
Federal Reserve Bank of Minneapolis
Research Department Staff Report 402

Revised October 2008

Monopoly and the Incentive to Innovate
When Adoption Involves Switchover Disruptions∗

Thomas J. Holmes

University of Minnesota,
Federal Reserve Bank of Minneapolis,
and National Bureau of Economic Research

David K. Levine

Washington University in St. Louis

James A. Schmitz, Jr.

Federal Reserve Bank of Minneapolis

ABSTRACT
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disruptions to standard models, then the critiques of Arrow lose their force: competition again leads
to greater adoption. In addition, we show that our model helps explain the accumulating evidence
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1 Introduction

Arrow (1962) postulated that a monopolistic industry would be less innovative than a com-

petitive one. His idea was simple: Since a monopoly restricts output relative to a competitive

industry, it would be less willing to pay a fixed cost to adopt a new technology (since there

would be fewer units over which to “amortize” the fixed cost). In this paper, we present

an alternative theory explaining why a monopolist would be less innovative. We start from

the fact that firms often face major problems in integrating new technologies. In some

cases, upon adoption of technology, firms must temporarily produce substantially below pre-

adoption levels. We call such problems switchover disruptions. Our idea is also simple: If

firms face switchover disruptions, then a cost of adoption is the forgone rents on the sales

of those “lost” units, and these opportunity costs are larger the higher the price on those

lost units. In particular, higher monopoly power means higher opportunity costs, so less

incentive to innovate.

Arrow’s idea has been challenged on theoretical grounds. A number of critiques have

shown that under different (and, a priori, as reasonable) assumptions, increases in compe-

tition lead to less innovation. Our idea advances the literature since we show that if we

add switchover disruptions to a standard (Arrow-type) model, then the critiques of Arrow

lose their force: competition again leads to greater adoption. In addition, we show that our

model helps explain the accumulating evidence that competition leads to greater adoption

(whereas the standard Arrow model cannot).

Perhaps the most fundamental critique of Arrow’s idea is that, as a matter of theory,

when an industry faces increased competition (say through unilateral tariff reduction), its

output may very well fall, and the Arrow logic then implies less innovation (see, e.g., Demsetz

(1969) and Yi (1999)). Another famous critique is that of Gilbert and Newbery (1982). They

switch some of Arrow’s assumptions (about who can “bid” on new technology) and show a

monopolist now has a greater incentive to adopt than an “outside” rival. Other critiques are

discussed below. When we add switchover disruptions to a standard (Arrow-type) model, we

show that increases in competition lead to increases in adoption even if output of the industry

(and individual firms) falls, and even if we use the Gilbert and Newbery formulation.

Our model also explains the evidence that competition spurs adoption and productivity

in a way the Arrow model cannot. In particular, many plant-level studies find that plant-

TFP and adoption increase with competition even as plant-output falls significantly.1 The

1Below we discuss studies of industries facing increased competition (e.g., Schmitz (2005) and Dunne,
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Arrow model cannot explain rising adoption and TFP in the face of falling output, and in fact

predicts the opposite. But our model provides an explanation. Since increased competition

leads to lower prices, the opportunity cost of switchover disruption is reduced. Not only is

the model consistent with the facts, but in the industry studies noted above it is clear that it

was the reduction in the opportunity costs associated with switchover disruptions that was

the mechanism by which adoption increased. All this evidence is discussed below.

When considering the incentive of a firm to adopt an innovation, Arrow, Gilbert and

Newbery, and others, have assumed that new technology can instantaneously and seamlessly

be introduced. Adoption does not work that way, and the assumption that it does is not

innocuous. Firms often face major problems in integrating new technologies. We will present

extensive evidence on such phenomena in the next section.

Following our discussion of switchover disruptions, we present our “baseline” model. The

baseline model serves to illustrate the Arrow force for adoption (which we’ll call the Arrow

Output Effect) and the new force introduced with this paper, the Switchover Disruption

Effect (again, lower prices mean lower opportunity costs of switchover disruptions). We

then introduce extensions to this basic model to address the major critiques of the Arrow

idea. These extensions will show that the critiques do eliminate the Arrow Output Effect,

yet the Switchover Disruption Effect remains, and increases in competition can increase

adoption.

In our model, there will be an incumbent firm that faces a group of rival firms. The

incumbent firm will initially have a cost advantage over its rivals, indexed by the parameter

τ . One interpretation is that the incumbent is a domestic firm and the rivals are foreign

firms. Foreign firms must incur an additional cost of τ per unit (above and beyond production

costs) to serve the local market, where τ could be a tariff or a transportation cost. A new

technology will become available. If a firm adopts the technology, its costs may initially

increase (if there is switchover disruption), and it may initially lose sales. We will consider

how the incentives to adopt the technology vary as the market power or tariff parameter τ

is changed.

This incumbent-versus-rivals structure is similar to the approach in Gilbert and Newbery

and Reinganum (1983). The incentive-to-innovate literature has expanded to consider a wide

range of oligopoly models. Recent papers that review this literature are Vives (forthcoming)

and Schmutzler (2007). But all this literature, as far as we know, has assumed that firms

Klimek, and Schmitz (2008)) and studies of trade liberalization (an early study is Tybout and Westbrook
(1995), and there has been an explosion of papers since, many discussed below).
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can instantaneously and seamlessly introduce new technologies.2 Switchover disruptions are

not considered.

There is an old saying, “If you have a good thing going, don’t rock the boat.” Here, a

firm with a lucrative monopoly may decide not to adopt a technology that, in the short-run,

disturbs its lucrative position. There is another old saying, “If you have nothing to lose,

swing for the fences.” There are recent papers that have attempted to capture this idea in

models where firm’s R&D investment is a choice of variance in outcomes (see, e.g., Anderson

and Cabral (2007)). The point is to show that firms that are far behind may decide to choose

high variance R&D programs. Again, switchover disruptions are not considered.

Having switchover disruptions in economic models is by no means new. There is a large

literature where switchover disruptions play an important role, for example, in Jovanovic and

Nyarko (1996), Chari and Hopenhayn (1991), Klenow (1998), Parente (1994) and Schivardi

and Schneider (2008). A major focus of these papers has been to see how switchover dis-

ruption influences investment. In that sense, they are close cousins to this paper. However,

they have not considered how switchover disruptions in adopting technology might change

the relationship between market power and the incentive to innovate.

2 Motivating Switchover Disruption

We use this section to motivate introducing switchover disruptions into the incentive-to-

innovate literature. In particular, this section provides evidence that when firms adopt new

technologies, they often experience an initial increase in costs (or decrease in productivity).

In fact, of course, some new technologies never succeed.

One note before we begin. If new technologies can yield higher costs than old ones, firms

would obviously run “pilot” projects to learn if new technologies were better or not. Firms

obviously do this. But as argued and seen below, for many technologies testing can only

reduce uncertainty a modest amount. Pilot projects can often test only one dimension of the

technology in isolation from others. To know if a technology works can only be learned by

turning on all the systems at once. And then the system must be run for substantial periods

of time before the productivity of the technology is learned. In this paper, we do not delve

2In some papers there is uncertainty regarding how long it may take to develop an innovation. Similarly,
there are models where there is uncertainty as to how much better an innovation will be. But once an
innovation is developed, it can be seamlessly adopted.
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into why technology has this feature but explore its consequences.3

Let us start by presenting evidence on switchover disruptions faced by three well-known

firms. We then turn to more formal studies, looking at switchover costs in manufacturing,

supply-chains, and in organizational innovation in general.

2.1 Switchover Costs in Specific Adoption Episodes

When discussing evidence, we think it’s productive to begin with concrete examples of

switchover disruptions. We will give three such cases, though a much larger list is easy

to compile. The specific episodes are not meant to be a “test” of our model (i.e., one should

not be asking whether the firms have lots of, or little, market power), but simply evidence

that disruption is important. A more productive way to test the idea is to look at cases

where firms faced large changes in market power, and ask how this changed their adoption

decisions. (We will address this a bit below.)

Boeing. In building the 787 Dreamliner, Boeing chose a new technology, one that involved

its suppliers assembling more of the parts off-site than usual, and then shipping to Boeing

for final assembly. Such a process had been pursued successfully in other manufacturing

industries. However, Boeing has faced major problems — switchover disruptions — in imple-

menting the technology. Suppliers have been slow to send assembled parts, spurring Boeing

to request suppliers to ship unassembled work to them. But “Boeing has ended up with

a pile of parts and wires, and lots of questions about how they all fit together, not unlike

a frustrating Christmas morning at home.” With ever growing delays in promised delivery

dates, Boeing may lose substantial business to Airbus. It’s clear that it is taking Boeing a

substantial period of time to learn whether the new system is better than the old.4

General Motors. In the 1980s, after suffering large losses in market share to Japanese

producers, General Motors (GM) invested heavily in automation and robots in order to stem

losses in market share. But when factories reopened with their new automation systems,

there were major production problems. Robots often did not run. When they did, they

“often began dismembering each other, smashing cars, spraying paint everywhere and even

fitting the wrong equipment.” GM found that “technologies that worked well in isolated pilot

projects [weren’t] easily coordinated in the real world of high-volume manufacturing.” Many

3A related issue is why a firm does not immediately switch back to its old technology if costs initially
increase with adoption. Again, it is not possible to do so in many (all?) cases as is also seen below.

4See coverage in the New York Times, January 16, 2008, “Boeing Is Expected to Disclose Further Delays,”
and January 17, 2008, “Supplier Woes Lead to New Delay of Boeing 787.”
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of the factories were able to produce only a small share of their rated capacity for months

and months.5

United Airlines. When a new Denver airport was built in the mid 1990s, United Airlines

and the city decided to install a highly automated baggage handling system. There were

major switchover disruptions. The system “immediately became known for its ability to

mangle and misplace a good portion of everything that wandered into its path.” A year after

opening, United sued the builder of the system claiming it “performed miserably.” For the

first decade of operation, United used only a stripped down version of the system. Finally,

United decided to turn the system off in 2005.6

2.2 Switchover Costs in Manufacturing

U.S. Apparel Manufacturing. Dunlap and Weil (1996) studied the adoption of new technol-

ogy, modular production systems, in U.S. apparel manufacturing. Of the firms they studied

(accounting for about 30% of industry shipments), about 40% had adopted the technology at

some point. Of those that adopted, about 50% abandoned the technology. The overwhelming

reason given for dropping the innovation was that it lowered labor productivity.

Japanese Steel Manufacturing. Nakamura and Ohashi (2005) examine the experience

of Japanese steel manufacturers when they shifted from the open-hearth furnace (OHF) to

the basic oxygen furnace (BOF) in the 1950s and 1960s. They found that plants adopting

the new technology experienced significant declines in productivity (TFP) at the time of

adoption. They estimated a 14% drop in productivity initially, and that it was three years

before the BOF-productivity approached the level of the old OHF-productivity.

U.S. Steel Manufacturing. Ichniowski and Shaw (1995) studied the adoption of new tech-

nology in U.S. steel finishing lines. They looked at the adoption of management innovations,

in particular, human resource management (HRM) innovations. They view “the adoption

of an innovative HRM system as an investment decision analogous to a decision to invest

in physical capital” (p. 20). We share this view. One of the costs of adoption that they

emphasized was the uncertainty in how the technology would perform after adoption. A
5For coverage see “When GM’s Robots Ran Amok,” The Economist, 8/10/91, Vol. 320, Issue 7719,

“Tricky Auto Makers Discover ‘Factory of the Future’ Is Headache Just Now,” Wall Street Journal, May 13,
1986, “Detroit Stumbles on Its Way to the Future,” BusinessWeek, June 16, 1986.

6United’s lease (in 2002) requires it to pay the city $60 million a year for the automated system (for 25
years). Hence, United must swallow this loss. However, United will reduce its operating costs by returning
to manual baggage handling, and expects to save $12 million a year on these costs. For coverage of this story,
see “United Abandons Denver Baggage System,” Associated Press, June 7, 2005, and “Denver Airport Saw
the Future. It Didn’t Work,” New York Times, August 27, 2005.
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large part of the uncertainty arose from the potential resistance to the new technology (by

line workers, union officials, and managers).7 We share this view that one possible source of

switchover disruption is resistance to innovation.

General Manufacturing. Some researchers have looked at the productivity experience

of manufacturing plants after they have undergone a major surge in investment. Using

these surges as proxies for adoption of technology, they have found that productivity has

initially fallen after adoption. Studies include Huggett and Ospina (2001) who looked at what

happened to trend productivity growth after adoption, and Sakellaris (2004) who looked at

the impact on levels of productivity.

2.3 Switchover Costs in Supply-Chain Management

Changes in supply-chain systems will almost certainly cause switchover disruptions. There

is no way of knowing if a system is better without trying it. Boeing is now in the process

of such learning. There is a thriving literature in operations research and management that

has studied the consequences of supply chain disruptions, brought on by glitches in moving

to new technology and other sources of disruption. The literature has found large losses in

productivity and share value as a result of glitches (see, e.g., Hendricks and Singhal (2003,

2005) and references therein).

2.4 Switchover Costs in Organizational Changes

Organizational changes will almost certainly cause switchover disruptions. A new organiza-

tional structure might be better or worse, but there is really no way of knowing without the

entire organization trying it. If it is worse, there is no way to switch back to the old orga-

nization overnight if at all. We will discuss a few areas in which firms attempt to improve

their organizations (and lower their production costs).

Work Rule Changes. A subset of organizational innovation involves firms changing work

rules of a union. Here it may be clear that a new set of work rules (e.g., more flexible ones)

would lead to much lower costs. Yet introducing the changes might lead to a union strike

and a considerable period of downtime. Indeed there are many episodes where firms were

shut down for long periods before being able to change the work rules, and in some instances,

7According to Ichniowski and Shaw, “Our interviews highlighted many cases where attempts to introduce
new [technology] were undermined by low levels of trust between labor and management” (p. 51).
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were not able to change them at all.

A Potpourri of Workplace Changes. To finish this section, we’ll simply list some ex-

amples of other switchover disruption discussed in the organization literature. Marketing

departments have faced disruptions introducing sales force automation technology (see, e.g.,

Speier and Venkatesh (2002)). Human resource departments have faced disruptions in intro-

ducing new workplace compensation schemes (see, e.g., Beer and Cannon (2004)). And, of

course, introducing new information technology systems often leads to significant disruptions

(see, e.g., Ginzberg (1981)). Lastly, there are obviously switchover disruptions as CEOs are

changed.

3 Baseline Model

Consider a homogenous products industry in which production takes place over a unit time

interval t ∈ [0, 1]. There is one firm, the incumbent, that initially has a cost advantage over
its rivals. Let c◦ denote the initial marginal cost of the incumbent. The rival firms (assume

there are two or more of them) each have marginal cost equal to c◦ + τ , for τ ≥ 0. The
parameter τ governs the degree of market power that the incumbent has over the rivals, and

it will be the key element in our comparative statics analysis.

One interpretation of the τ parameter is that the incumbent is a domestic firm and the

rivals are foreign firms. All firms have the same production cost c◦, but the foreign firms

must incur an additional cost of τ per unit which could be a tariff or a transportation cost.

We assume Bertrand competition, that is, that firms compete in price.

3.1 New Technology

At time t = 0, a new technology becomes available. If the new technology is adopted at time

t = 0, then marginal cost at time t equals ct = f(t). We assume marginal cost falls over

time in a continuous and strictly decreasing fashion, f 0(t) < 0. Let c̄ = f(0) be the high

initial cost and c = f(1) be the low cost ultimately attained, c < c̄.

We assume that c < c◦ so that ultimately the new technology is better than the original.

The key innovation in our analysis is to allow for the possibility that c̄ > c◦. When that

happens we say there is a switchover disruption at the initial point of adoption. Figure 1

illustrates an example. We can think of there being some prior period t ∈ [−1, 0) over which
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cost was constant at c◦. When the new technology is adopted, marginal cost goes up initially,

but eventually is lower.

3.2 Demand Structure

The quantity demanded (at each t ∈ [0, 1]) in the industry at price p is QD(p). We assume

that demand is weakly inelastic, that is

Rev(p)=QD(p)p is weakly increasing in p. (1)

This assumption simplifies our calculations, because it implies that the incumbent will limit

price at the rival’s cost.

3.3 Who Can Adopt?

The final issue to be determined is: Who gets to adopt the new technology? Our baseline

approach follows Arrow (1962). Here the incumbent alone has a choice to adopt. The

incumbent can pay a fixed cost F ≥ 0 to adopt the new technology or pay no fixed cost and
use the original technology instead. If the incumbent does adopt, the rivals can be excluded

and the rivals’ fixed cost remains at c◦ + τ . The essence of the Arrow setup is that the

incumbent is choosing between having the new technology for itself and no one having it.8

4 Monopoly and the Incentive to Innovate

This section provides our baseline analysis of how the incentive to innovate depends upon

the monopoly power parameter τ . The analysis highlights two forces for how a decrease in τ

increases incentives to innovate. The first is the familiar Arrow Output Effect. The second

is the new effect, the Switchover Disruption Effect, that we introduce with this paper.

In this baseline model, recall that only the incumbent has the option to adopt. Consider

the incumbent’s decision at t = 0 (if it does not adopt at t = 0, it would never adopt). If the

incumbent does not innovate, the equilibrium price from Bertrand competition is the limit

price p◦ = c◦+ τ . This yields a profit margin of p◦− c◦ = τ per unit sold. The incumbent’s

8In many cases, this setup is clearly appropriate. When a firm decides whether to adopt a new supply
system, a new human resource system, and so on, it is the only firm that has a say.
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sales will be Q◦ = QD(c◦+ τ) at each instant along the unit time interval and the profit flow

τQD(c◦ + τ).

In calculating the present value of profits, it will be convenient in the analysis to integrate

over the cost path c(t) rather than over t. For the case where f is continuous and strictly

decreasing, letG(c) denote how much time remains when marginal cost equals c, for c ∈ [c, c̄].
That is, G(c) is the value of x solving f(1 − x) = c. Thus G(c̄) = 1 and G(c) = 0, and

0 < G(c) < 1 for c < c < c̄. The c.d.f. over marginal cost during the time interval is 1−G(·)
and let g(c) = −G0(c) be the density of marginal cost. Finally, letting ρ be the discount

rate, define h(c) as

h(c) ≡ e−ρ(1−G(c))g(c). (2)

This will show up in the formulas below as the weight on profits when cost is c. The first

term takes into account discounting, since the time is t = 1 − G(c) when cost is c. The

second term takes into account the density of c.9

The present value of the profit flow τQD(c◦ + τ) then equals (as a function of τ)

v◦(τ) = τQD(c◦ + τ)

Z c̄

c

h(c)dc. (3)

If the incumbent adopts, it obtains a cost path that starts with c̄ and monotonically decreases

to c. If the initial cost c̄ is above c◦ + τ , it drops out of the market until its cost falls to the

limit price. Beyond this point, the incumbent’s cost c is below c◦ + τ , and it sets the limit

price p = c◦ + τ .10 The present value to the incumbent from adoption, netting out the fixed

cost of adoption F , then equals

v(τ) = QD(c◦ + τ)

Z min{c̄,c◦+τ}

c

h(c) [c◦ + τ − c] dc− F . (4)

The net return to adoption is the difference between v and v◦,

W (τ) = QD(c◦ + τ)

"Z min{c̄,c◦+τ}

c

h(c) [c◦ + τ − c] dc− τ

Z c̄

c

h(c)dc

#
− F . (5)

9As a help to the reader regarding notation, consider the case if there was no discounting. Then since h(c)
is the “weight” at each c, the integral of h(c) over costs equals one, that is,

R c̄
c
h(c)dc = 1. With discounting,

we have that
R c̄
c
h(c)dc =

R 1
0
e−ρtdt.

10If the initial cost c̄ is below c◦ + τ , the incumbent sets the limit price over the entire interval.
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Differentiating the net return to adoption with respect to the cost advantage τ yields

dW (τ)

dτ
=

dQD

dp

"Z min{c̄,c◦+τ}

c

h(c) [c◦ + τ − c] dc− τ

Z c̄

c

h(c)dc

#
(6)

−QD

Z c̄

min{c̄,c◦+τ}
h(c)dc.

The slope is the sum of two terms. The first is the Arrow Output Effect. The second is

the Switchover Disruption Effect. We next state Proposition 1 which provides sufficient

conditions under which falls in the tariff increase innovation.

Proposition 1. At any τ where the return to adoption is positive, W (τ) > 0, the slope

is weakly negative, W 0(τ) ≤ 0, and is strictly negative if either (i) D0(c◦ + τ) < 0 (strict

downward sloping demand) or (ii) c̄ > c◦ + τ (significant switchover disruption).

Proof. If W (τ) > 0, since F ≥ 0, it must be the case that

"Z min{c̄,c◦+τ}

c

h(c) [c◦ + τ − c] dc− τ

Z c̄

c

h(c)dc

#
> 0. (7)

This says that, on average, profitability per sale increases. Plugging (7) into the slope formula

(6) immediately implies W 0(τ) ≤ 0 and the claims about the strict inequality follow as well.

Proposition 1 says that if the new technology is worth adopting (W (τ) > 0), then an

increase in τ decreases the return to adoption (W 0(τ) < 0).11 This implies that the return

to adoption takes the form of a cutoff rule τ̂ where the incumbent adopts if τ < τ̂ and does

not adopt if τ > τ̂ . (Let τ̂ = 0 in cases where it never adopts and τ̂ = ∞ in cases where

it always adopts.) If we think of F as a random variable with some distribution, then the

cutoff τ̂ will decrease in F . Hence adoption is more likely the lower is τ .

To get a clearer picture of the first term of dW
dτ
in (6), the Arrow Output Effect, it is

helpful to rewrite this term when c̄ ≤ c◦ + τ . In this case, it reduces to

Arrow Output Effect:
dQD

dp

Z c̄

c

h(c) [c◦ − c] dc, if c̄ ≤ c◦ + τ .

It equals the average (marginal) cost reduction from the new technology times the change in

11We note that we can extend Proposition 1 to the case of elastic demand for the special case where the
cost path takes on two values, f(t) = c̄ for t < t̂ and f(t) =c.
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market quantity from higher market power. The big idea is that there exist scale economies

from adoption. There is one fixed cost and cost savings per unit are applied to multiple

production units. The greater the market power through τ , the lower the production

volume, and the fewer units over which to average the expense of the fixed cost. In short,

an incumbent with high market power does not sell many units and so is less inclined to pay

a given fixed cost to lower marginal coat. This well-known idea from Arrow is also called

the replacement effect (see, e.g., Tirole (1988) on this terminology).

To get a clearer picture of the second term of dW
dτ
in (6), it is helpful to rewrite this term

when c̄ > c◦ + τ . In this case the term reduces to

Switchover Disruption Effect: −QD

Z c̄

c◦+τ

h(c)dc, if c̄ > c◦ + τ (8)

This equals (minus) the present-value-weighted total time of the switchover disruption period

times the volume of lost sales. If the monopoly power index τ increases by one dollar, this

is the additional profit forgone during the switchover disruption.

This effect can be seen in Figure 2. For this figure, we assume that demand in perfectly

inelastic. In the figure, there are two identical panels, except that the switchover disruption

in the left hand panel is “small” (that is, c◦ + τ > c̄) and is “large” in the right hand panel.

The dark shaded area in both panels represents the total profits that are lost as a result

of the disruption, and the light shaded area are the profits that are gained when costs fall

below original costs. In the left hand panel, when an incumbent adopts, it does not lose any

sales, and the Switchover Disruption terms drops to zero. Increases in τ in this case do not

increase the size of the dark shaded area and have no effect on adoption decisions. In the

right hand panel, when an incumbent adopts it loses sales. Now, increases in τ increase the

size of the dark shaded area. The opportunity cost of the forgone sales during the disruption

period is greater, decreasing the incentive to innovate. This is the term (8).

5 First Extension: Declining Output

Arrow’s view that competition leads to greater innovation has been challenged on theoretical

grounds. Perhaps the most fundamental critique is that, as a matter of theory, when an

industry faces increased competition (say through unilateral tariff reduction), its output

may very well fall, and the Arrow logic then implies less innovation. In this section we show
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that if the baseline model above is extended to allow for decreasing output, then competition

still leads to increased innovation (under some conditions, of course).

To begin addressing this issue, consider what happens if demand QD(p) is perfectly

inelastic so that dQD/dp = 0. The Arrow output term in the slope (6) reduces to zero. If

there is no significant switchover disruption (c̄ ≤ c◦ + τ), the second term is zero as well, so

a change in market power τ has no impact on the incentive to innovate. However, if there

is significant switchover disruption, c̄ > c◦ + τ , the second term is strictly negative, and our

result that the incentives to innovate decline with τ goes through.12

A decrease in the monopoly index τ might decrease the incumbent’s output. For example,

suppose the industry here is an intermediate good industry in the manufacturing sector.

Suppose it sells its output to other domestic manufacturing firms. Now imagine that there

is a unilateral tariff reduction across all manufacturing industries. The tariff reduction will

lead to a price reduction in the intermediate good industry, but some of its local market may

simply disappear. Some of its upstream industries (or firms) may be eliminated by imports.

Then, even as the intermediate industry’s price falls, industry output falls. This was the case

in the U.S. iron ore industry in the 1980s. Foreign competition led the domestic industry to

significantly reduce its price, yet the sales of the industry also fell significantly (since U.S.

steel producers lost sales to foreign steel producers).

We could extend the baseline model along the lines suggested in the paragraph above

(distinguishing intermediate manufactures, etc.) But to keep things simple, we’ll assume a

reduced form relationship between industry demand and the tariff rate, that is, we’ll assume

demand is QD(p, τ). Holding p fixed, quantity demanded falls in τ . Again, one interpretation

is that τ is a manufacturing-wide tariff, and its reduction means a smaller market for this

intermediate industry.

In terms of the analysis above, in equation (5), we replace QD(c◦+ τ) with QD(c◦+ τ , τ).

To look at the impact of an increase in τ on the incentive to innovate, we need only replace

dQD/dp in first term of the slope (6) with dQD/dτ , where of course this latter derivative

is a “total derivative.” If the total derivative dQD/dτ < 0, everything is qualitatively the

same. But if dQD/dτ > 0, then the sign of the first term in (6) (the Arrow Output effect)

flips. In particular, if there is no significant switchover disruption so that c̄ ≤ c◦ + τ , the

incentive to innovateW (τ) strictly increases with the market power parameter τ , as opposed

to decreasing. This is the “declining-output” critique. However, if there is significant

switchover disruption, there are two offsetting effects. If the output effect from dQD/dτ is

12The reader will notice that this situation was covered by Proposition 1.
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not too big, the Switchover Disruption effect will dominate, and an increase in τ will decrease

incentives to innovate.

Notice that switchover disruptions are needed to explain how increased competition can

lead to increased innovation in the face of output declines. This is a feature of empirical

studies, that is, increased adoption in the face of falling output, that has remained a puzzle

until now.

The evidence comes primarily from two sources, studies of specific industries that have

undergone a dramatic increase in competition, and from unilateral trade liberalizations.

The industry studies, and trade liberalization studies, uniformly show that as competition

increases, productivity (e.g., TFP) at the establishment level increases.13

What happened to the size of the industry and individual establishments as competi-

tion increased (and spurred productivity)? Here, too, the studies speak with one voice:

competition reduced industry and establishment size.

Consider first the study of specific industries. When competition hit the U.S. iron ore

industry, its output fell in half. It was only after more than a decade that industry output

returned to a level close to its pre-competition level. The same was true at the establishment

(i.e., mine) level (Schmitz (2005)). In cement, foreign competition reduced industry output

by 30 percent in the early 1980s and output did not reach its pre-competition level until the

mid 1990s. In U.S. transportation, rail competition greatly reduced water shipments.

In the studies of (unilateral) trade liberalization’s impact on productivity mentioned

above, not all studies looked at the consequences of liberalization on industry (and estab-

lishment) size. But among those that did, establishment size falls. Hay (2001) shows that

following unilateral trade liberalization in Brazil, its large manufacturing firms lost significant

market share to foreign firms, had their profits fall sharply, yet increased their efficiency dra-

matically. Trefler (2004) finds that reductions in Canadian tariffs against the United States

led to reductions in gross output per plant in Canada.14 Bloom, Draca, and Van Reenen

(2008) show that (European) plants facing the greatest increase in imports from China had

the greatest increase in technology adoption (and had the greatest reduction in size measured

13Studies looking at specific industries, in addition to those discussed below, include Bridgman, Gomes
and Teixiera (2008). Studies of trade liberalization’s impact on plant productivity have grown significantly
in the last decade. The studies, which uniformly find a positive impact on plant productivity, include
Amiti and Konings (2007) (Indonesia), Bernard, Jensen, and Schott (2006) (U.S.), Bloom, Draca, and Van
Reenen (2008) (OECD), De Loecker (2007), Hay (2001) (Brazil), Fernandes (2007) (Columbia), Muendler
(2004) (Brazil), Pavcnik (2002) (Chile), Topalova (2004) (India), Trefler (2004) (Canada), and Tybout and
Westbrook (1995) (Mexico).
14Trefler’s Table 5 shows the negative impact of tariff reductions on size.
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by employment).15

It is hard to understand these findings in Arrow-type models, the findings that as a

plant shrinks from foreign competition its TFP (and technology adoption) increases. Our

theory here provides an interpretation of these findings. As competition lowered price in

these industries, it reduced the opportunity costs of lost sales if adopters ran into switchover

disruptions. Not only is the argument consistent with the facts, but in the industry studies

noted above it’s clear this was the mechanism by which adoption increased.

Consider for example the U.S. iron ore industry. For nearly a century, until the early

1980s, the U.S. and Canadian iron ore industries were the exclusive suppliers to steel plants

in the Midwest manufacturing belt (e.g., Chicago and Cleveland). At that time they faced

a significant increase in competition in these markets. In response, they adopted a technol-

ogy that led to a surge in productivity. The technology was a change in organization, in

particular, a change in work rules (see, for example, Galdon-Sanchez and Schmitz (2002)

and Schmitz (2005)). The firms could have instituted these changes prior to the reduction

in market power, but there would have been a switchover disruption, namely, a likely pro-

tracted strike by the union. With significant market power, and high iron ore prices, the

opportunity costs of lost sales were too high. With the surge in competition, prices and rents

fell dramatically. The opportunity costs of a protracted strike were now much lower, and the

firms decided to pursue new work rules.16 Similar developments occurred in the U.S. cement

industry (Dunne, Klimek and Schmitz (2008)) and U.S. transportation industries (Holmes

and Schmitz (2001)).17

To close this section, let’s return to another theoretical critique of the Arrow model, one

that is related to the declining-output issue: What happens if the new technology reduces

fixed costs, leaving marginal cost alone? Suppose there is a flow fixed cost φ that must be

paid each instant when output is positive, but not paid at zero output. Suppose initially, the

cost is φ◦, but if the new technology is adopted the fixed cost goes from φ̄ at the beginning to

φ< φ̄ in the end. If φ̄ is high enough, the incumbent will shut down initially to avoid paying

15There is another literature that looks at the impact of trade liberalization on average firm and plant
size (but does not focus on productivity). An important paper in this literature is Head and Ries (1999).
Summarizing this literature, Tybout (2006) says, “The finding that foreign competition is associated with
smaller firms in import competing industries seems robust.”
16It’s also quite possible that the firms thought the possibility of a strike, and its duration if it did happen,

had fallen as well. But our model predicts this, too, is a force for technology adoption.
17The studies above looked at how changes in competition led to changes in technology adoption. Other

studies have looked cross-sectionally, for example, Syverson (2004). Other proxies for changes in competition
include regulatory restructuring (e.g., see Fabrizio, Rose and Wolfram (2007)) and changes in cartel laws
(see, e.g., Symeonidis (2008)).
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it. It is straightforward to see how we could redo the analysis of the previous section with

this setup. The Arrow Output effect would of course disappear because it depends upon

production volume which is irrelevant with a fixed cost. However, the Switchover Disruption

term remains, and competition again leads to adoption (if the switchover costs are large

enough).

6 The Second Extension: Gilbert and Newbery

A famous critique of Arrow is Gilbert and Newbery’s (1982). They change the model setup

and allow the rivals to also bid for the new technology. They show the monopolist has the

greatest willingness to pay and that it increases in τ . In this section we show that if the

baseline model above is extended to allow for the rivals to bid, then competition still leads

to increased innovation (under some conditions, of course).

Formally, we assume an outside researcher can sell exclusive rights to use the technology

to the incumbent or one of the rivals. If a rival uses the new technology, it still needs to

pay the friction τ , in addition to the marginal production cost. Assume that the outside

researcher can commit to an auction technology that extracts the full surplus from the bidder

with the highest willingness to pay. In the analysis, we need to determine: Who has the

highest willingness to pay, the incumbent or a rival, and how much is the high bidder willing

to pay? We examine how the answers to these questions depend upon τ .

We proceed by first working things out when there is no switchover disruption. We

then determine how things change when we put switchover disruption into the model. To

highlight the role of switchover disruption, we zero out the Arrow Output effect by assuming

demand is perfectly inelastic at unit demand, i.e., QD(p) = 1 for all p.

We begin with some additional notation. As in the previous section, let v denote the

present value to the incumbent when it acquires the new technology. Now let u denote the

present value to the incumbent when a rival obtains the new technology. Finally, let r be

the present value to a rival when it acquires the new technology.

6.1 Adoption with no switchover disruption

Suppose there is no switchover disruption, c̄ ≤ c◦. Define value vNo_SD to be the value to

the incumbent of acquiring the rights to the new technology. This is just the formula (4) in

the previous subsection with QD(c◦ + τ) = 1 and min {c̄,c◦ + τ} = c̄. The value uNo_SD to
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the incumbent if the rights are acquired by a rival firm is

uNo_SD =

Z max{c̄,c◦−τ}

max{c◦−τ,c}
h(c) [c+ τ − c◦] dc. (9)

By using the max operator in (9) above, we subsume different cases. If max {c̄, c◦ − τ} =
c◦ − τ (equivalently c◦ ≥ c̄ + τ), the incumbent is immediately undercut at the point of

adoption by a rival and the integral above is 0 (limits of integration are c◦ − τ and c◦ − τ).

If alternatively c◦ < c̄ + τ , the incumbent is at least initially the low cost producer, taking

into account the friction τ , but it will have to set the price to c+ τ to match the adopting

rival.

Finally, the value to a rival if the rival acquires the new technology rights is

rNo_SD =

Z min{c̄,c◦−τ}

min{c,c◦−τ}
h(c) [c◦ − τ − c] dc,

where, again, by using the min operator above we subsume different cases.

The maximum willingness to pay for the rights to the new innovation is

WNo_SD = max
©
vNo_SD − uNo_SD, rNo_SD

ª
= max

⎧⎪⎨⎪⎩
R c̄
c
h(c) [c◦ + τ − c] dc−

R max{c̄,c◦−τ}
max{c◦−τ,c} h(c) [c+ τ − c◦] dc,R min{c̄,c◦−τ}

min{c,c◦−τ} h(c) [c
◦ − τ − c] dc

⎫⎪⎬⎪⎭ .
The first term in the maximization is the willingness to pay by the incumbent, the difference

in return between having the production rights and a rival having them. The second term

is the return to a rival owning the rights (a rival without rights gets profit equal to zero.)

Observe that at τ = 0, the willingness to pay by the incumbent and a rival is the same

and equal to

WNo_SD =

Z c̄

c

h(c) [c◦ − c] dc, when τ = 0,

the present value of the cost reduction. This expression follows from the fact that, with no

switchover disruption,max {c̄, c◦ − τ} = max {c◦ − τ , c} = c◦ (when τ = 0), andmin {c̄, c◦ − τ} =
c̄ andmin {c, c◦ − τ} = c. Next observe that the willingness to pay rNo_SD of the rival strictly
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decreases in τ . Finally, we differentiate vNo_SD − uNo_SD. Let us first note that

dvNo_SD

dτ
=

Z c̄

c

h(c)dc.

The derivative duNo_SD/dτ is the sum of the following three terms,

−dmax {c
◦ − τ , c}

dτ
h(max {c◦ − τ , c})[max {c◦ − τ , c}+ τ − c◦],

and
dmax {c, c◦ − τ}

dτ
h(max {c, c◦ − τ})[max {c, c◦ − τ}+ τ − c◦],

and finally Z max{c̄,c◦−τ}

max{c◦−τ,c}
h(c)dc.

The first two terms are zero (in each term, either the derivatives are zero, or if not, the rest

of the expression is zero). Hence,

duNo_SD

dτ
=

Z max{c̄,c◦−τ}

max{c◦−τ,c}
h(c)dc

and hence

dvNo_SD

dτ
− duNo_SD

dτ
=

Z c̄

c

h(c)dc−
Z max{c̄,c◦−τ}

max{c◦−τ,c}
h(c)dc.

This last derivative is strictly positive if τ < c◦− c and zero for τ ≥ c◦− c. Hence for τ > 0,

the willingness to pay by the incumbent strictly exceeds that of the rival, and the willingness

strictly increases in τ up to the threshold. In summary, we have proved:

Proposition 2. Assume the Gilbert and Newbery setup applies, that demand is perfectly

inelastic, and that there is no switchover disruption (c̄ ≤ c◦).

(i) If τ > 0, the incumbent has a higher willingness to pay for the new innovation and so

will outbid the rival so WNo_SD =vNo_SD − uNo_SD.

(ii) WNo_SD(τ) strictly increases in τ for τ < c◦ − c and is constant above this point.

Part (i) of the proposition is a variant of Gilbert and Newbery’s famous result that

innovation is worth more to the incumbent than to a new entrant and so the incumbent will

preemptively patent before a rival. The incumbent will take into account that if it does not
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preemptively innovate and the entrant adopts instead, the incumbent will lose its monopoly

rent. In contrast, the rivals have no rent to forgo if they don’t innovate.

Part (ii) of the result is really an elaboration on part (i). The larger is τ the larger is the

incentive of the incumbent to hold onto its monopoly rents and so the more the incumbent is

willing pay for the innovation. This remains true until τ > c◦−c. When the friction is bigger
than this threshold, a rival cannot displace the incumbent even when its costs have fallen to

c. So the incumbent will enjoy the full value of the friction τ whether or not the incumbent

or a rival have the new technology, meaning changes in τ don’t impact willingness to pay.

Part (ii) of Proposition flips the Arrow result because if there is a given underlying cost F

to create the innovation, the higher is the monopoly index τ , the more likely it is that the

underlying willingness to pay exceeds the innovation’s cost.

6.2 Adoption with switchover disruption

The intuition embodied in Proposition 2 for how monopoly can raise the incentive to pay for

innovation is well understood. The key point we want to make here is that this result depends

heavily on the assumption that there are no switchover disruptions. We will show that the

presence of switchover disruptions can overturn the results in Proposition 2. Note that in

introducing switchover disruption, we must now allow the possibility that the incumbent

might buy the technology and leave it idle. (With no switchover disruption, c̄ ≤ c◦, the

incumbent would always use the new technology it it owned the rights.)

The statement of our result will require two additional pieces of notation. Let

Hdisrupt ≡
Z c̄

c◦
h(c)dc

Hbeyond ≡
Z c◦

c

h(c)dc.

Here Hdisrupt is the (weighted) duration of the switchover disruption, where the weight de-

pends upon the cost density and the discount factor, and Hbeyond is the (weighted) duration

“beyond the disruption,” when cost is lower than its initial value c◦.

We start by determining what happens when the degree of market power τ is small.

Proposition 3. Assume the Gilbert and Newbery setup applies, that demand is perfectly

inelastic, and that there is a period of switchover disruption (c̄ > c◦). Suppose that τ is

small.
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(i) If Hdisrupt < Hbeyond , then the incumbent obtains the innovation and WSD strictly in-

creases in τ .

(ii) If Hdisrupt ∈ (Hbeyond , 2Hbeyond ), then the incumbent still obtains the innovation, but

WSD strictly decreases in τ .

(iii) If Hdisrupt > 2Hbeyond , then a rival obtains the innovation and W SD strictly decreases in

τ .

Proof. Suppose c̄ > c◦ and τ ∈ (0, c◦−c). To do the analysis, we need to derive four different
returns.

First Return: vSD

This is the return to the incumbent from adopting the technology,

vSD =

Z min{c◦+τ,c̄}

c

h(c) [c◦ + τ − c] dc (10)

where if min {c◦ + τ , c̄} = c̄, the incumbent is always the low cost producer.

Second Return: iSD

This is the return if the incumbent acquires the rights to the new technology but leaves

it idle. Hence no rival adopts. We ignored this possibility in the non-disruption case because

it was irrelevant there. But it can be relevant here. The return is

iSD =

Z c̄

c

h(c)τdc

since the markup is τ , and demand is unity.

Third Return: uSD

This is the return to the incumbent of not acquiring the technology (so that it ends up

in the hands of a rival),

uSD =

Z c̄

c◦
h(c)τdc+

Z c◦

c◦−τ
h(c) [c+ τ − c◦] dc. (11)

The first term is the return over the disruption interval, that is, the time before the adopting

rival’s cost (not including the friction τ) has fallen to c◦, that is, the interval [c◦, c]. The

adopting rival begins with total cost c + τ (which satisfies c + τ > c◦ + τ > c◦), but since

there are other rivals (we assumed multiple rivals) with cost c◦ + τ , the incumbent’s limit

price is c◦+τ , and its markup τ . The second term is the return after the disruption interval.

19



In this period, the adopting rival has a cost c+ τ < c◦ + τ . For the first part of this period,

the incumbent’s cost c◦ remains lower than c+ τ , during which period the equilibrium price

is c + τ . Eventually, since c < c◦ and since τ < c◦ − c by assumption (since τ is assumed

“small”), a point is reached (i.e., c + τ = c◦) where the rival that adopts is the lowest cost

producer (including the friction τ) and the incumbent’s profit is zero from that point on.

Fourth Return: rSD

The return to a rival of adopting the technology is

rSD =

Z c◦−τ

c

h(c) [c◦ − τ − c] dc,

since its limit price is c◦, and its marginal cost is c+ τ .

Willingness to pay in the switchover disruption case is given by

WSD
GN = max

©
vSD − uSD, iSD − uSD, rSD

ª
.

We begin by noting that for τ close to zero, it is immediate that vSD > iSD, so we can

ignore the idling possibility for the rest of this proof. So we compare vSD − uSD and rSD.

Note at τ = 0 they are equal. Let us differentiate the difference, vSD − uSD, with respect to

τ . First, we have that

dvSD

dτ
=

dmin {c◦ + τ , c}
dτ

h(min {c◦ + τ , c})[c◦ + τ −min {c◦ + τ , c}] +
Z min{c◦+τ,c̄}

c

h(c)dc,

where note that the first term is zero. Hence, we have that

dvSD

dτ
− duSD

dτ
=

Z min{c◦+τ,c̄}

c

h(c)dc−
Z c̄

c◦−τ
h(c)dc, (12)

and note that, at τ = 0, dvSD/dτ − duSD/dτ = Hbeyond −Hdisrupt . Next, we have

drSD

dτ
= −

Z c◦−τ

c

h(c)dc (13)

and note that, at τ = 0, drSD/dτ = −Hbeyond .

If Hbeyond > Hdisrupt , then for τ = 0, (12) is positive and greater than (13). This implies

that the incumbent has the highest willingness to pay for small τ . Thus W SD
GN = vSD − uSD,
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and this is strictly increasing for small τ , proving (i).

If Hdisrupt ∈ (Hbeyond , 2Hbeyond ), then (12) is strictly negative but still greater than (13).

Thus WSD = vSD − uSD and is strictly decreasing for small τ , proving (ii).

If Hdisrupt > 2Hbeyond , then (12) is strictly less than (13). So a rival has the highest

willingness to pay. So WSD = rSD which is strictly decreasing, proving (iii). Q.E.D.

The above is a local result, holding around τ = 0. The next result (Proposition 4)

generalizes the two ways that big switchover costs overturn Gilbert and Newbery (which are

parts (ii) and (iii) of Proposition 3) to a wider range of τ . Before stating Proposition 4, we

need to deal with the complication that for certain parameters, it may be the case that the

incumbent obtains the rights to the innovation but then leaves it idle. The following lemma

shows that if this ever happens for any τ , it happens for all higher τ .

Lemma 1. Fix all the parameters of the model except for τ . If there exists any τ where the

incumbent obtains the new innovation rights but then idles it (and has a strict preference to

do so), there is a τ̂ > 0 such that for all τ < τ̂ , the incumbent does not obtain and idle the

new innovation but if τ > τ̂ the incumbent does obtain the rights and idles it.

Proof. See appendix.

Define τ̂ = ∞ in the event that there is no idling for any τ . Proposition 4 requires an

additional assumption.

Assumption 1 : Assume that f 0(t)eρt increases in t.

A few remarks about assumption 1. We earlier assumed that f 0(t) < 0. Now if the

discount rate were ρ = 0, this assumption would be simply be that f 00 > 0, i.e. that f is

convex such as in the example in figure 1. This would be a standard assumption in any

kind of learning over time setup where the initial advances come in at a faster rate than

later advances. If ρ > 0, we need more than convexity since the eρt term works against the

assumption (note f 0(t) < 0). We need f to be convex enough. For example, if f(t) = ke−γt,

then we need γ > ρ for the assumption to hold. Assumption 1 directly implies that h(c)

decreases in c.18

With this setup, we can now generalize the two ways that big switchover costs overturn

Gilbert and Newbery (which are parts (ii) and (iii) of Proposition 3) to a wider range of τ .

Proposition 4. As in Proposition 3, assume the Gilbert and Newbery setup applies, that

demand is perfectly inelastic and that there is a period of switchover disturbance (c̄ > c◦).

Assume further that Assumption 1 holds.

18Recall that h(c) ≡ e−ρ(1−G(c))g(c) = -e−ρtf(t)−1, for t solving c = f(t).
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(i) If Hdisrupt > Hbeyond , WSD strictly decreases in τ for τ < min {c◦ − c, τ̂}.
(ii) If Hdisrupt > 2Hbeyond , a rival obtains the innovation for all τ < min {c◦ − c, τ̂}.
Proof. For τ < min {c◦ − c, τ̂}, by the definition of τ̂ , the incumbent is not idling the

technology. Hence, the formula (12) is valid for τ in this range. Differentiating again yields

d2vSD

dτ 2
− d2uSD

dτ 2
= h(c◦ + τ)− h(c◦ − τ), if c◦ + τ < c̄,

= −h(c◦ − τ), if c◦ + τ > c̄

Assumption 1 implies h0 < 0, so the above is strictly negative. Since Hdisrupt > Hbeyond ,

vSD−uSD is strictly decreasing for small τ . Since the function is strictly concave, it is then

strictly decreasing for all τ ∈ (0, c◦− c). Next note from (13) that rSD is strictly decreasing.

NowW SD ≡ max
©
vSD − uSD, rSD

ª
where vSD−uSD and rSD are both decreasing functions

of τ . The maximum of decreasing functions is a decreasing function, proving (i). Next observe

from differentiating (13) with respect to τ that rSD is (weakly) convex. IfHdisrupt > 2Hbeyond ,

the slope of rSD at τ = 0 is strictly greater than the slope of vSD−uSD. Since rSD is convex

and vSD − uSD is concave and since vSD − uSD = rSD at τ = 0, rSD > vSD − uSD for

τ ∈ (0,min {c◦ − c, τ̂}) as claimed. Q.E.D.

The intuition of the results for the Gilbert and Newbery structure can be gleaned from

a simple example. Ignore discounting by setting ρ = 0. Suppose that during the disruption

period, marginal cost is infinite, that is, c =∞, so that no production can take place. Once
the disruption period is over, then marginal cost is c < (c◦ − τ). If the incumbent adopts

the technology, it enjoys a profit only after the disruption interval has passed. Hence,

vSD = Hbeyond (c◦ + τ − c) .

If the incumbent doesn’t adopt so that the rival gets it, it makes a profit only as long as the

adopting rival is still in the disruption phase, that is,

uSD = Hdisruptτ .

The willingness of the incumbent to pay for the innovation is

WSD
GN = vSD − uSD = Hbeyond (c◦ + τ − c)−Hdisruptτ . (14)
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We can easily see here that if the Hdisrupt period is longer than the Hbeyond period, an

increase in τ will lower the incumbent’s willingness to pay for the innovation. Obviously, the

disruption period has to be quite big here, half of the entire period. But note that if we add

discounting, the disruption period need not be so long for the result to go through since the

disruption is bourne up front. So adding discounting magnifies the effect.19

7 The Third Extension: Learning by Doing

The previous two sections considered critiques of Arrow’s logic that competition increased

adoption. In this section we consider whether our logic about switchover disruption’s impact

on adoption holds under different assumptions about how costs fall after adoption.

In the baseline model, if a firm adopts, then the path of its costs depends only on time.

In particular, its costs do not depend on output, as they would if there was learning-by-

doing (LBD). Since costs only depend on time, if the incumbent adopts and there is a large

switchover disruption, that is, c̄ > c◦ + τ , then it is always best for the incumbent to drop

out of the market until c̄ = c◦ + τ . So, the incumbent always loses sales.

If there is LBD, then a firm’s production rate influences its costs. In this case, perhaps

the firm will choose to produce when c̄ > c◦+ τ . If it produces, there is a current loss (since

marginal cost exceeds price), but costs also come down faster. So, if there is LBD, perhaps

an incumbent does not choose to reduce sales after adoption. If it did not reduce sales, then

the effect we have introduced disappears.

In this section, we address this issue with a simple version of our model with learning by

doing. We show that under general conditions our effect does not disappear.

Suppose for simplicity that demand is perfectly inelastic at QD = 1 and that there is no

discounting. Suppose there are two cost levels after adoption, c̄ > c, and that cost remains at

the high level c̄ until the firm attains a critical knowledge K∗. In general, knowledge comes

from both raw time and production experience. Specifically, conditioned upon adopting

the new innovation at time t = 0, knowledge at time t evolves according to

K(t) =

Z t

0

[λ+ βq(t)α] dt, (15)

19Note that there are other forces that act like discounting that will also magnify the impact of switchover
disruptions. One example is if there is a small probability each “period” that the market disappears (for
example, because of the development of a substitute product).

23



where q(t) is the incumbent’s production at time t. Assume α ∈ (0, 1). Specification (15)
nests the pure time model that we formulated in Section 3. To see this, if β = 0 and λ > 0,

then at time t∗ defined by

K∗ ≡ λt∗,

the critical level of knowledge is obtained and cost drops from c̄ to c. This is the pure time

model.

For the rest of this section, to stack things against us, we assume that time has no impact

on learning, that is, λ = 0. We also assume that c̄ > c◦+τ . So if the incumbent does adopt,

if it ever wants to lower costs to c, it will have to initially produce at a loss. We normalize

β = 1 in (15). Finally, we assume

K∗ < 1,

so that if the incumbent does produce the unit demand through the time interval, it obtains

the required knowledge level before t = 1.

Suppose that the firm adopts and attains the critical knowledge at time t̂. Assuming the

curvature parameter α < 1, and given no discounting, it is immediate that the firm should

be smoothing production at a constant q solving

K∗ = t̂qα.

(Where again we have normalized β = 1.) Alternatively, if the firm chooses a constant

production rate q, it achieves K∗ by t̂(q), where

t̂(q) = min
©
K∗q−α, 1

ª
and the bound at one covers the case where accumulated knowledge is insufficient by t = 1.

The incumbent chooses a learning-period production level q̄ to solve

v = max
q̄≤1
−t̂(q̄)q̄ (c̄− c◦ − τ) +

¡
1− t̂(q̄)

¢
(c◦ + τ − c) . (16)

During the learning period, the incumbent sells q̄ ≤ 1 units at a loss (c̄− c◦ − τ), and the

balance of the unit market demand is met by the rivals. After the low cost c is attained, the

incumbent takes the entire unit demand and begins to enjoy profit c◦ + τ − c.
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Our next result shows that if learning is “concave enough” (α < .703 is sufficient), then

there exists a range of c̄ under which it is optimal for the incumbent to set an output level

q̄ during the learning phase that is positive but strictly less than one, i.e., it only partially

meets the market demand during this phase. To set up the result, we need to introduce two

functions of α that come up in the analysis.

M1(α) ≡
µ

α

1− α

¶α

(17)

M2(α) ≡
µ

α

1− α

¶1−α
+

µ
1− α

α

¶α

.

For a fixed K∗ < 1, define α̂ by M1(α̂) ≡ M2(α̂)/K
∗. In the appendix where we prove

Proposition 5, we show there is a unique α̂ ∈ (.703, 1) satisfying this condition. Our result
is:

Proposition 5. Fix α < α̂ and define cutoffs c̄1 and c̄2 by

c̄1 − c◦ − τ

c◦ + τ − c
≡ M1 (α)

1
α (18)

c̄2 − c◦ − τ

c◦ + τ − c
≡ M2(α)

1
α (K∗)−

1
α .

The cutoffs satisfy c̄2 > c̄1 and c̄1 > c◦ + τ . In the solution to problem (16), if c̄ ∈ (c̄1, c̄2),
then output during the learning period is strictly positive but less than one,

q̄ =
α

1− α

c◦ + τ − c

c̄− c◦ − τ
< 1. (19)

If instead c̄ < c̄1, then q̄ = 1 during the learning period. If c̄ > c̄2, then if the firm were to

adopt, q̄ = 0 for all t and knowledge K∗ is never attained.

Proof. See appendix.

As before, define W (τ) = v(τ) − v◦(τ) − F to be the net value of adopting the new

technology. Our result is

Proposition 6. Assume α < α̂. If c̄ < c̄1, then W 0(τ) = 0. If c̄ > c̄1, then W 0(τ) < 0.
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Proof. The slope equals

dW

dτ
=

dv

dτ
− dv◦

dτ
=

£
t̂(q̄)q̄ +

¡
1− t̂(q̄)

¢¤
− 1.

The bracketed term is the slope of v obtained from (16) using the envelope theorem. The

impact of a change in τ is simply the average output. If c̄ > c̄1, then from Proposition 5,

q̄ < 1, and average output under adoption is strictly less than one, implying W 0(τ) < 0. If

c̄ < c̄1, average output under adoption is one, and W 0(τ) = 0. Q.E.D.

Proposition 6 shows that our basic insight continues to hold if we cast the disruption

period as learning by doing. If c̄ is large enough so that losses during the learning period

are big enough, an incumbent that is adopting will contract its sales below the full market

level of one unit. The bigger is τ , the more costly these lost sales, and the less the return

to adoption.20

8 More Extensions

In this section, we briefly discuss some straightforward extensions of the model. These

extensions show how the model can be interpreted more broadly, and how the effects we talk

about can be magnified.

8.1 Incumbent faces rivals in many markets (i.e., variation in τ)

In the analysis above where there is a large switchover disruption, the incumbent loses its

entire market for a period of time. But in more general models, the incumbent need not lose

its entire market in order for the effect we are talking about to go through.21 We illustrate

20One important thing to note is that in the extreme case where α = 1 so there are no diminishing returns
to learning, the incumbent goes to the corner upon adopting and either sets q̄ = 1 or q̄ = 0. Now it will
never choose to adopt and set q̄ = 0. So if the turn to adoption is positive, then the return does not vary
with τ , because the incumbent does not lose sales if it adopts. It is crucial for our result that there be
diminishing returns in learning, so that the incumbent smooths out its learning and loses some sales. Another
thing worth noting is even though an incumbent with higher τ is less likely to adopt, given that it does adopt
we can see from (19)) that it will operate at a higher output q̄ during the learning period and hence attain
the required knowledge K∗ faster.
21Another extension (besides the one we consider below) would be for the incumbent, upon adoption, to

be able to produce only a certain fraction y of its pre-adoption output for a period of time. We could assume
during this period it produced at marginal cost c (or c), and that once the period is over, it produced at c.
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this here by allowing the incumbent’s advantage over rivals to be big in some markets, and

small in others. In this setup, even during the switchover disruption when the incumbent has

high costs it will nonetheless continue to sell to consumers over whom it has high monopoly

power. The incumbent will lose mobile consumers during the disruption and on account of

these mobile consumers our results will go through.

So now assume that there are multiple markets that differ by τ , in particular, let τ ∈ [0, τ̄ ].
To keep things simple, assume demand is perfectly inelastic in each market and that the level

of demand in each market differs by a scaler weight a(τ). Furthermore, assume that firms

can perfectly discriminate between the markets, being able to offer a distinct price p(τ)

to each market τ . This simplifies things considerably, as we can determine the Bertrand

Equilibrium in each market separately.

This structure can be given several interpretations. In terms of the tariff example

mentioned earlier, it may simply be the case that different consumers face different tariffs.

Or we can interpret this as heterogeneity in transport costs in a spatial context with a

Hotelling-like structure. We can put the incumbent in the center of a country. Buyers

located in the center of the country have high τ because in addition to paying any tariff they

have to incur transportation costs to ship imports inland. Buyers located on the coast have

lower τ .

LetWmany-markets be the net return to innovation in this newmany-markets model. Given

that the equilibrium can be determined in each τ market separately, we can use equation (5)

of Section 3 to determine the return to innovationW (τ) in each τ market and then integrate

over τ to obtain the net return over all markets,

Wmany-markets =

Z τ̄

0

a(τ)W (τ)dτ. (20)

Since we have assumed perfectly inelastic demand here, the first term in the slope of W (τ)

in equation (6) (the Arrow Output effect) is zero. It is immediate then that W 0 (τ) ≤ 0 and
that the inequality is strict for those τ markets where c̄ > c◦+ τ , i.e. where the incumbent

is initially out of the market just after adoption. It is then clear that an upward shift

in the distribution of τ (in the sense of first-order stochastic dominance) strictly decreases

willingness to pay and our result goes through. We also see that in the very high τ markets

(where c̄ < c◦+ τ), the incumbent retains its sales just after adoption, so the incumbent’s

aggregate output never goes all the way to zero.
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8.2 Consumer Dynamics

Our consumer model features no dynamics. Fixing the prices of the incumbent and all

rivals, quantity sold by the incumbent is independent of history. There is a large literature

that emphasizes the importance of dynamics on the consumer side. Consumers may bear

“switching costs” when they shift from one provider to a second provider. If the consumer

goes ahead and makes such a switch, the first provider might have a difficult time getting

the consumer back. See Klemperer (1995) for a survey of this literature.

If we introduce these kinds of dynamics on the consumer side, the effects we are isolating

here are magnified. We make our point with a stylized example but our point is more

general. Suppose that when consumers purchase from a rival, there is some probability they

never will come back to the incumbent. Specifically, demand available to the incumbent

decays at rate δ when demand is met by a rival firm. In this case we can rewrite the

incumbent’s willingness to pay (14) for the innovation in the example at the close of Section

6 as

WSD = e−δH
disrupt

Hbeyond (c◦ + τ − c)−Hdisruptτ .

This is the same as (14), except the first term now includes a decay factor for consumers

lost over the course of the disruption interval (which has length Hdisrupt). In the original

analysis, δ = 0 is implicitly assumed. The comparative static that WSD decreases in τ now

holds if

e−δH
disrupt

Hbeyond < Hdisrupt .

For any positive disruption interval Hdisrupt , the above condition will hold for large enough

consumer decay δ.

8.3 Uncertainty

The model is set up with a deterministic cost structure. Often there is a great deal of

uncertainty in the adoption of a new technology and this reinforces our point. It may be

that a new technology is worse than the existing one, even in the long run, but the only way

to find out is to try it. Moreover, once a firm tries it, it may be stuck with it, at least for a

substantial period of time. For example, the adoption of a new baggage handling system in

the Denver airport turned out to be a mistake, but it took ten years before they abandoned

it.
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We can capture this with a simple relabeling. Suppose that the model is a static one, in

which there is uncertainty about the realization c of a new technology. Assume that if the

cost draw ends up c > c◦, the adopting firm is stuck with it–that is, the cost of reverting to

the previous technology is prohibitively high. If we simply let h(c) be the density of the cost

draw c for the new technology, the model is formally identical to the model studied, and all

of our results go through.

9 Conclusion

Overall, while the Arrow theory provides a possible explanation of why monopolies are

observed to be sluggish innovators, it does not seem to fit the evidence particularly well.

Indeed, monopolists tend to be conservative in a great many ways. And indeed, this makes

sense: if you have a good thing going you do not want to rock the boat. The one thing a

monopolist fears most is the loss of monopoly. This is exactly the driving force that explains

why switchover disruptions can be so important: a competitor has little to fear from a

disruption as they are earning little to begin with. A firm with a lucrative monopoly is well

advised not to jeopardize it by adopting a technology that may in the short-run at least,

threaten its lucrative position.
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Appendix

Proof of Lemma 1

Following the notation and formulas found in the proof of Proposition 3, we have

dvSD

dτ
− duSD

dτ
=

Z min{c◦+τ,c̄}

c

h(c)dc−
Z c̄

max{c◦−τ,c}
h(c)dc

diSD

dτ
− duSD

dτ
=

Z c̄

c

h(c)dc−
Z c̄

max{c◦−τ,c}
h(c)dc

drSD

dτ
= −

Z max{c◦−τ,c}

c

h(c)dc.

Note that at τ = 0,iSD−uSD = 0, while vSD−uSD = rSD > 0. Next note for τ ∈ (0, c− c◦),

that iSD−uSD is strictly increasing while rSD is strictly decreasing. For τ > c−c◦, iSD−uSD

is weakly increasing, while rSD is flat. Hence if there is ever a point τ where iSD−uSD > rSD,

there is a unique cutoff τ 0 where iSD−uSD = rSD, and iSD−uSD < rSD if and only if τ < τ 0.

If c◦+τ < c̄, then the slope of iSD−uSD is strictly greater than the slope of vSD−uSD and
otherwise the slope is equal. Hence if there is ever a point τ where iSD− uSD > vSD− uSD,

there is a unique cutoff τ 00 where iSD−uSD = vSD−uSD, and iSD−uSD < vSD−uSD if and

only if τ < τ 00.

If the points τ 0 and τ 00 don’t exist, then for no τ is there a strict preference to idle. If

both exist, then let τ̂ ≡ max {τ 0, τ 00}. Q.E.D.
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Proof of Proposition 5

We begin by plotting the functions M1(α) and M2(α) in Appendix Figure 1. It is

immediate that M1(α) ≤ 1 for α ∈ (0, 12 ], that M1(α) > 1, M 0
1(α) > 0 for α ∈ [1

2
, 1), and

that limα→1M1(α) =∞. It is immediate that M2(α) > 1 for α ∈ [12 , 1). In the figure it is
readily apparent that M 0

2(α) < 0, for α > 1
2
and limα→1M(α) = 1. Note that the M1 and

M2 functions intersect at a point slightly above α = .703. Given these facts, it follows that

for K∗ < 1, there exists a unique α̂ ∈ (.703, 1) solving

M1(α̂) =
1

K∗M2(α̂),

so that for α < α̂, M1(α) <
1
K∗M2(α). Given the definitions (18) of the cutoffs c̄1 and c̄2, it

follows that c̄2 > c̄1 and c̄1 > c◦ + τ .

Recall from the text that

t̂(q) = min
©
K∗q−α, 1

ª
and the incumbent chooses a learning-period production level q to solve

v = max
q≤1
−t̂(q)q (c̄− c◦ − τ) +

¡
1− t̂(q)

¢
(c◦ + τ − c) . (21)

Let ṽ(q) be value at a given q. The slope equals

ṽ0(q) = − (1− α)K∗q−α (c̄− c◦ − τ) + αK∗q−α−1 (c◦ + τ − c)
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This formula applies when q is in the interval q ∈ [K∗, 1]. For q < K∗, the firm never learns

so the second term of (21) drops out. Let q̃(c̄) solve ṽ0(q) = 0,

q̃(c̄) =
α

1− α

c◦ + τ − c

c̄− c◦ − τ
.

It is straightforward to prove that for q ∈ [K∗, 1], ṽ0(q) ≥ 0 implies ṽ00(q) < 0. Hence, if

q̃(c̄) ∈ [K∗, 1], q̃(c̄) must be the unique maximizer of ṽ(q) for q in the interval [K∗, 1].

Suppose first that c̄ = c̄2. Then

q̃(c̄2) =
α

1− α

c◦ + τ − c

c̄2 − c◦ − τ

=
M

1
α
1

M2(α)
1
α (K∗)−

1
α

< 1

where we use the definitions of c̄2 and M1(α) and M1(α) and that M1(α) <
1
K∗M2(α), for

α < α̂. We can rewrite this as

q̃(c̄2)
α =

M1

M2
K∗

Since α < α̂, M1 > M2. Since α < 1 and since K∗ < 1, it follows that q̃(c̄2) > K∗. Hence

q̃(c̄2) ∈ (K∗, 1) and so it is the unique maximizer of ṽ(q) over the interval [K∗, 1]. The

maximized value equals

ṽ(q̃) = −K∗q̃−αq̃ (c̄− c◦ − τ) +
¡
1−K∗q̃−α

¢
(c◦ + τ − c)

= −K∗
∙

α

1− α

c◦ + τ − c

c̄− c◦ − τ

¸1−α
(c̄− c◦ − τ)

+

Ã
1−K∗

∙
α

1− α

c◦ + τ − c

c̄− c◦ − τ

¸−α!
(c◦ + τ − c) ,
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so

ṽ(q̃)

(c◦ + τ − c)
= −K∗

µ
α

1− α

¶1−αµ
c◦ + τ − c

c̄− c◦ − τ

¶−α
+1−K∗

µ
1− α

α

¶αµ
c◦ + τ − c

c̄− c◦ − τ

¶−α
= 1−K∗M2(α)

µ
c◦ + τ − c

c̄− c◦ − τ

¶−α
= 0, at c̄ = c̄2.

The last line follows from the definition of c̄2. At this point it is convenient to write ṽ(q, c̄)

as an explicit function of c̄. We have shown that at c̄ = c̄2, ṽ(q̃(c̄2), c̄2) = 0. Since ṽ(q, c̄)

strictly decreases in c̄, for q > 0, it is immediate that ṽ(q̃(c̄), c̄) < 0, for c̄ > c̄2. Hence the

optimal policy (given adoption) for c̄ > c̄2 is to set q̄ = 0 and sustain no losses during the

learning period and never learn. For c̄ < c̄2, it is immediate that the optimal policy is to

set q̄(c̄) = min {q̃(c̄), 1}. Now q̃(c̄) monotonocially decreases in c̄. By the definition of c̄1,

q̃(c̄1) = 1. So for c̄ ∈ (c̄1, c̄2), 0 < q̄(c̄) < 1 as claimed. Q.E.D.
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Figure 1
An Example of a Cost Structure with Switchover Disruption
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Figure 2
The Incentives to Adopt with Small and Large Switchover Disruption
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