response. Player 1 chooses his j th strategy with probability

P 1
t (j ) = eλ·A1

t (j )

∑
k eλ·A1

t (k)
(10)

The free parameter λ reflects the sensitivity to attraction. It provides a smoothing mech-
anism on the best response. For example, λ = ∞ gives the best response, corresponding
to intelligent players; while λ = 0 gives a random response, corresponding to players
that are totally indifferent to all strategies.

In summary, the SBN learning framework consists of three steps at each round of a
repeated game:

1. Learn beliefs. Use statistical inference such as maximum-a-posteriori (MAP) estima-
tion, maximum likelihood (ML) estimation, or posterior inference (PI) to update all
beliefs in the model to accommodate player 1’s new observations.

2. Update attraction. Calculate the expected payoff of each strategy based on the beliefs.
The attraction of each strategy equals to the expected payoff ū1

j times a scaling factor
f (nj ).

3. Generate actions. Choose a response scheme to determine player 1’s strategy in the next
round.

Note that SBN is a general model which can be reduced into simpler models. Special
cases for different settings can be derived from SBN by removing dependencies or mark-
ing variables as hidden or observable. All models under the SBN framework can follow
the same inference process. As a result, the SBN framework provides a comprehensive
foundation for learning human behaviors in repeated games.

For multi-player games, we can still utilize the SBN framework by changing the player
1 to player i and player 2 to player −i in Fig. 2. In multi-player games, player −i is a
combination of all players except i rather than just one player, and so do s−i and u−i . In
this way, the opponents of player i are aggregated and act as an “environment” of player
i. Thus, multi-player games are reduced to 2-player games where each player is faced with
his environment.
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5 Bayesian explanation of previous models

We show that our SBN framework provides a unifying Bayesian explanation to the two
major approaches of agent learning: reinforcement learning and fictitious play.

5.1 Reinforcement learning

Reinforcement learning can be viewed as a special case of SBN by removing the variables
for the opponent’s payoff and strategy sequences as well as their incident edges, which
means that the decision of player 1 is independent of the opponent’s strategy. The graphi-
cal representation of reinforcement learning is shown in Fig. 3. We color hidden nodes in
white and observable nodes in light gray. Reinforcement learners do not learn the strategy
distribution of opponents, but directly infer the expected utility.

Theorem 1 Reinforcement learning is equivalent to the sequential Bayesian network in
Fig. 3 with maximum likelihood inference.

Proof Given player 1’s strategy and payoff history in the first N rounds, maximum
likelihood (ML) inference on the Bayesian network in Fig. 3 yields an optimization
problem:

max
N∏

t=1

P (u1
t |s1

t ) =
N∏

t=1

|U(1)|∏
i=1

|S(1)|∏
j=1

P (u
(1)
i |s(1)

j )
u1

t,i s
1
t,j (11)

subject to:
|U(1)|∑
i=1

P (u
(1)
i |s(1)

j ) = 1, for each s
(1)
j ∈ S(1)

where u1
t,i = I (u1

t , u
(1)
i ) and s1

t,j = I (s1
t , s

(1)
j ). Obviously, changing the objective

function by taking logarithm of (11) will not change the solution. Thus, using Lagrange
multipliers on the logarithm of (11), the objective function becomes:

E =
N∑

t=1

|U(1)|∑
i=1

|S(1)|∑
j=1

u1
t,i s

1
t,j log P (u

(1)
i |s(1)

j ) − μ(

|U(1)|∑
i=1

P (u
(1)
i |s(1)

j ) − 1) (12)

Take the derivative of E over P (u
(1)
i |s(1)

j ) and make it equal to 0, we get:

P (u
(1)
i |s(1)

j ) =
∑N

t=1 u1
t,i s

1
t,j

μ
(13)

Fig. 3 A graphical representation of reinforcement learning derived from SBN
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Combining with
∑|U(1)|

i=1 P (u
(1)
i |s(1)

j ) = 1, we have:

μ =
|U(1)|∑
i=1

N∑
t=1

u1
t,i s

1
t,j =

N∑
t=1

|U(1)|∑
i=1

u1
t,is

1
t,j =

N∑
t=1

s1
t,j

|U(1)|∑
i=1

u1
t,i =

N∑
t=1

s1
t,j (14)

Recall that nj is the number of times strategy j has been used by player 1. Thus, we have∑N
t=1 s1

t,j = nj , since s1
t,j = I (s1

t , s
(1)
j ). Combining with (13), we have:

P (u
(1)
i |s(1)

j ) =
∑N

t=1 s1
t,j u

1
t,i

nj

(15)

Thus, we can calculate the attraction for strategy s
(1)
j at round N + 1 according to (9), as

follows:

A1
N+1(j) = f (nj )

|U(1)|∑
i=1

u
(1)
i P (u

(1)
i |s(1)

j )

= f (nj )

∑N
t=1 s1

t,j

∑|U(1)|
i=1 u1

t,i u
(1)
i

nj

= f (nj )

∑N
t=1 s1

t,j u1
t

nj

(16)

where
∑|U(1)|

i=1 u1
t,iu

(1)
i = ∑|U(1)|

i=1 I (u1
t , u

(1)
i )u

(1)
i = u1

t . (16) is exactly the rule for
reinforcement learning that reinforces selected strategy by its received payoff.

If f (nj ) = 1 and the player adopts the average response, then it is averaging
reinforcement learning (ARL) [20]. If f (nj ) = nj , then (16) can be transferred to

A1
N+1(j) =

N∑
t=1

s1
t,j u

1
t = A1

N(j) + s1
t,ju

1
t = A1

N(j) + I (s1
t , s

(1)
j )u1

t (17)

which is exactly the same as the standard RL in (5). When the player adopts the average
response shown in (6), then this type of SBN becomes basic accumulative reinforcement
learning (BRL) [24]. Hence, we provide an insight that reinforcement learning can actually
be interpreted by a graphical Bayesian model.

5.2 Fictitious play

Another important special case of SBN is when player 1’s payoff function and player 2’s
strategy history is not hidden. This case can also be modeled by SBN as shown in Fig. 4,
in which when a player can observe the opponent’s strategy as a Markov chain. Note that
player 1’s strategy and payoff sequences are removed from graph, since his payoff function
is known and thus will not be included in the inference process.

Fig. 4 A graphical representation of fictitious play derived from SBN
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Theorem 2 Fictitious play is equivalent to the sequential Bayesian network in Fig. 4 when
best response is used.

Proof Since all the parameters are known in this case, we can strengthen this model by
allowing high-order Markov dependencies and prove a more general result. For a k-th order
Markov chain (k = 0, 1, ...), using maximum-a-posteriori (MAP) inference on the model
in Fig. 4, we have the following formula for player 2’s strategy transition probability by
sufficient statistics [3]:

P (s|s←k) = n(s←ks) + α(s←ks)∑
s∈S2 n(s←ks) + ∑

s∈S2 α(s←ks)
(18)

where n(s) is the number of times a sequence s appears in player 2’s strategy his-
tory, s←k indicates a length-k sequence of strategies and α is the conjugate Dirichlet
prior. This is exactly the k-th order conditional fictitious play (CFP) [28], a gener-
alization of FP. When k = 0 (which means that the strategy at this round does
not depend on the strategies in the history and (18) would be the same as (2)) and
a player adopts the best response (as shown in (3)), we get exactly the standard
FP [27].

More special cases can be derived from this model:

– When k = 0 but a player adopts the logistic response, we get the stochastic fictitious
play (SFP) [27].

– When we use the best response and the first-order Markov property (k = 1) but
assume the transition probability from a strategy s to any other strategy s ′ to be 0,
i.e. P (s|s) = 1 and P (s ′|s) = 0, s ′ �= s, we get the Cournot adjustment process
(CAP) [27].

– Following the same setting as SFP, if posterior inference (PI) instead of MAP inference
is used, we get the moderated fictitious play (MFP) [38].

To summarize, we compare all the mentioned models in Table 4.

Table 4 Comparison of artificial agents that can be derived from the general SBN framework.

model response type
opponent’s visibility of

f (nj ) inference
strategy distribution opponent’s strategy

BRL average response independent not required nj ML

ARL average response independent not required 1 ML

FP best response multinomial required 1 MAP

SFP logistic response multinomial required 1 MAP

MFP logistic response multinomial required 1 PI

CFP best response Markovian required 1 MAP

CAP best response repeating last action required 1 MAP

HMP logistic response Markovian not required 1 ML
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6 Hidden markovian play: an agent with limited observable information

The SBN framework not only provides a unifying explanation to existing RL and FP agents,
but also enables us to derive new agents. In this section, we derive a learning model from
the SBN framework to handle an important game-playing setting which cannot be handled
by FP and EWA agents.

In the real world, agents interact with each other with limited observable information.
In many cases, an agent submits his strategy and receives a payoff in each round, without
knowing the opponent’s strategy history or payoff function. He may even be unaware of
his own payoff function. Traditional FP and EWA models do not work under this setting.
The RL model survives in this setting, but it does not make the most out of all available
information. We want to develop models for the setting in which:

1. Each player does not know his opponent’s strategy history, payoff history or payoff
function; and

2. Each player does not know his own payoff function. He only knows his submitted
strategy and received payoff in each round.

To cope with this setting, we use a special case of our general SBN model called the
Hidden Markovian Play (HMP). HMP learns to construct the payoff function of the player
himself and infer the opponent’s strategy history. Figure 5 shows the graphical representa-
tion of HMP which can be viewed as a graphical combination of RL (See Fig. 3) and FP
(See Fig. 4). The belief model of player 1 part comes from RL and the player 2 part comes
from FP except for that the strategy sequence of player 2 is unobservable. Thus, HMP is a
hybrid model incorporating both RL and FP from the perspective of the Bayesian network.
The intuition is that, while agents try to maximize their payoff in the next round based on
their own history as in RL, HMP allows agents to consider what potential strategy the oppo-
nent would likely choose for the next round. Human players are not absolute RL thinkers
or FP thinkers. By doing this combination, the HMP agent represents a more sophisticated
model with stronger learning ability. In this model, player 1 maintains two beliefs: the belief
about his self-payoff function and the belief about player 2’s strategy transition probability.

Formally, the parameters we want to infer are θ = (π,B, T ) where

– π is player 2’s initial distribution over his strategy space.
– T is player 1’s belief about the strategy transition probability of player 2. Tij is

the transition probability of player 2 from choosing strategy s
(2)
i to s

(2)
j , i.e. Tij =

P (s
(2)
j |s(2)

i )

Fig. 5 A graphical representation of hidden Markovian play derived from SBN
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– B is player 1’s belief about his own payoff function:

B = {bij (u
(1)
k )} = {P (u

(1)
k |s(1)

i , s
(2)
j )}.

We use maximum likelihood for parameter inference. Since this model contains hid-
den variables, as specified in our inference procedure, we use the EM algorithm [3, 13]
to maximize the likelihood of the received payoff sequence given the submitted strategy
sequence.

We now discuss the case where all parameters are discrete. The case with continuous
parameters can be handled similarly. In the discrete case, we assume that they take the form
of multinomial distributions, and use the 1-of-K coding scheme: for a multinomial variable
zi , if zik = 1, then zi takes its kth state. Note that

∑K
k=1 zik = 1, which means that zi takes

one and only one state. Denote player i’s strategy sequence by Si = {si
t |1 ≤ t ≤ N} and

player 1’s payoff sequence by U1 = {u1
t |1 ≤ t ≤ N}.

Denote the marginal posterior distribution of the hidden strategy s2
t by γ (s2

t ) =
P (s2

t |S1, U1, θ) and the marginal posterior distribution of two successive latent strategies
by ξ(s2

t−1, s2
t ) = P (s2

t−1, s2
t |S1, U1, θ). In the E step, we have

γ (s2
t ) = α(s2

t ) · β(s2
t )

P (U1|S1, θ)
, (19)

ξ(s2
t−1, s2

t ) =
α(s2

t−1) · bs1
t ,s2

t
(u1

t ) · Ts2
t−1,s2

t
· β(s2

t )

P (U1|S1, θ)
, (20)

where
α(s2

t ) = P (u1
1, ..., u1

t , s2
t |S1), (21)

β(s2
t ) = P (u1

t+1, ..., u1
N |s2

t , S1), (22)
where α(s2

t ) and β(s2
t ) can be figured out by a forward-backward algorithm [3] that is

similar to the one for HMM:

α(s2
t ) = bs1

t ,s2
t
(u1

t )
∑

s2
t−1∈S(2)

α(s2
t−1) · Ts2

t−1,s2
t
, (23)

β(s2
t ) =

∑

s2
t+1∈S(2)

β(s2
t+1) · bs1

t+1,s2
t+1

(u1
t+1) · Ts2

t ,s2
t+1

. (24)

In the M step, we have:

πk = γ (s2
1k

)∑
j=1 γ (s2

1j
)
, (25)

Tij =
∑N

t=2 ξ(s2
t−1,i , s

2
t,j )∑

k

∑N
t=2 ξ(s2

t−1,i , s
2
t,k)

, (26)

bij (u
(1)
k ) =

∑N
t=1 γ (s2

tj )s
1
tiu

1
tk∑N

t=1 γ (s2
tj )s

1
ti

. (27)

Intuitively, in each round, player 1 first makes inference on his own payoff function, the
opponent’s strategy history, and then the strategy transition probability, based on his own
sequences of submitted strategies and received payoffs. The inference process repeats the
EM iterations until convergence. Then, player 1 makes inference on the opponent’s strategy
distribution for the next round based on the opponent’s strategy transition probability:

P 2
N+1(j) =

∑

s2
N ∈S(2)

γ (s2
N)Ts2

N ,j (28)
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The next step is to calculate player 1’s strategy attraction based on the constructed payoff
function:

A1
N+1(j) =

∑
k

{P 2
N+1(k)[

∑

u(1)

u(1) · bjk(u
(1))]} (29)

Here, the attraction of each strategy is the expected payoff by setting f (nj ) = 1 in (9).
Finally, player 1 chooses his strategy for the next round by logistic response in (10) based
on these attractions. The process is efficient and takes polynomial time, since it exploits the
sequential structure of the SBN framework.

In terms of multi-player games, player 2 is replaced by player −i which is a combination
of all opponents of player i, as shown in Section 4. s−i does not have to be the product of
strategy spaces of all player i’s opponents, since s−i can be aggregated in most cases. For
example, in n-player market entry games, payoff of player i is decided by the total number
of players in the market rather than a specific strategy selected by each opponent. Thus,
s−i can be represented by the number of players in the market except player i, which only
requires n states in total.

From Table 4, we can realize that there are still lots of models yet to be explored. For
example, we could reduce from HMP to a “hidden fictitious play” by assuming a multi-
nomial distribution for the opponent’s strategy. We could also investigate the accumulative
effect of payoff by assigning f (nj ) = nj . Therefore, SBN is versatile in providing solutions
for various settings with a unified inference procedure.

7 Experimental evaluation

In this section, we evaluate the performance of HMP, and compare it with several popular
existing artificial game-playing agents in the literature. We apply these agents to three real-
world problems, including a one-player gamble game, a two-player strategic game, and a
multi-player Market Entry Game modeling the real market. All the data for these three
games are collected from real-world experiments by human participants.

7.1 Experimental setup

For comparison, we implement the following popular existing agents: a naive agent that
randomly makes a decision with an equal probability for each strategy (Random), basic rein-
forcement learning (RL)[24], normalized reinforcement learning (NRL)[22], fictitious play
(FP)[27], stochastic fictitious play (SFP)[27], normalized fictitious play (NFP)[26], para-
metric Experience Weighted Attraction (EWA)[7], and self-tuning Experience Weighted
Attraction (STEWA)[29]. For each agent, to test its performance, we set all players in a
game-playing session to be using the same agent.

The proposed HMP model works under many settings as it requires minimum informa-
tion comparing to others. The first and second datasets are in a game-theoretic environment
with minimum feedback, where only a player’s own strategy and payoff are observable.
Thus, only Random, RL, NRL and HMP can be applied to these two games. In the third
game (Market Entry Game), foregone payoff is also observable and hence all the above
agents can be applied.

For the implementation of the HMP model, we set a memory length of 6 for each HMP
player. That is, as the game moves forward, players only remember their payoff and strategy
of the previous 6 rounds. One reason for this implementation is to simulate the real-world
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scenario as human players have limited memory length and they cannot memorize the out-
comes of all rounds. From the perspective of computation, a short memory length also
dramatically speeds up the inference procedure of the HMP model.

The purpose of this evaluation aims to predict the aggregate human behavior instead of
individual ones. Given a game, each agent model is run 200 times. The predicted behavior
statistics in each block is the average of the ones in all 200 runs in the corresponding block.

Each agent above has its own free parameters whose values are yet to be decided. Agents
are evaluated by MSD (Mean Square Deviation) of a m-fold cross validation between pre-
dicted and observed behavior statistics. That is, we divide a dataset into m subsets with 1
subset for testing and the remaining m − 1 subsets for training. All free parameters in a
model are tuned to best fit the training set and then tested on the validation set. The selec-
tion of parameter values is based on a grid search. This process is repeated m times with
each subset used exactly once as the validation set. The MSD of the m-fold cross validation
is

∑m
i=1 D2

i /m, where Di is the deviation when the ith subset is used as the validation set.
The block size and behavior statistics of each type of games are already decided in the

dataset. For games with single type of behavior statistics, we use the mean, standard devi-
ation and maximum of MSD in cross-validation. For games with multiple type of behavior
statistics, we use NMSD (Normalized MSD) instead, which normalizes the MSD for each
type of behavior statistics. The normalization factor is also provided by the dataset.

7.2 One-player gamble games

The first dataset is from the Technion Prediction Tournament [22], which provides real data
on how humans make decision from experiences. One hundred participants joined the data
collection process. They were instructed to individually play a repeated gamble game (100
rounds per game) where there are two available options for the player in each round – safe
or risky gamble. If the safe option is taken, the player could win M dollars for sure. If the
risky option is taken, the player could win H dollars with probability Ph or L otherwise
(H ≥ M ≥ L).

u1
t =

{
M safe option
H with probability Ph and L otherwise risky option

The dataset contains 40 games, each of which has different values of (H,M,L,Ph). The
block size of each game is 100 rounds, which means that the behavior statistics are calcu-
lated in terms of the whole game. We use the term “risk rate” to denote the percentage of
the “risky” choices a player takes for each individual game. Performance of each agent is
evaluated by the MSD between the model-predicted risk rate with the true risk rate in the
data. Evaluation is based on a 10-fold cross validation. Table 5 shows the evaluation results.
We can see that the HMP agent outperforms all the other agents. It not only gives the lowest
mean across all the games, but also has the lowest standard deviation and maximum MSD.

Table 5 The mean, standard deviation, and maximum of MSDs (×102) on one-player gamble games

Random BRL NRL HMP

mean 4.28 4.48 1.95 1.38

std. dev. 1.40 1.73 0.65 0.55

max 7.22 8.57 3.04 2.25



A unifying learning framework for building artificial

7.3 Two-player games

In the literature of virtual economics, the most common case is 2 × 2 matrix normal-form
games, where each player has two strategies and each element in the matrix corresponds to a
payoff. To make things more realistic and general, we test our agents on a real dataset whose
matrix element corresponds to the probability of winning a certain payoff at each round.
The dataset is published in [25]. This dataset contains 10 games, each of which consists of
500 rounds. The block size is 100 rounds for this dataset. We use ppi(j, k) to denote the
predicted probability of player i selecting the first choice at block j in game k and gpi(j, k)

to denote the ground-truth probability. Performance of each agent is evaluated by the MSD
of a 10-fold cross validation. Specifically, the MSD for a game set GS is calculated as
follows:

MSD =
∑

g∈GS

∑2
i=1

∑5
j=1(ppi(j, g) − gpi(j, g))2

10 ∗ |GS|
Results on Table 6 show that HMP is significantly better than all the other agents.

Since each game in this dataset contains 5 blocks which is long enough to form a curve,
we randomly pick one game and plot its aggregate learning curve [24] for visualization,
as shown in Fig. 6. This aggregate learning curve shows the behavior statistics (rate for
selecting choice 1) in each block, which clearly presents the playing process of human play-
ers (ground truth), NRL agent, and HMP agent We can see that HMP mimics the human
behavior more closely than NRL does.

7.4 Multi-player market entry games

We also test the agents on Market Entry Games whose data is from the Market Entry Pre-
diction Competition [21]. This kind of games have important applications in economics as
they give a description of how a market operates especially the effect that too many vendors
entering into a market would cause oversupply. There are in total 40 market entry games
of 50 rounds per game in this dataset, provided by the CLER Lab at Harvard University.
Games are repeated 4-person market entry games with environmental uncertainty. At each
round of these games, each player has to decide whether to enter a risky market or stay out.
The payoff player i receives at round t is

ui
t =

{
10 − r ∗ E + Gt if player i enters
±Gt/W, P (+) = P (−) = 0.5 if player i stays out

where Gt is a realization of a binary gamble at round t . Gt = H with probability Ph and
Gt = L with probability 1 − Ph, and Ph = −L

H−L
(H > 0 and L < 0). E is the number

of entrants. Two other parameters r and W are integers greater than 1. Hence, each specific
game is characterized by the parameters θ = (r,W, H,L).

In these games, the foregone payoff is available, and all agents including EWA and FP
can be applied.

Table 6 The mean, standard deviation, and maximum of MSDs (×102) on two-player games

Random BRL NRL HMP

mean 3.42 1.74 0.86 0.61

std. dev. 2.14 1.37 0.92 0.81

max 6.87 3.67 3.33 2.88
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Fig. 6 Aggregate learning curves on a 2-player game

For evaluation, we use a 10-fold cross validation on these 40 market entry games. The
evaluation of agents are based on NMSD (Normalized Mean Squared Deviation) which
consists of three behavior statistics in each block of 25 rounds: entry rate, efficiency and
alternation. Thus, there are in total 6 statistics for each game as it is played for 50 rounds.
The entry rate at a block is the percentage of participants entering into the market. The
efficiency is the observed expected payoff of all players at a block. The alternation is the
proportion of times that players alter their strategies between rounds at one block. We use
per(i, g), pe(i, g) and pa(i, g) to denote these predicted entry rate, efficiency, and alter-
nation at block i in game g, respectively; and use ger(i, g), ge(i, g) and ga(i, g) to denote
the ground-truth statistics. To compute NMSD, each statistics is weighted by their esti-
mated error variances provided by this dataset. We use eer(i), ee(i) and ea(i) to denote the
estimated error variance of these behavior statistics. The NMSD is the average of these 6
weighted statistics:

NMSD =
∑

g∈GS

∑2
i=1[ (per(i,g)−ger(i,g))2

eer(i)
+ (pe(i,g)−ge(i,g))2

ee(i)
+ (pa(i,g)−ga(i,g))2

ea(i)
]

6 ∗ |GS|

Table 7 shows the evaluation results. We observe that HMP performs the best among
all 9 agent models, with EWA being the second best. All other agents are signifi-
cantly worse than HMP and EWA. HMP has not only lower mean NMSD, but also
lower variance and maximum, indicating a consistent and robust performance improve-
ment. Although EWA also performs well, the number of free parameters of EWA
is 5 which is the largest among all models, as shown in Table 7. Having so many
free parameters largely slows down the training process and has a potential risk of
losing generalization ability on other datasets. In contrast, HMP has only one free
parameter (λ).
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Table 7 The mean, standard deviation, and maximum of NMSDs on the Market Entry Games. (Nf is the
number of free parameters in each model)

Random BRL NRL FP SFP NFP EWA STEWA HMP

mean 32.39 13.34 10.39 11.78 11.33 8.099 5.296 10.80 5.275

std. dev. 10.87 7.850 4.425 3.277 2.748 2.597 1.868 7.131 1.586

max 48.50 32.25 18.73 17.42 16.57 10.24 8.636 27.82 8.263

Nf 0 1 2 1 2 2 5 1 1

7.5 Sensitivity to λ

The λ in logistic response as shown in (10) is the only free parameter that requires to be
tuned in our HMP agent. Figure 7 shows the sensitivity of the HMP agent to the value of λ

in the above three datasets. We could see that the MSD and NMSD goes down and then up
as the value of λ increases, leading to an optimal value in the middle. When λ is very small,
the model is relatively sensitive to its value. In fact, when λ = 0, HMP is exactly the same
as the random response model.

When λ is reasonably large, HMP is not sensitive to λ. The reason is that the probabil-
ity of choosing one action at each round would be dominated by the largest action, which
becomes a best response, since λ is an exponential component when calculating the prob-
ability of choosing strategies. To illustrate the point further, in Fig. 7, for 1-player and
2-player games, we plot a dotted line to show the MSD of NRL; for market entry games,
we plot a dotted line to show the NMSD of EWA. We can choose any value of λ in the
region that is below the dotted line and still obtain better modeling performance than NRL
or EWA. As we can see from Fig. 7, the range of such λ is quite large, showing that HMP
can perform well for a large range of λ, avoiding the need for extensive tuning. We can
also observe from Fig. 7 that if λ is fixed at 4.0 across all the 130 games, the performance
of HMP is only a little bit worse than choosing the optimal λ for each category of games.
Thus, due to the insensitivity of the performance of the HMP agent to λ, we can use a rule
of thumb to choose a reasonably good value of λ (λ = 4.0 in our case). When being used
in this way, the HMP model does not have any free parameter and does not require any tun-
ing. Such a parameter-free model can be a good choice for situations when the training time
is limited.

Another interesting point is that the value of λ that best fits a dataset, to some extent,
reflects the expected intelligence of people in that dataset, as the larger λ is, the more
intelligent the HMP agent will be.
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Fig. 7 HMP’s sensitivity to λ. From left to right:1-player gamble game, 2-player game and Market Entry
Game
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8 Conclusions

We have presented a general machine learning framework for building artificial agents
to simulate human behaviors in playing games. Although computational economists have
developed various game-playing agents, they have not used well-established machine learn-
ing methods such as graphical models. We have proposed a sequential Bayesian network
(SBN) framework to bridge this gap. The SBN framework provides deep insights which
unify two fundamental agent learning approaches, reinforcement learning and fictitious
play, in a general Bayesian inference process. The graphical representation gives a clear
visualization on the playing and reasoning process in repeated games. Moreover, from the
SBN framework, we have derived Hidden Markovian Play (HMP), a new agent that does
not require observability of a player’s own payoff function, or the opponent’s strategy and
payoff.

Experimental results show that the HMP agent consistently outperforms many other
existing agents on real data of humans playing a variety of games. Moreover, with only
one free parameter, the HMP agent actually obtained better performance using fewer free
parameters than all other agents, making the results even more impressive. Experimental
results have also shown that the performance of the HMP agent is robust under changes of
the only free parameter λ. Our work bridges the gap between computational economics and
machine learning, and makes a substantial step towards building virtual economics, which
potentially opens up new applications of machine learning in economics.
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