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ABSTRACT. We construct an abstract, dynamic general equilibrium model
of innovation and growth, in the spirit of Schumpeter’s Theory of Eco-
nomic Development. Despite the existence of infinitely many commodi-
ties and activities, the use of which may increase over time, we give
a standard characterization of equilibrium using the first and second
welfare thms, and a standard transversality condition. Technological
progress takes place as entrepreneurs introduce new activities that pro-
duce new commodities. Entrepreneurs do not end up with positive profits
in equilibrium, but it is their pursuit of profits that drives innovation. In
this framework we distinguish between two sources of growth: (i) un-
bounded accumulation; (ii) adoption of more efficient techniques. The
first is well understood. As for the second, models with increasing re-
turns and monopoly power are traditionally used to study it. Previous
models of growth under constant returns have been unable even to for-
mulate the problem. In this sense, our model is both a contribution to
competitive theory and an alternative to models of increasing returns and
monopoly power.
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1. INTRODUCTION

We reconsider competitive general equilibrium theory with constant re-
turns as a framework for studying technological innovation and its effect
upon growth. As in Aghion and Howitt [1992], Grossman and Helpman
[1991] and Romer [1990] new goods and new technologies are introduced
because of the role of individual entrepreneurs in seeking out profitable op-
portunities. Unlike those models we do not assume monopolistic competi-
tion or increasing returns to scale: the technology set faced by our economic
agents is a convex cone and competitive equilibria are efficient. We suppose
there are a countably infinite number of produceable commodities. Tech-
nological progress takes place because entrepreneurs find it advantageous
to introduce new activities that produce new commodities, and these new
commodities themselves make profitable the employment of other activities
that make use of them. Although, in the ensuing equilibrium, entrepreneurs
do not actually end up with a profit, it is their pursuit of profit that drives
innovation. The result is an abstract, dynamic model in the spirit of Schum-
peter’s Theory of Economic Development in which relative prices are altered
by the action of entrepreneurs and economic growth takes place in a fluctu-
ating as opposed to a balanced way. Despite the existence of infinitely many
commodities and activities, efficient allocations can be decentralized in the
classical way using the first and second welfare thms, and a transversality
condition.

At any point in time a finite number of goods are produced through a
finite number of activities. Barring adoption of new goods or activities, this
defines a neoclassical production economy in the style of McKenzie [1981,
1986], the most popular example of which is the AK model of Jones and
Manuelli [1990] and Rebelo [1991]. The AK model has a simple dynamics:
convergence to the balanced growth path ocurrs in one period, after which
the economy grows at a constant rate. Modulo technical complications, a
similar result holds true for more general, multisector versions of the AK
model such as those of Bewley [1982], McKenzie [1995] and Yano [1984]
in which growth at a constant rate is driven by accumulation of the cap-
ital. In our framework we can meaningfully distinguish between the two
main sources of economic growth: (i) capital accumulation; (ii) adoption
of more efficient techniques and new goods. The first is a well understood
property of economies with linear technologies, to which we have noth-
ing additional to contribute. Contrary to previous models, though, in ours
adoption of more efficient techniques and of new goods is continuously un-
dertaken by entrepreneurs searching for profitable opportunities. The article
concentrates on this largely unexplored feature of the theory: endogenous
technological innovation under perfect competition.
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The most elementary example of our theory is a simple vintage capital
formulation of the AK model, which we discuss in Section 2. This exhibits
the two basic sources of growth mentioned above. However, this type of
model does not allow for the study of important issues associated with in-
novative activity. Three stand out in particular: (1) the relation between
the social value of an innovation and the gains accruing to the innovator;
(2) the pricing of “ideas” or, more generally, of goods for which the initial
set up cost is large compared to the marginal cost of reproduction; and, (3)
long run dependence upon initial conditions, or what we might describe as
“growth anomalies”: that an initially poorer country may in the long-run
wind up using a superior technology, or the possibility that a modest in-
crease in savings may lead to a dramatic increase in growth. Models of
technology adoption with fixed costs or other increasing returns, in which
some economic agents enjoy monopoly power, provide clearcut answers to
these problems. Previous models of growth under constant returns are un-
able even to formulate them. In this sense, our model is both a contribution
to dynamic competitive theory, and an alternative tool to increasing returns
and monopoly power for modelling economic innovation.

The setting we examine has a continuum of infinitely lived identical
households. They derive utility from being able to enjoy a (possibly ever-
increasing) amount of “characteristics”, as in Lancaster [1966] and Stokey
[1988]. There are a finite number of such characteristics and each com-
modity is identified with a vector of them. So while the number of potential
commodities is infinite and viable ones change from period to period, the
number of characteristics they produce is finite and time-invariant. Our
utility functions are standard, additively separable utility functions, with a
period utility a function on a fixed finite dimensional space. In the spirit
of von Neumann we study an environment with an activity analysis tech-
nology. However, as for produceable commodities, the number of potential
activities is allowed to be countably infinite. An activity is characterized
by a pair of input and output vectors and displays constant returns to scale.
The input goods used in production come from output in the previous pe-
riod. The level at which an activity is operated is limited by the availability
of inputs and by aggregate demand and, therefore, relative prices. It is well
known that arbitrary diminishing returns technologies can be approximated
by activity analysis technologies. In addition, activities have a convenient
interpretation as “inventions”, “blueprints” or “ideas” and provide a con-
venient way of modelling changes in the production possibilities set over
time.

We concentrate on the factors determining the adoption of new activi-
ties. We do this because we share the view that “it is entirely immaterial
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whether an innovation implies scientific novelty or not. Although most in-
novations can be traced to some conquest in the realm of either theoretical
or practical knowledge, there are many which cannot. Innovation is pos-
sible without anything we should identify as invention and invention does
not necessarily induce innovation, but produces of itself no economically
relevant effect at all. The economic phenomena which we observe in the
special case in which innovation and invention coincide do not differ from
those we observe in cases in which preexisting knowledge is made use of.”
(Schumpeter [1939, III.A]).

The remaining of the paper is organized as follows. Section 2 introduces
the abstract theory and illustrate its operation by means of the vintage/AK
model. Section 3 decentralizes the optimal allocation, proves the two wel-
fare thms and show, by means of examples, how entrepreneurs compete
and receive their reward. In so doing we also show how new goods, ideas
in particular, are priced and how this may affect the distribution of income.
Section 4 concentrates on growth anomalies and show that joint produc-
tion can play the same role that fixed costs and externalities play in other
models. Section 5 concludes.

2. THE MODEL

2.1. Households. We consider an infinite horizon economy, t = 0,1,2, . . .
with a continuum of homogeneous consumers. Consumers value character-
istics ct ∈ ℜJ

+ where J is the number of characteristics. The period utility
provided by the consumption of characteristics during an interval of time,
is denoted u(ct).

Assumption 1 The period utility u(·) is strictly increasing, concave, smooth,
and bounded below.

Total lifetime utility is given by U(c) = ∑∞
t=1 δt−1u(ct), where 0 ≤ δ < 1

is the common subjective discount factor.
The assumptions that the utility function is strictly increasing and con-

cave are standard. The smoothness of the period utility function is conve-
nient and, for a concave function, not terribly restrictive. The assumption
that the period utility function is bounded below is technically useful. It
insures that U(c) is well defined (although possibly infinite). As we are
concerned with the theory of growth, not the theory of subsistence, we are
primarily interested in the behavior of u(·) for large and possibly growing
quantities of consumption, so the behavior of the utility function near c = 0
is rather secondary to our ends. Moreover, from an intellectual perspective,
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if u(0) = −∞ this has the counterfactual implication that no amount of con-
sumption, however large, will compensate for any probability of c = 0, no
matter how small this probability might be.1

Characteristics ct are acquired through the consumption of commodities.
The potential number of commodities is countably infinite although, at each
point in time, only a finite number of them will be produced or consumed.
The period commodity space consists of the set X ⊆ `∞

+ composed of se-
quences (x1,x2, . . . ,xn, . . .) ≥ 0 for which xn = 0 for all but finitely many n.
The overall commodity space is then

X̃ = ×∞
t=0X

The vector of characteristics acquired by the consumption of a single
unit of commodity n is denoted by Cn ∈ ℜJ

+. These induce a linear map
C : X → ℜJ

+. So, if xt denotes the vector of commodities consumed at time
t the characteristics enjoyed by the agent are ct = Cxt . We also denote
by C j the map C j : X → ℜ+ from commodity vectors to the amount of
characteristic j = 1, . . . ,J acquired.2

2.2. Production. Production takes place through linear activities. An ac-
tivity a is a pair of vectors (k(a);y(a)) where k(a) ∈ X denotes the input of
commodities entering the activity at the end of period t, and y(a) ∈ X the
output of commodities made available by the activity at the beginning of the
following period. During period t + 1 the outputs can either be consumed
or used as inputs for further production.

The set of potential activities is countable and denoted by A .
Assumption 2 A 6= /0.
Any collection of activities A ⊆ A can be simultaneously operated at ev-

ery non negative level λ(a) as long as inputs ∑a∈A λ(a)k(a) are available.
1It is true that the assumption of boundedness below rules out some useful CES utility

functions such as the logarithm. However, for any utility function ũ that is strictly in-
creasing, concave and smooth and any c̃ > 0 we may introduce a new utility function uc̃
that is increasing, concave, smooth and bounded below and such that ũ(c) = uc̃(c) for all
c≥ c̃ > 0. In this way we can incorporate utility functions that behave, for example, like the
logarithm for all except very low levels of consumption. When we use CES period utility
functions in examples below, we will not explicitly introduce this construction, although
it should be understood to be necessary in those cases in which utility would otherwise be
unbounded below.

2The linearity of the mapping from commodity vectors into characteristic vectors im-
plies that we are not allowing for any “bundling” effect. This may seem a restrictive as-
sumption, as many new goods are the result of appropriate bundling of pre-existing ones.
However, we can explicitly model bundling through particular activities, which bundle
a number of commodities into another commodity with superior, or at least different,
characteristics.
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We assume also that A satisfies no-free-lunch and it allows for free dis-
posal.3

Assumption 3 For all a ∈ A if k(a) = 0, then y(a) = 0; if (k(a),y(a)) is
an activity in A with y(a) 6= 0, then the activity (k(a);0) is also in A .

Denote the vector of activity levels at time t as λt ∈ ℜA
+ and define the

aggregate stock of capital at time t as kt = ∑a∈A λt−1(a)y(a)− xt , where xt
is aggregate consumption at time t.

Definition 2.1. A pair λ ∈
(

×∞
t=0ℜA

+

)

,k ∈ X̃ is called a production plan
and x ∈ X̃ is called a consumption plan. Together they determine an allo-
cation.

The allocation λ ∈
(

×∞
t=0ℜA

+

)

,k ∈ X̃ ,x ∈ X̃ is a feasible allocation for
the initial condition k0 if

∑
a∈A

λt(a)y(a) ≥ kt+1 + xt+1

kt ≥ ∑
a∈A

λt(a)k(a),

for all t = 0,1, . . .

We call an activity a ∈ A viable at t for initial condition k0, if there exists
a socially feasible allocation starting from k0 and such that λt(a) > 0. We
denote the set of viable activities at time t from k0 by At(k0). Note that
At(k0) will, in general, be a proper subset of A . This occurs whenever, for
some a ∈ A and some index n denoting a commodity, we have kn(a) > 0
and there is no feasible allocation from k0 such that the vector of outputs
yt−1 has yn,t−1 > 0. Similarly, we call a commodity n viable at time t for the
initial condition k0 if there exists a socially feasible allocation starting from
k0 and such that yn,t > 0. Our analysis is greatly simplified by assuming
that, for any initial vector of capital stocks k0, the set of viable activities is
finite.

Assumption 4 For all k0 ∈ X , At(k0) is finite.

Finally, we assume that it is possible to produce all characteristics in
every period.

Assumption 5 For all k0 there exists a feasible allocation with C jxt > 0
for all 1 ≤ j ≤ J and t > 0.

3Notice that the disposal activities we define next, will never be used as there are no
“bads” in the economy; and we largely ignore their existence in the sequel. However, they
are a convenient way of guaranteeing non-negative prices, which we make heavy use of.
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2.3. Example – Vintage Capital and AK Models. We illustrate the model
with a simple class of economies. There is a single Characteristic, so that
J = 1. The period utility function has the CES form u(c) = −(1/θ)[c]−θ,
θ > 0. There are two types of commodities, a single consumption good and
an infinite sequence of different vintages of capital, indexed by i = 0,1, . . . .
The consumption good may be converted into the desired characteristic on
a 1–1 basis. We write a commodity vector x = (z,κ) where z is a scalar
denoting the consumption good and κ is an infinite vector of capital stocks
of different vintages, and we let the symbol χi denote the vector consisting
of one unit of vintage i capital and zero units of all other vintages. So, for
example, (0,χ2) is a commodity vector with 0 units of consumption, 1 unit
of vintage 2 capital and zero units of everything else.

There are 2 sequences of activities. One sequence of activities, [0,χi;γi,0]
with γ > 1, produces consumption from vintage i capital. Notice that dif-
ferent vintages of capital differ in how effective they are at producing con-
sumption. The second sequence of activities, [0,χi;0,ρχi+1] with ρ > 0,
produces ρ units of vintage i+1 capital from 1 unit of vintage i capital.

The endowment k0 is a single unit of vintage 0 capital. Notice that in this
setup, at time t there can only be capital of vintage t, so that this is a vintage
capital model, as in Solow [1960], Benhabib and Rustichini [1991] or Chari
and Hopenhayn [1991].
We look for a social optimum where capital grows exponentially from one
vintage to the next, and a constant fraction φ of the stock of current vintage
capital is used in the production of the consumption good. Let κtt denote
the amount of vintage t capital at time t. One unit of this capital can be used
to produce γt units of consumption good, yielding a marginal present value
utility of δtγt (φγtκtt)

−θ−1. Alternatively it can be used to produce ρ units of
vintage t +1 capital for time t +1, leading to a present value marginal utility
of ρδt+1γt+1(φγt+1κt+1,t+1)

−θ−1, where κt+1,t+1 = ρ(1− φ)κtt . Equating
payoffs from the two alternative uses of capital we get

ρ(1−φ) =
(

δργ−θ
)1/(1+θ)

Notice that ρ(1−φ) is the growth rate of the capital stock. The correspond-
ing growth rate of consumption is

gc=γρ(1−φ) = (δργ)1/(1+θ)

If δ(δργ)−θ/(1+θ) ≥ 1 this yields an infinite present value of utility; other-
wise total lifetime utility is finite, which is the interesting case.

Notice that while this example is based upon the most primitive form
of technological innovation, in which technology improves in each period
and at a rate that is exogenously fixed, the growth rate of the economy
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is endogenous, since it depends on the rate of capital accumulation. In
particular, if the economy becomes more productive (as measured by ρ or
γ), or more patient (as measured by δ or θ−1), it grows faster.

It is easy to modify this example to endogenize the technology choice. If
we introduce the activity [0,χi;0,βχi] , then it becomes possible to repro-
duce the current vintage of capital. Now there is a choice: reproduce the
existing vintage of capital and remain technologically stagnant, or move on
to the next vintage of capital?

If β > 1 growth, in the sense of an unbounded accumulation of physical
capital and ever growing flows of output, is feasible even in the absence
of technological innovation. Assume, moreover, that β > ρ so that a unit of
current capital is more productive at reproducing itself than at producing the
next quality. In other words, technological innovations are costly. Never-
theless, it is easily seen that when γρ > β the new technology is sufficiently
productive that the only vintage of capital produced is the latest possible
one.

This example shows how to distinguish between the two main sources of
economic growth (Schumpeter [1911, 1934]): (i) unbounded accumulation
of reproducible inputs, due to constant returns to scale; (ii) adoption of more
efficient methods of production, as embodied in new activities or goods. In
this case, when γρ > β the choice between unbounded accumulation and
introduction of a new, superior machine is solved once and for all in favor
of the second option.

3. DECENTRALIZATION

The model presented so far, is one of optimal growth. Much of our in-
terest, though, is in the role played by individual entrepreneurs in inducing
technological change. As usual, these two are tied together by the wel-
fare thms describing how optimal allocations may be decentralized by com-
petitive pricing schemes. After proving the relevant welfare thms for this
model, we examine the role of profits, competition and entrepreneurship in
the introduction of new technologies and commodities.

3.1. Optimality and Supporting Prices.
Definition 3.1. The allocation a∗ =

{

λ∗ ∈ (×∞
t=1ℜA

+), k∗ ∈ X̃ , x∗ ∈ X̃
}

solves
the social planner problem for initial condition k0 if it solves

max
λ,k,x

U(c)

subject to: ct = Cxt , and feasibility of the production plan.

Let pt ∈ℜ∞
+ be the price of commodities at time t and p∈ P =

(

×∞
t=0ℜ∞

+

)

a whole sequence of prices from time zero to infinity. In a competitive
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equilibrium these prices must satisfy two conditions: they should yield zero
profits and support the preferences.

Definition 3.2. Given k ∈ X̃ and λ ∈
(

×∞
t=0ℜA

+

)

the prices p ∈ P satisfy
the zero profit condition if,

pt+1y(a)− ptk(a) ≤ 0,∀a ∈ At(k0), t = 0,1, . . .

with equality if λt(a) > 0. That is profits
πt+1(a) = λt(a) [pt+1y(a)− ptk(a)] = 0

Given prices p ∈ P , the sequence x∗ ∈ X̃ solves the consumer’s maxi-
mization problem if x∗ is the argmax of

max U(c)

subject to : ct = Cxt ,
∞

∑
t=1

ptxt ≤
∞

∑
t=1

ptx∗t

The pair p ∈ P and x∗ ∈ X̃ satisfy the first order conditions for con-
sumer’s maximization if

p∗nt ≥ δt−1Du(Cx∗t )Cn

with equality unless x∗nt = 0.
The pair p ∈ P and k∗ ∈ X satisfy the transversality condition if

lim
T→∞

pT k∗T = 0

The feasible allocation λ ∈
(

×∞
t=0ℜA

+

)

,k ∈ X̃ ,x ∈ X̃ and the price se-
quence p ∈ P are a competitive equilibrium if they satisfy the zero profits
condition and solve the consumer’s maximization problem.

3.2. Decentralization thm. We give a statement of the first and second
welfare thms that fit our purpose. A proof can be found in the Appendix.

Theorem 3.3. Suppose assumptions 1, 2, 3, 4 and 5 hold. Suppose that λ∗,
k∗, x∗ is a feasible allocation given k0 and that ∑∞

t=1 δt−1u(Cx∗t ) < ∞. Then
the following three conditions are equivalent:

(1) λ∗, k∗, x∗ solve the planner’s problem for initial condition k0.
(2) There exist prices p∗ satisfying the zero profit condition and such that

x∗ solves the consumer maximization problem given p∗ with ∑∞
t=1 p∗t x∗t < ∞.

(3) There exist prices p∗ satisfying the zero profit condition such that the
pair p∗ and x∗ satisfies the first order conditions and the pair p∗ and k∗
satisfies the transversality condition.
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3.3. Entrepreneurship, Profits and Competition. Almost always, gen-
eral equilibrium discussions of product innovation begins with some type of
market imperfection, such as monopolistic competition, increasing returns
or externalities. Our theory of innovation abstracts from these imperfec-
tions: entrepreneurs have well defined property rights to the full proceeds
from their innovations; individual production processes display constant re-
turns; there are no fixed costs and no unpriced spillover effects from inno-
vation. Does this lead to an interesting theory of innovation? We believe
it leads to a theory that, while more parsimonious than established ones,
is more versatile and has at least the same amount of explanatory power.
Although the basic ingredients of fixed factors, rents and sunk costs are
familiar from the standard theory of competitive equilibrium, the way in
which they fit together in an environment of growth and innovation is ap-
parently not well understood. A review will serve to explain our claim that
traditional theory can go a long way toward explaining endogenous techno-
logical innovation and entrepreneurial activity.

Consider a single entrepreneur who is contemplating introducing a new
activity, either to produce an existing good more efficiently or to produce a
brand new good. He anticipates the prices at which he will be able to buy
inputs and sell his output, and introduces the innovation if, at those prices,
he can command a premium over alternative uses of his endowment. He
owns the rights to his innovation, meaning that he expects to be able to
collect the present discounted value of downstream benefits.

To see specifically how this works, consider the vintage capital model
from the previous section with γρ > β. Recall, that the growth of con-
sumption was given by gc = (δργ)1/(1+θ). The first order condition is that
the consumer must be indifferent between consuming in period t and t +1.
Consequently, the relative price of the consumption commodity between
two periods must be γρ, and the equilibrium present value price p∗

zt of the
consumption commodity is

p∗zt ∝ (γρ)−t.

A unit of vintage t capital can produce γt units of the consumption com-
modity at time t + 1. The entrepreneur who introduces this new kind of
capital has a claim to its entire output. Competition between different en-
trepreneurs forces profit to zero, so the price of vintage t capital at time t,
p∗κtt , is

p∗κtt =
ρ−t−1

γ
.

An entrepreneur who attempted to reproduce his existing vintage of capital,
would make a negative profit at these equilibrium prices. In this sense, the
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competitive pressure from other entrepreneurs forces each one to innovate
in order to avoid a loss.

As in theories of monopolistic competition and other theories of inno-
vation, new technologies are introduced because of the role of individual
entrepreneurs in seeking out profitable opportunities. Unlike those theories,
the entrepreneur does not actually end up with a profit. Because of com-
petition, only the owners of factors that are in fixed supply can earn a rent
in equilibrium. When a valuable innovation is introduced, it will use some
factors that are in fixed supply in that period. Those factors are likely to
earn rents. If you are good at writing operating systems code when the PC
technology is introduced, you may earn some huge rents, indeed. In prin-
ciple, this model allows a separation between the entrepreneurs who drive
technological change by introducing new activities, and the owners of fixed
factors who profit from their introduction. However, it is likely in practice
that they are the same people.

3.4. Pricing of New Commodities.

3.4.1. Recursive Arbitrage Pricing. We turn now to a broader examination
of pricing. Recall our defn of supporting prices for consumption goods.
We used their characteristics’ content and the marginal utilities of those
characteristics at an allocation x∗ ∈ X̃ . The price pnt of good n at time t,
when x∗nt > 0 is

p∗nt ≥ δt−1Du(Cx∗t )Cn.

These supporting prices can be used to derive “no arbitrage prices” for
new goods that are exclusively consumed: these goods are priced according
to the characteristics they contain. Similarly, goods which produce char-
acteristics and can also be used as inputs, can be priced according to the
characteristics they contain, provided that it is optimal to consume these
goods in equilibrium. Such pricing by arbitrage puts a natural bound on
the equilibrium prices of new goods and, through it, on the size of the rents
accruing to their owners. To summarize:

Theorem 3.4. Let λ∗,k∗,x∗ be a competitive equilibrium supported by the
price sequence p∗. Consider a period t ∈ {1,2, . . .} and a good n which is
viable at t. Let Cn be its characteristic vector and denote with p∗nt the price
of this good at time t. Assume there exists a collection of goods {n1, . . . ,nn′},
which are consumed in positive quantity at time t and have characteristic
vectors Cn j such that

Cn =
n′

∑
j=1

α j ·Cn j , α j ∈ ℜ, ∀ j.
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Then

p∗n,t ≥
n′

∑
j=1

α j · p∗n j,t

with equality if good n is consumed in positive quantity at time t.

Proof: Follows directly from the supporting prices condition. QED

We are left with pure intermediate or capital goods. In the simple case in
which the intermediate good is the sole input of an activity with an output
that can be priced by arbitrage, the zero profit condition provides a straight-
forward pricing equation. In general, though, by means of the zero profit
condition one, can only price bundle of inputs in terms of bundles of out-
puts, as more than one input is used in any given activity and we are also
allowing for joint production. Then a set of simultaneous equations, one for
each activity, must be solved to yield the prices of the intermediate goods.
This is the general case, which needs to be considered in some detail.

Let us assume that in equilibrium all characteristics are consumed. In
period t, consider the vector of Mt inputs κt ∈ ℜMt

+ which are pure interme-
diate goods: that is they can be used as inputs, but do not directly produce
characteristics. Let rt ∈ ℜMt

+ be their price vector, to be determined. De-
note with zt ∈ ℜL

t the vector of inputs which are also consumption goods.
Let their prices be qt ∈ ℜLt

+ , which we take as given in the light of the pre-
vious discussion. Assume At linearly independent activities are operated.
Partition the input vector of activity a as k(a) = (κ(a),z(a)).The zero profit
condition requires that

rt ·κ(a) = (rt+1,qt+1) · y(a)−qt · z(a)

for a = 1, . . . ,At . Clearly, when At ≥ Mt , the solution is a straightforward
matrix inversion. In this case

rt = B1
t rt+1 +B2

t qt+1 −B3
t qt , qt = δt−1Du(Cx∗t )C.

where B1
t ,B2

t ,B3
t can be calculated by matrix inversion. The former equation

can be iterated forward. By making appropriate use of the transversality
condition, we recover the traditional “net present value of future utilities
flow” formula for pricing capital goods

rt =
∞

∑
τ=0

[(

Πτ−1
j=0B1

t+ j−1

)

(

B2
t−1 −B1

t+τ−1B3
t
)

]

qt+τ

where B1
t−1 is understood to be the identity matrix and B2

t−1 is zero.
When At < Mt only At bundles of pure intermediate goods can be uniquely

priced by the same method. This implies a certain “indeterminacy” of indi-
vidual prices. Such indeterminacy concerns only prices of pure intermediate
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goods during the initial period. It is the outcome of the interaction between
the input-output nature of linear activities and the completely inelastic sup-
ply of the pure intermediate goods in any given period.

3.4.2. Example: Arbitrage Pricing. Consider an economy in which there
are two characteristics, so J = 2, three consumption commodities and one
type of labor. The utility function over the two characteristics is a symmet-
ric Cobb Douglas, i.e. u(c1,c2) = (c1)1/2(c2)1/2. The three consumption
goods, z1,z2 and z3, have the following vectors of characteristics:

C1 = [1,0] C2 = [0,1] C3 = [ε,1]; ε > 0
The commodity vector is therefore x = [z1,z2,z3, `]. To economize on no-
tation let χz

i denote the three-dimensional vector with one in the position of
consumption good i and zero elsewhere. There are three potential activities,
one for each consumption good. They are

azi = [0,1;χz
i ,1] i = 1,2,3.

In words: labor can produce any of the three consumption goods, on a 1-1
basis while also reproducing itself.

Let this economy begin with an endowment of 2 units of labor. The set
of initially available activities is A0 = {az1,az2}. So, at the beginning, the
third consumption good is not viable.

As long as At = A0 the optimal production plan is
λ(az1) = λ(az2) = 1.

The supporting prices for the two consumption goods are

pz1,t+1 = pz2,t+1 =
δt

2 , t = 0,1, . . . .

The zero profit condition can be applied to derive the equilibrium prices of
labor

wt+1 = wt − pzi,t+1, i = 1,2; t = 0,1, . . . .

The transversality condition or, which is the same, the intertemporal budget
constraint, yields

w0 =
δ

2(1−δ)
, from which wt =

δt+1

2(1−δ)

Now consider what happens when the set of available activities is enlarged.
Our interest here is not in the transition path and the oscillations in the
value of aggregate output innovations may bring about (which, we note, is
also interesting and left to the reader). We will look directly at the new
steady state. Let AT = {az1,az2,az3}. There are still only two units of labor
available, which implies that, in total, at most two units of the three con-
sumption goods can be produced. In equilibrium, we will have z2 = 0 as the
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third consumption good costs as much labor as the second but provides a
strictly greater vector of characteristics. Hence, after the transition period,
λ(az2) = 0 and the two units of labor are allocated to the production of z1
and z3.

Maximization of steady state utility gives the optimal production plan.
Along this, an amount equal to 1 of the first characteristic and an amount
equal to 1/(1−ε) of the second are produced and consumed in each period
t = T +1,T +2, . . .

λ(az1) =
1−2ε
1− ε

,

λ(az2) = 0,

λ(az3) =
1

1− ε
.

The supporting prices for the three consumption goods, and the labor input
can be computed once again by straightforward application of our decen-
tralization thm. Write η = (1− ε)1/2 < 1. Then, for t = T,T +1, . . . :

pz1,t+1 = pz3,t+1 =
δt

2η
,

wt+1 = wt − pzi,t+1, i = 1,2,3.

The price of the second consumption good is a little tricker, because it is
not actually produced or consumed. From the first order condition for con-
sumers, a lower bound on the price is

pz2,t+1 ≥
δtη
2

,

otherwise consumers would demand to consume good 2. However, the price
could be higher than this, and the activity producing the second good we still
earn a negative profit, so we would still have an equilibrium. If we adopt
the standard convention that for pure consumption goods, price is equal to
the lowest equilibrium price, then the inequality becomes and equality, and
in addition, the arbitrage pricing thm holds. We will adopt this convention
for the remainder of the paper.

From the latter and the intertemporal budget constraint, an explicit wage
rate is obtained in each period

wt =
δt+1

2η(1−δ)
.

At the new equilibrium prices the activity az2 makes negative profits

πz2
t =

δtη
2 −

δt

2η
< 0, as η < 1;

which justifies the choice of λ(az2) = 0.
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Notice also that

pz3,t+1 = ε · (pz1,t+1)+1 · (pz2,t+1)

The price of the third consumption good is a linear combination of the sup-
porting prices of the other two goods, with weights equal to the coordinates
of its characteristics vector.

3.5. Profits Versus Rents. The previous example is a good starting point
for discussing the way in which entrepreneurial innovations generate changes
in the relative prices that may appear as rents to certain factors, how this af-
fects income distribution across factors and in what sense these changes in
relative prices should be considered as the “appropriate” competitive equi-
librium rewards to entrepreneurial activity.

The assumption that there is only one type of labor, which is equally
effective in producing any of the three kinds of consumption, implies that
the social surplus generated by the introduction of the third consumption
good is immediately appropriated by every member of society. The channel
through which this productive surplus flows to the households, is the equi-
librium price of labor which increases from δt+1/2(1− δ) to δt+1/2η(1−
δ). The labor input employed in az3 is perfectly substitutable with the labor
input employed in az1 , hence they must earn the same wage rate and the two
capital goods must also be equally priced.

Nevertheless, the innovation is readily implemented as everyone has a
private incentive to do so and constant returns to scale allow everyone to do
so, arbitraging away profit opportunities.

3.5.1. Example: Profits, Rents and Income Inequality. We now examine
what happens when we have differentiated labor. One type of labor may
benefit from the introduction of a new technology, while the other does not.

Specifically, assume that there are two types of labor, h = 1,2, in equal
amounts, `1 = 1 and `2 = 1. The difference between `1 and `2 is that only the
latter is able to produce z3 Hence `2 can be used in any of the three activities
az1,az2,az3 with unchanged productivity, while usage of `1 is limited to the
first two.

The competitive equilibrium when At = {az1 ,az2} is the same as before:
the two inputs are perfect substitutes, given the viable technology set, and
earn the same income. When the set of viable activities expands to AT =
{az1,az2,az3}, the equilibrium allocation now becomes

λ̃(az1) = 1− ε
2 ,

λ̃(az2) =
ε
2
,
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λ̃(az3) = 1.

This is substantially different from the one we obtained before when the
innovation was implemented. This is because the limited supply of `2 con-
strains the level at which the third activity can be operated. This implies it
is now efficient to operate also the second activity. The different production
plan is reflected in the equilibrium consumption of the two characteristics,
which is now c̃i = 1 + ε

2 for i = 1,2. Equilibrium prices now yield strictly
zero profits for all three activities:

p̃z1,t+1 = p̃z2,t+1 =
δt

2
,

p̃z3,t+1 =
δt(1+ ε)

2
for all t = T,T + 1, . . . . Our thm on the pricing of new goods by arbitrage
holds, and

p̃z3,t+1 = ε · (p̃z1,t+1)+1 · p̃z2,t+1.

The combination of innovation and lack of substitutability between `1

and `2 drastically alters the distribution of income among factors of produc-
tion. The wage of the first type of labor, `1 remains at its pre-innovation
level

w̃1
t =

δt+1

2(1−δ)

while that of `2 increases to

w̃2
t =

δt+1(1+ ε)
2(1−δ)

.

With heterogeneous labor, technological progress alters income distri-
bution and, in this example, increases income inequality. Contrary to the
previous case in which all inputs were perfect substitutes, the introduction
of the new good generates a rent going to the only input which can produce
the new commodity. The effect of this change in relative prices is large, as
it transfers to `2 the total increase in aggregate output ε/2(1−δ). But, this
additional income accruing to `2 is not too large, at least if we look at it
from the point of view of the incentives to innovate. Once the new activi-
ties are discovered the difference between total output with `2 and without
`2 is exactly equal to the incrrease in `2’s income. This corresponds to
full private appropriation of `2 social contribution and generates the correct
incentives for implementing the innovation. Innovating is therefore fully
consistent with perfect competition and entrepreneurial rents are explained
by changes in the relative prices of scarce resources.
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A few extra remarks on the implications of this example may be in or-
der. It should be obvious how to generalize it to the case in which there
are many heterogeneous agents, each one endowed with a vector of differ-
ent skills. Index these skills with s = 1, . . . ,S, and assume technological
progress generates a sequence of consumption goods zi, with i = 1,2, . . . ,
such that technology requires skills of indices s ≥ i to operate the activity
azi . Then one has a model of increasing specialization and division of la-
bor in which the distribution of income changes over time because of the
endogenous flow of economic innovations.

This type of framework is useful to formalize the idea that trade is more
beneficial, and its volume increases, as individuals are made more heteroge-
nous by technological progress. Assume there are heterogeneous individu-
als endowed with the different factors. Due to the assumption of constant
returns to scale, agents are equally well off either altogether or in complete
isolation when only the most primitive technology is available, as anybody
can operate all activities and produce all viable goods. This is not possi-
ble at a more advanced stage when certain goods become available only by
trading with other agents that either have the unique skill required to oper-
ate the new machine or can operate the same machines we can operate but
at a lower unit cost. In this sense, the example shows that, in the absence of
fixed costs, the division of labor and the size of the market are both limited
by the degree of technological progress.

3.6. Pricing of Ideas. It is ordinarily thought that ideas or creative works

are produced with a fixed cost, and that consequently, are inconsistent with
perfect competition. There is a large literature on the appropriate type of
monopoly (copyright or patent) governments should provide to permit the
production of ideas and creations. It might seem then, that the competitive
framework has little to contribute to the understanding of the production
of ideas and creative works. Surprisingly, this is not the case: once we
carefully model the element of time in production, we see that the issue
is not one of fixed cost, but rather a sunk cost, and there is little reason to
believe that competition is unable to deal with sunk costs. The issue, if there
is one, revolves not around fixed cost, but rather around an indivisibility.
As we shall see, even this indivisibility need not pose a problem for our
competitive framework.

Our basic example is motivated by the production of music. The central
idea is that the initial production of a song requires an investment of time
over several periods. Following the initial production, that is, the composi-
tion of the song, the song may be inexpensively reproduced.
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3.6.1. Example – Competition in Ideas. In this example there is a single
characteristic so that J = 1. The period utility function is u(c) =−(1/θ) [c]−θ

with θ > 0. There are four commodities: raw labor, a single consumption
good (music), and two different kinds of capital: intermediate capital (a half
finished song) and final capital (a finished song). The consumption good
may be converted into the desired characteristic on a 1–1 basis. We write
a commodity vector x = (`,z, ι,κ) where the first entry is labor, the second
consumption, the third intermediate and the fourth final capital. Prices are
labelled by the respective commodity superscript. In the initial period the
economy is endowed with one unit of labor and nothing else.

There are two ways of obtaining consumption, together they comprise a
grand total of 6 activities. The first way is from labor directly: one unit
of labor today generates one unit of consumption tomorrow. This may be
thought of as performing an existing not terribly good song. The corre-
sponding activity, activity 1, has the form [1,0,0,0;0,1,0,0].

The second way of obtaining consumption is more roundabout: it uses
labor to obtain a half finished song (the intermediate capital) from which a
finished song (final capital) is derived. The latter is an input both in repro-
ducing itself and in producing the consumption good. We model the former
by specifying activity 2 as [1,0,0,0;0,0,1,0]. Activity 3 uses intermedi-
ate capital to produce final capital, [0,0,1,0;0,0,0,1]. Activity 4 uses final
capital to produce β ≥ 1 units of final capital [0,0,0,1;0,0,0,β]. Activity 5
uses final capital to produce consumption [0,0,0,1;0,ρ,0,0], where ρ > 1.
Finally, activity 6 allows for storage of raw labor from one period to the
next [1,0,0,0;1,0,0,0].

The interpretation is that ρ represents the quality of the song, and β the
(inverse of the) reproduction cost. The latter especially can be a large num-
ber: once the song is written production of additional copies may be rela-
tively cheap.

For ρ and/or β large enough, the roundabout process dominates the direct
one as a way of obtaining consumption from labor. Moreover, if there is
any final capital in the economy the technology of producing final capital
directly from itself dominates the roundabout method of production. In
other words, a song will be written only once, using labor first and then its
first draft (intermediate capital) to obtain a final version in period two. After
that, additional copies of the half-written song (intermediate capital) are not
useful: final capital reproduces itself at a rate β ≥ 1, while consumption
is obtained, at a rate ρ > 1, from that portion of final capital that is not
reproducing itself.

By the same token, activities 1 and 6 are used in parallel only during
the first two periods: to produce consumption for periods 1 and 2and to
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carry over labor from period zero to period one. From period three onward,
consumption produced from final capital, via activity 5, becomes available.
This implies that there are only two important types of production decision.
First, which fraction i ∈ [0,1] of initial labor to divert in the first period
to the roundabout production of capital; and, second, what fraction φ of
final capital to devote to the production of consumption once final capital
becomes available. Naturally, we solve the second problem first.

Equilibrium quantities and prices. Because utility is CES the fraction φ ∈
[0,1] of final capital used to produce consumption does not depend on the
current stock of final capital. As usual, we may solve

β(1−φ) = (δβ)1/(1+θ) .

where β(1− φ) is the long run growth rate of both consumption and final
capital. The later is larger than one whenever β > δ−1, which we assume.
For later use we compute

φ = 1−
(

δβ−θ
)1/(1+θ))

= 1− δ̃β̃−θ.

The restriction βθ > δ, suffices to guarantee that φ ∈ (0,1). Altogether, we
need βθ > δ > β−1, which rules out the case θ = −1.

We now consider the tradeoff between labor used to produce consump-
tion directly and indirectly. Notice that 1− i is the fraction of labor used
to produce consumption directly in the first two periods. Equalizing the
marginal utility of consumption in the first two periods requires c2 = δ̃c1.
Consequently, i = 1− (1 + δ̃)c1 = 1− δ̂c1. Note that c1 units of labor in-
vested in activity 1 in period zero, yield, next period, an equal amount of
consumption, with marginal utility equal to

δ(c1)
−θ−1 .

The fraction i = (1− δ̂c1) yields, in period 3 consumption with marginal
utility equal to

δ3ρ
[

ρφ
(

1− δ̂c1
)]−θ−1

.

Write ρ̃ = ρ
1

1+θ . We have

i
1− i =

δ̃2ρ̃−θ

φδ̂
.

After substitution we get

i =
δ̃2ρ̃−θ

δ̂(1− δ̃β̃−θ)+ δ̃2ρ̃−θ
.
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Again, the restriction βθ > δ suffices to guarantee that the fraction i is in
(0,1).

Next, we compute the supporting prices. In every period, the price of
consumption is proportional to marginal utility. In the first two periods

pz
1 = pz

2 ∝ δ

[

δ̂(1− δ̃β̃−θ)+ δ̃2ρ̃−θ

1− δ̃β̃−θ

]1+θ

.

For the early periods, the zero profit conditions imply

p`
0 = pz

1 = p`
1 = pz

2; pκ
2 = pι

1 = p`
0; pz

3 =
pκ

2
ρ

=
pz

2
ρ

.

For the other periods t ≥ 2, zero profits imply

pκ
t = βpκ

t+1; pκ
t = ρpz

t+1

and, therefore,
pz

t+1
pκ

t+1
=

β
ρ
.

Both the present value price of capital and consumption decreases at a rate
1/β per period, with the relative price determined by the ratio β/ρ. Further,
p`

t = 0 for all t ≥ 2, as it is not needed anymore.
The usual condition βθ > δ is enough to guarantee that both the transver-

sality condition
lim
t 7→∞

pκ
t κt = 0,

and boundedness of total utility along the optimal path
∞

∑
t=1

δt−1u(ct) < ∞

obtain.
Let us now discuss the, implications of the model. To do this, it is useful

to distinguish the case θ ∈ (−1,0] from the case θ > 0.

Elastic demand. This ocurs when θ ∈ (−1,0]. Notice first that the condi-
tion βθ > δ is more restrictive the closer θ is to −1. This makes sense: a
high growth rate of consumption and capital together with high elasticity of
intertemporal substitution in consumption lead to unbounded utility.

We now study the impact of an increase in the value of either ρ or β on
the competitive equilibrium. We are especially interested in the impact of
increasing β. This corresponds to lowering the reproduction cost, as would
be the case, for example with modern digital technology for distributing
music over the internet.
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Consider first the case β → δ1/θ. The share of labor going into the pro-
duction of intermediate capital is

i =
δ̃2ρ̃−θ

δ̂(1− δ̃β̃−θ)+ δ̃2ρ̃−θ

which converges to one, while the price of that labor (and the correspond-
ing consumption) in period one (and two) converges to infinity. This case is
especially significant, because it defies conventional wisdom: as the cost of
reproduction declines, the competitive rents increase, despite the fact that
many more copies are distributed. Yet the basic assumption is simply that
it take some (small) amount of time to redistribute copies, and that demand
is elastic. Notice that music producers and others have argued that with
the advent of a technology for cheap reproduction their profits are threat-
ened and increased legal monopoly powers are required. Yet this model
shows that quite the opposite is possible: decreasing the reproduction cost
makes it easier, not harder, for a competitive industry to recover produc-
tion costs. Notice also that competition (unlike monopoly) does not require
downstream licensing provisions: if each purchaser of music is permitted to
freely reproduce and sell it makes no difference to the competitive equilib-
rium. The only “copyright” protection needed in this competitive industry is
the right of first sale. The value of all subsequent sales is simply capitalized
into the price of the first sale.

Similar comparative statics hold in the case where ρ → ∞, in which case,
again i goes to one and the initial price of labor goes to infinity

Inelastic demand. This case ocurrs when θ ∈ (0,∞). We will examine it
briefly, because it is of less practical relevance and because, in light of the
previous discussion, most results should be obvious.

We now find that as ρ → ∞, i → 0. However, as β → ∞ we have i ap-
proaching a finite limit

lim
β→∞

i =
δ̃2ρ̃

δ̃2ρ̃+ δ̂
.

Even with inelastic demand, as the cost of reproduction falls, rent remains
bounded away from zero.

3.6.2. Indivisibility. Our basic observation is that the fact that production
is roundabout does not imply that there is a fixed cost. The initial capital
must be produced; once it has been produced, production of the consump-
tion good is relatively inexpensive. This means a sunk cost, as the cost of
producing the initial capital is sunk at the time the consumption good is
produced. But it is not a fixed cost, in the sense that we can maintain the
assumption of constant returns to scale. Moreover, the fact that a good is an
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input into its own production, as is the case with the reproduction of music
(or other creations or ideas) has no particular implication for competition.

Our constant returns to scale assumption does, however, have one impli-
cation, which may be thought of as less than realistic. We assume that if
half as much labor is initially invested in the production of the initial song,
it is the same as having half as many songs throughout the lifetime of the
song. It may reasonably be argued that a song produced at half the effort is
much less than half as many songs. This however, and despite appearances,
is not an example of increasing returns to scale, but simply an indivisibility.
That is, if less than a minimum initial amount of labor ι is invested, then
no song is produced at all. (If desired, an upper bound on the amount of
labor can be added as well, but this does not imply an indivisibility, and can
easily be modelled by adding a fixed factor.) Does this not invalidate our
analysis, perhaps necesitating government grants of monopoly to operate
this market?

A moment of reflection will show that our model is still quite relevant.
The mere fact that we introduce an integer constraint into the model does
not imply that it binds. Provided that

i =
δ̃2ρ̃−θ

δ̂(1− δ̃β̃−θ)+ δ̃2ρ̃−θ
≥ ι

our analysis remains unchanged. Moreover, in the case of most relevance
to modern policy discussions – elastic demand and large β – we observed
that i is likely to be quite large. This means that the advent of cheap modern
digital copying makes integer constraints on production of ideas and cre-
ations less likely to bind, and so weakens the case for government enforced
monopoly.

4. PATTERNS OF INNOVATION

The simple vintage capital model exhibits two basic sources of growth:
capital accumulation and the introduction of new technologies. A basic fea-
ture of this model and our framework more broadly is efficiency: the com-
petitive equilibrium maximizes the welfare of the representative individual.
Can such a class of models capture growth anomalies: an initially poorer
country in the long-run using a superior technology, or a modest increase
in savings leading to a dramatic increase in growth? Certainly, models with
fixed costs or other increasing returns can. A country that is far along the
learning curve for an inferior technology may not wish to pay the fixed
cost of introducing a completely different technology. A modest increase in
savings can lower the marginal cost of investment leading to even greater
investment. However, it is by no means the case that increasing returns are
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necessary for such conclusions, and insofar as there is empirical support
for conclusions of this type, it cannot be taken as evidence of increasing
returns to scale.

Our basic observation is that joint production can link the level of current
consumption to the kind as well as level of future capital stock. As a result,
joint production can play much the same role in our theory that fixed costs
do under monopolistic competition: the need to produce a second com-
modity in order to use a particular technology acts as a kind of fixed cost,
although it is consistent with constant returns, competitive decentralization
and efficiency.

4.1. Savings and Innovation. We begin by examining the theoretical re-
lationship between savings and growth. The basic result is that pattern of
technological adoption in competitive equilibrium maximizes the long-term
growth rate for each savings rate. An important corollary is that in the ab-
sence of joint production the technologies that lead to the most rapid rate of
growth must be adopted. This is a kind of generalized convergence result:
even in the presence of endogenous technological innovation all countries
with the same technological possibilities wind up using the same technolo-
gies in the same sequence. After establishing these basic theoretical re-
sults, we illustrate through example how joint production can lead to growth
anomalies through their counterintuitive consequences for savings rates.

Theorem 4.1. If a solution to the social planner problem λ∗,k∗,x∗ is de-
centralized by prices p∗ and a socially feasible plan λ,k,x satisfies

p∗t kt
p∗t (kt + xt)

≤
p∗t k∗t

p∗t (k∗t + x∗t )
then

∑a∈At
p∗t+1λt(a)y(a) ≤ ∑a∈At

p∗t+1λ∗
t (a)y(a)

Proof: From the initial condition p∗0k0 = p∗0k∗0. From the hypothesis on
savings and the zero profit condition p∗t+1y(a)− p∗t k(a), it follows recur-
sively that p∗t kt = p∗t k∗t , that is, a plan that devotes no greater fraction of the
value of output to savings never has a more valuable capital stock. From
the zero profit condition we also have ∑a∈A λt(a)

[

p∗t+1y(a)− p∗t k(a)
]

≤ 0
and ∑a∈A λ∗

t (a)
[

p∗t+1y(a)− p∗t k(a)
]

= 0, from which the conclusion now
follows directly.

QED

This thm shows that higher total output than that from the socially opti-
mum plan is possible only by a higher savings and investment rate. How-
ever, the measure of output is GNP plus the market value of the stock of
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capital after depreciation. Since the measurement of GNP requires some
arbitrary conventions about what constitutes “new” capital, we cannot state
an equivalent result for GNP. Moroever, an equivalent thm cannot hold for
consumption, it would always be possible to consume a great deal in a sin-
gle period by diverting production out of the capital sectors. The next thm
shows, however, that the only way to increase consumption over the social
optimum is to overinvest, or periodically divert production into consump-
tion. In particular, if the investment rate is fixed, then no plan can have a
higher long-run rate of consumption growth than the competitive equilib-
rium plan.
Theorem 4.2. If a solution to the social planner problem λ∗,k∗,x∗ is de-
centralized by prices p∗ and a socially feasible plan λ,k,x satisfies

p∗t kt
p∗t (kt + xt)

≤
p∗t k∗t

p∗t (k∗t + x∗t )
then, for all τ:

∞

∑
τ=T

p∗τxτ ≤
∞

∑
τ=T

p∗τx∗τ

Proof: As in the previous thm, p∗t kt ≤ p∗t k∗t at all t. For any feasible plan,
the zero profit condition implies p∗t+1xt+1 + p∗t+1kt+1 ≤ p∗t kt , with equality
for an optimal plan. Together with the tranversality condition, this implies
that ∑∞

τ=T p∗τxτ ≤ p∗T kT , with equality for the optimal plan. This now yields
the desired conclusion. QED

The previous two thms show that the competitive equilibrium maximizes
the growth rate for a given savings rate. What consequences does competi-
tive equilibrium have for the rate at which new goods and technologies are
introduced? To see how quickly new technologies are introduced, we con-
sider using the same technologies as used in the competitive equilibrium,
but diverting all output into investment. If this is possible, then our next thm
shows that this yields the highest possible level of output at each moment
of time. It follows that no alternative method of introducing new technolo-
gies can yield a higher growth rate, and consequently that the competitive
equilibrium introduces new technologies as quickly as is “desirable.”
Theorem 4.3. If a solution to the social planner problem λ∗,k∗,x∗ is de-
centralized by prices p∗ and if there exists a socially feasible plan λ̂ such
that λ∗

t (a) = 0 implies λ̂t(a) = 0 and satisfies
p∗t ∑a∈A λ̂t(a)k(a) = p∗t ∑a∈A λ̂t−1(a)y(a)

then for any socially feasible plan λ,k,x

∑a∈A p∗t+1λt(a)y(a)≤∑a∈A p∗t+1λ̂t(a)y(a)
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Proof: Consider any feasible plan λ,k,x and a solution to the social
planner problem λ∗,k∗,x∗. Then ∑a∈A λt(a)

[

p∗t+1y(a)− p∗t k(a)
]

≤ 0 and
∑a∈A λ̂t(a)

[

p∗t+1y(a)− p∗t k(a)
]

= 0 follows from the assumption that λ̂ di-
verts all output to investment. The desired inequality ∑a∈A p∗t+1λt(a)y(a)≤

∑a∈A p∗t+1λ̂t(a)y(a) follows.
QED

Like the previous two thms, this thm seems to point in the direction of
convergence. However, it is as significant for what it does not say as for
what it does say. It requires that it be possible to divert all output to in-
vestment using only the activities that are actually used in the competitive
equilibrium. A moment’s reflection will show that with joint production
this may not be possible. To switch output into investment, it is necessary
to replace activities that produce both capital and consumption goods with
activities that produce only capital. If the activities that produce only capital
were not used in the original equilibrium, the conclusion of the thm can fail.
We now explore by example the way in which this type of joint production
can play a role in competitive theory very like the role that fixed costs do
under monopolistic competition.

4.2. Joint Production and Innovation.

4.2.1. Example–Comparative Advantage of Backwardness. We first con-
struct an example in which we compare two countries facing the same tech-
nological possibilities, but with different starting conditions. Our goal is
to give conditions under which the more advanced country, by being locked
into an existing technology, actually grows more slowly in the long-run than
the less advanced country. Notice that if the technology allows the diver-
sion of all output into investment using the competitive activities, such an
example is impossible.

There is one characteristic, preferences are CES, and, as in the simple
vintage capital model, there are no fixed factors. There are three kinds of
commodities: the consumption good, which provides the characteristic on
a one-to-one basis, and two kinds of capital goods, each of which comes
in many different qualities. Denote the infinite vectors containing the qual-
ity ladders for these two kinds of capital goods as κ1 and κ2 and write a
commodity vector as x = [z,κ1,κ2]. We still use the indicator function χi to
represent a unit of quality i capital stock; the position of χi in the commod-
ity vector will tell if it is of type one or type two. So for, example, [0,0,χ3]
is a vector with zero consumption, zero amount of κ1 and one unit of κ2 of
the 3rd quality.
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The set of activities is composed by the following triplets, for i = 0,1, . . .

ai1 = [0,χi,0;γi,χi+1,0], γ > 1;

ai2 = [0,0,χi;µi,0,χi+1] µ > 1;
ai12 = [0,χi,0;0,0,βχ1] β > 0.

The first two activities represent the production possibilities of the first and
second quality ladders; here each kind of capital reproduces itself and pro-
duces either γi or µi units of the consumption commodity at the same time.
We assume that µ > γ so that κ2 is a better kind of capital stock than κ1: as
it moves from one quality to the next the rate at which its ability to produce
consumption increases is higher than that of κ1. Hence, in the long run,
the growth rate of consumption generated by the second quality of capital
will always dominate the one generated by the first quality. There is also a
technology that allows the conversion of the poor capital κ1 into the better
capital κ2. Regardless of what quality of type 1 capital is available, a unit
of κ1 always converts into β units of κ2, of quality i = 1.

We assume that the endowment at time t = 0 is initially 1 unit of quality
i capital of the first type. The only decision is what fraction φ ∈ [0,1] of this
capital to convert to κ2 by means of ai12. Total utility, for given φ, is given
by

−(1/θ)
∞

∑
t=1

δt−1[(1−φ)γt+i +φβµt ]−θ.

The derivative of this expression with respect to φ is
∞

∑
t=1

δt−1[(1−φ)γt+i +φβµt ]−θ−1[βµt − γt+i],

and if any capital is to be converted, it must be that for φ = 0 this expression
is positive, or equivalently

∞

∑
t=1

δt−1[γt ]−θ−1[βµt − γt+i] > 0.

Letting i → ∞ this expression approaches −∞ so if the existing quality of
capital of type 1 is sufficiently advanced, the superior kind of capital, type
2, will never be introduced. On the other hand, for β sufficiently large,
this expression will be positive for i = 0, so that a less advanced starting
point will result in a long run more advanced kind of capital stock and
higher growth rate of consumption forever. An implication of this simple
observation is that both catch-up and jumping ahead phenomena are easily
modelled with constant returns and perfect competition.

This example also answers the question of whether initial conditions may
matter for long-term growth when there is perfect competition. In this
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model, despite assuming that exactly the same technologies are feasible and
that preferences are identical, the different initial conditions lead to diverg-
ing long-term growth rates. It is easy to tilt the example around showing
that, under appropriate circumstances, poorer countries may be the loser
and grow at a lower growth rate for extended periods of time or even for-
ever. For the sake of brevity we will only sketch the intuition here. Assume
that the switch-over activity satisfies

ai12 =

[

0,
χi

β(i−M)
,0;0,0,χi−L

]

.

with β > 1 M,L ≥ 0. That is to say: more advanced countries have lower
transition costs and/or can switch to a more advanced quality of the new
technology. Given a value for the quality index i in the initial period, one
can select triples β,M,L to obtain any pattern of behavior: from immediate
adoption, to fast adoption, slow adoption or no adoption for a number of pe-
riods. The latter technology can be modified further by introducing a labor
saving mechanism and an activity that allows for endogenous growth of the
labor force. Then a less advanced country, with a high enough growth rate
of the labor force, will postpone forever the adoption of the more advanced
type of capital.4

Finally, we should also point out that this example can be generalized to
explain phenomena which, in the literature, are often attributed to the exis-
tence of externalities and market inefficiencies. What we have in mind is the
so-called “path dependence” literature, (see Arthur [1989], David [1985] or
Krugman [1991]). The latter posits that a number of historical episodes5 can
only be explained by appealing to external effects, increasing returns and,
as a consequence, allocational inefficiencies. In Boldrin and Levine [1997]
we study various versions of our abstract model to argue that, as a matter of
theory, those episodes are consistent with constant returns, no externalities
and allocational efficiency.

4.2.2. Example: Role of Investment in Technological Progress. A phenom-
enon related to the issue of whether it is “too expensive” to introduce a new
technology, is the question of the impact of a small change in preferences
on growth. For example, with increasing returns to scale, a small increase
in patience can lead to a large increase in long-run consumption, as the

4For the details of this example, which also generates endogenous and persistent fluc-
tuations in growth rates, see the older version of this paper, Boldrin and Levine [1997].

5The adoption of the QWERTY keyboard over the Dvorak’s, the domination of VHS
over Betamax and of DOS/Windows over Macintosh are some of the episodes most often
referred to.
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small initial increase in savings lowers the marginal cost of further invest-
ment through economies of scale. However, the previous example shows
that in the competitive environment, similar “ratcheting up” effects are pos-
sible when a small increase in the savings rate allows a jump to an entirely
different technology. Once again, increasing returns to scale are seen to
play no essential role in explaining “growth anomalies” such as the depen-
dence of growth rates (and growth rates of productivity and TFP as well) on
saving/investment rates.

Recall from the previous example, the condition
∞

∑
t=1

δt−1[γt ]−θ−1[βµt − γt+i] > 0.

determining whether the new higher growth technology will be introduced.
Notice that for low values of t βµt < γt+i holds, while the opposite is true
for large t, because µ > γ. Suppose that the parameters δ∗,γ∗,β∗,µ∗ are
such that the overall expression is equal to zero. Notice that the long run
growth rate of the “old technology” economy is γ since capital simply pro-
duces its next generation plus an ever increasing amount of consumption γi.
Similarly, the growth rate of the “new technology” economy is µ. Conse-
quently, a small increase in the subjective discount factor δ from a number
slightly smaller than δ∗ to a number slightly larger than δ∗ causes the long-
run growth rate to discontinuously change from γ to µ.

5. CONCLUSION

This paper studies a model of perfect competition in which endogenous
technological innovations and entrepreneurial activity make sense. It is
based on the idea that innovative activity takes places because, under com-
petitive pricing, entrepreneurs appropriate the social value of their innova-
tions. Changes in the relative prices of inputs and outputs are the channels
through which the increase in social welfare is funnelled into private bene-
fits. Technological change is neither exogenous to individual choices, nor
constant, nor dependent upon the existence of external effects, increasing
returns or monopoly power. It is the product of tireless search for profitable
opportunities on the part of a large number of agents. It depends upon initial
conditions and relative prices. Its adoption changes relative prices, income
distribution, relative factor productivities and growth rates. In this sense, we
provide here a theory of Total Factor Productivity, as advocated in Prescott
[1998].

In this paper our focus has been on the theoretical determinants of the
introduction of new technologies. Key to our finding is the role of joint
production, which plays a role in competitive theory similar to that of a
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fixed cost in the theories of monopolistic competition. When capital and
consumption are jointly produced, as for example when the production of
consumption goods leads to new human capital, then initial conditions mat-
ter in the long run. As a consequence of the importance of initial conditions,
we can have poverty traps, catch-up and falling-behind types of phenomena.

An important extension of this work is to adapt our examples to show
how growth can be cyclical and that a balanced growth rate arises only
as a statistical average among different, oscillatory, growth rates. To us
this suggests, among other things, that a theory of long-run and short-run
oscillations in aggregate and individual factors productivity may be built
within the general framework we have proposed here.

We also show how competitive equilibrium prices ideas and inventions,
and more generally, goods for which prototypes are produced only once
followed by reproduction at low and constant marginal costs. It does not
appear that fixed costs do or should play any role in this analysis. If there is
an issue, it is with the indivisibility of ideas, and we point out that despite
this indivisibility, perfect competition may well be able to deliver the goods,
that is, a steady supply of new inventions, creations and ideas.

6. APPENDIX

We provide here the proof of the decentralization thm

Theorem 6.1. Suppose assumptions 1, 2, 3, 4 and 5 hold. Suppose that λ∗,
k∗, x∗ is a feasible allocation given k0 and that ∑∞

t=1 δt−1u(Cx∗t ) < ∞. Then
the following three conditions are equivalent:

(1) λ∗, k∗, x∗ solve the planner’s problem for initial condition k0.
(2) There exist prices p∗ satisfying the zero profit condition and such that

x∗ solves the consumer maximization problem given p∗ with ∑∞
t=1 p∗t x∗t < ∞.

(3) There exist prices p∗ satisfying the zero profit condition such that the
pair p∗ and x∗ satisfies the first order conditions and the pair p∗ and k∗
satisfies the transversality condition.

Proof: First we observe that if the zero profit condition holds then the
transversality condition is true if and only if ∑∞

t=1 p∗t x∗t < ∞. Indeed from
the zero profit condition

p∗0k∗0 − p∗T+1k∗T+1 =
T
∑
t=0

(

p∗t k∗t − p∗t+1k∗t+1
)

=
T
∑
t=0

p∗t+1x∗t+1

(3)implies(2) Suppose that these first order conditions and the tranver-
sality condition are satsified. Under Assumption 4 there is an Nt(k0) such
that if n > Nt(k0) the commodity n is not viable. Let Nt ≥ Nt(k0). Define
the T truncated utility function by U T (c) = ∑T

t=1 δt−1u(ct). Consider the
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problem of maximizing of U T (c)+ p∗T+1k∗T+1 subject to

ct = Cxt ,
T
∑
t=1

p∗t xt + p∗T+1kT+1 ≤
T
∑
t=1

p∗t x∗t + p∗T+1k∗T+1.

and xn = 0 for n > Nt . The truncated first order conditions
p∗nt ≥ δt−1Du(Cx∗t )Cn with equality unless x∗nt = 0

are sufficient for a solution to this problem. Since this is true for arbitrar-
ily large Nt , x∗ is also a solution to the truncated problem where xn ∈ X .
Suppose that x∗ does not solve the infinite problem. Then there is a budget
feasible x̂ that yields more utility. The budget feasibility of x̂ implies that
the pair {x̂0, x̂1, . . . , x̂T}, kT+1 = 0 is budget feasible in the truncated con-
sumer problem. Since x∗ is the optimum in the truncated problem, this in
turn means that

UT (Cx∗)+ p∗T+1k∗T+1 ≥UT (Cx̂)
However, UT (Cx∗)→U(Cx∗) and from the transversality condition p∗T k∗T →
0. It follows that

U(Cx∗) ≥ limsup
T 7→∞

UT (Cx̂),

which is the desired contradiction.
(2) implies (1) This is a standard first welfare thm proof.
(1) implies (3) Suppose that λ∗, k∗, x∗ is a solution to the planner prob-

lem for the initial condition k0. For pT ∈
(

×T
t=0ℜ∞

+

)

, let pT (k0) denote
the vector of prices of viable commodities only. Observe that λ∗, k∗, x∗
solves the problems of maximizing U T (Cx) subject to social feasibility and
kT+1 ≥ k∗T+1. Since by Assumption 4 At(k0) is finite this is a finite di-
mensional problem over the viable commodity space. By standard finite
dimensional arguments, we can find a price vector pT (k0) over the viable
commodities so that the first order conditions are satisfied for those com-
modities and the zero profit conditions are satisfied. Note that the zero
profit conditions need only hold for viable activities, and such activities can
only use and produce viable commodities in positive amounts, so the prices
of non-viable commodities are irrelevant to the zero profit condition. For
non-viable commodities, we simply define

pT
nt = δt−1Du(Cx∗t )Cn.

Our proof will be complete if we can show that as T → ∞, pT has a limit
point (in the product topology), and that this limit point satisfies the tranver-
sality condition. Since the prices of non-viable commodities do not depend
on T they obviously converge. The components of pT

0 corresponding to
non-zero elements of k0 are bounded above by some B0 and below by zero.
From the zero profit condition, it follows that for each t there is a number Bt
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such that the largest component of pT
t corresponding to a commodity viable

at time t is less than or equal to ∏t
i=0 Bi. This shows the existence of a limit

point p∗ in the product topology; by construction, this limit point satisfies
the first order conditions; it remains to show it satisfies the tranversality
condition. Recall that it is enough to check that ∑∞

t=1 p∗t x∗t < ∞ . From the
first-order condition, this will be true if

∞

∑
t=1

δt−1Du(Cx∗t )Cx∗t < ∞.

Since u is concave and bounded below by u(0) we have that u(Cx∗t ) ≥
u(0)+Du(Cx∗t )Cx∗t , and so

∞

∑
t=1

δt−1Du(Cx∗t )Cx∗t ≤
∞

∑
t=1

δt−1 [u(Cx∗t )−u(0)] < ∞

QED
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