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1. Introduction

Groups do not act as individuals - as Olson (1965) and others have emphasized incentives within

groups matter. Here we study self-sustaining group discipline that overcomes free-riding problems

through costly peer punishment. We investigate schemes that might be adopted by a collusive

group to minimize the cost of enforcing actions which are not Nash equilibria in the absence of

punishment. We use the model to study how the strength of a group, measured by its members'

contributions to a public good, depends on the size of the group.

We describe a group which plays an underlying base game - this might involve contribution to a

public good, voting, or any other sort of interaction. Following the game, discipline occurs through

a series of audit rounds during which signals of past play are observed and punishment may be

issued for observed violations of social norms. The design of the audit rounds is endogenous and is

treated as a mechanism design problem for the group. We investigate the type of play that can be

sustained in the primitive round and the corresponding enforcement costs.

In this model punishment is intrinsically recursive, for failure to punish is itself punishable. This

condition has been found crucial also in �eld work such as that conducted by Elinor Ostrom and

reported for instance in Ostrom (1990) and Ostrom, Walker and Gardner (1992), or the empirical

work of Coleman (1988). Indeed, from a conceptual point of view punishment cannot have a de�nite

end. As Juvenal asked in the 2nd Century CE, �Quis custodiet ipsos custodes?� - who will guard

the guardians? The answer is that they must guard each other, and for that to be possible the

game should not have a de�nite ending.3 To take this into account the free-riding problem is often

embedded in a repeated game model where group actions and (possibly) punishments occur each

period, as for example in Pecorino (1999), Wolitzky (2013) or in the experimental work of Fehr

and Gachter (2000) and monitoring and communication has often been studied in this setting, for

example in Ben-Porath and Kahneman (2003). The repeated game approach has generally been

taken in the network literature, for example by Vega-Redondo (2006) or Balmaceda and Escobar

(2014).4 In practice, however, punishment is usually distinct from the actions of a group, and

often it is also the case that the basic actions are not repeated, as for instance when members of a

group should provide e�ort to induce government to implement a policy measure favorable to the

group. This leads us to consider the setting of initial base game in which group members take a

one-shot action that has both individual and group costs and bene�ts, followed by a repeated and

open-ended game of auditing and punishment. The latter is e�ectively a �closure of social network�,

as described by Coleman (1988). In the peer punishment game group members repeatedly audit

each other and determine punishments for signals of bad behavior.5 While this does not describe

3A recent paper by Rahman (2012) also raises the issue of who will guard the guardians. However his model is a
static model with a principal who has unlimited commitment power and rewards agents for monitoring each other. It
is very unlike the Kandori (1992) setting we adopt which also answers the question of who will guard the guardians,
but, because players are peers, in a way that addresses the issue as originally raised by Juvenal.

4The latter paper is oriented in a somewhat di�erent direction than the others being aimed in part at understanding
Burt (1995)'s intuition about structural holes.

5Our auditing procedure is simpler than that considered in the auditing literature, for example Border and Sobel
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the method used to provide incentives in all groups at all times, the setting is a relevant one for

many of groups of practical interest: depending on the group, these punishments for violating social

norms may range from social ostracism, as in the case of unions, to physical abuse as in the case

of criminal gangs. We should emphasize that while the simple version of the model is a highly

structured model of auditing, neither the audits nor the way in which they are conducted needs

to be highly structured. When we consider extensions we show that the basic results are robust

to the way in which the audits are conducted, and in many practical circumstances audits may be

of a relatively informal nature - perhaps more akin to gossip than to audits conducted by trained

auditors.

The use of punishments and rewards in one game to induce desired behavior over actions in a

di�erent and earlier game is not a new idea. It is the basis of the e�ciency wage model of Shapiro

and Stiglitz (1984), and also of models of collusion proofness as described, for example, by La�ont

(1999). Generally speaking, these models have not had costs associated with enforcement - in the

e�ciency wage model there is generally no punishment on the equilibrium path, while in the La�ont

model punishments and rewards take the form of transfer payments so that there is no net cost.

In practice however, there is punishment on the equilibrium path - as in La�ont - but practical

forms of punishment, such as exclusion, generally have a net cost associated with them. Moreover

it is generally costly to observe the signals that are needed to trigger punishment. In our setup

we allow positive punishment costs on the equilibrium path, along which enforcement of �rst stage

punishments is carried out through subsequent rounds of costly auditing rather than through a

commitment to carry out punishments.

Our model also formalizes the type of community enforcement through ostracism and other

measures as documented in many studies such as Ostrom (1990) and Ostrom, Walker and Gardner

(1992) or Baron (2010). Another class of models has been studied theoretically in which cooperation

in a group is induced not through observation of other members but through contagion: if anybody

deviates from the social norm this can trigger a chain of punishments that results in a social

collapse. The idea originates in Ellison (1994) and plays a key role in the analysis of Ali and

Miller (2010), Deb and González-Díaz (2010) and in the community enforcement of Acemoglu and

Wolitzky (2015).6 While no doubt part of social norms are enforced through the threat of social

collapse, in practice it seems that targeted punishments are more common. We should also point

out the implication originally noted by Ellison that with noise when the group is large a high

enough probability of punishment to deter deviation leads very quickly to collapse. This we do not

generally observe in large organizations or societies.

The model of repeated auditing that we analyze is a simple adaptation of the Kandori (1992)

model of social norms in which the punishers are distinct from the aggrieved.7 We adapt the

(1987) and Di Porto, Persico and Sahuguent (2013), because no signal is observed prior to conducting the audit.
While those papers focus on a one-shot audit, our focus here is not on optimal methods of conducting audits, but
rather how group members monitor each in a repeated setting.

6They also consider enforcement by specialists.
7See also Takahashi (2010) for a more recent variation of the Kandori model with a more limited information
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model in two dimensions: �rst we allow for noisy signals - this leads to essentially the strongly

symmetric computation of Abreu, Pearce and Stachetti (1986).8 Second, we view the problem as

one of mechanism design for the group: it has control over the basic design of the punishment game,

which consists in determining the probability with which the game ends and no further punishments

take place. In e�ect the discount factor becomes endogenous and subject to group choice. The

basic trade-o� is that if the game ends too quickly insu�cient incentives to avoid free-riding are

provided; on the other hand if it ends too slowly too much e�ort is spent in auditing and too

much utility is lost from punishments. The other parameters of the peer-punishment game - the

basic technology of punishment and monitoring - we view as economic fundamentals over which

the group has no control. In this setting our main results characterize the optimal choice for the

group. We show �rst that the optimal discipline scheme maximizes the probability of the game

ending each period subject to incentive compatibility. We then study primitive actions, and show

that if auditing costs are small the group will accept the possibility of large gains to deviations in

exchange for high utility in the base game.

We use the model to examine how peer monitoring may work in the context of a group that

faces a linear public good contribution problem. We show that if the social bene�t of the public

good is low, then - regardless of the availability of peer discipline technology - in small groups full

e�ort is provided but in large groups no e�ort is provided.9 If, on the other hand, the bene�t is large

then peer discipline makes all the di�erence. That is, when peer discipline is not feasible it remains

the case that only small groups provide e�ort. However when peer discipline is feasible full e�ort

provision is induced regardless of how large the group is. Thus peer discipline is needed to make

large groups e�ective. This is important because it explains the fact that even in very large groups

such as farm lobbies and voting constituencies we observe substantial contributions to public goods.

This result is more subtle than the simple Olson (1965) theory that group e�ectiveness diminishes

with size. We discuss further the relation of our results to Olson's insights at the end of Section 4.

The theory we describe is relatively easy to apply to more complicated settings involving the

interaction of several groups. The general conceptual issues of equilibrium with interacting collusion

groups have been examined in Dutta, Levine and Modica (2015), while a simpli�ed version of the

peer monitoring described here has been used in Levine and Mattozzi (2015) to study the classical

Palfrey and Rosenthal (1985) model of voter participation.

We initially present a stripped down version of the model and derive the optimal schemes for

the group. The stripped down model has a number of limitations. After studying the application

we remove many of these restrictions. We show how to incorporate renegotiation, how to allow for

general matching technologies, how to introduce social costs of punishment, how to endogenize the

structure.
8The structure of peer games is not subject to the types of complications found in more general repeated games

as described in Fudenberg Levine and Maskin (1994) and Sugaya (2011).
9As will be clear from the model, peer discipline is feasible if adequate punishments and signals about members

behavior are available and auditing costs are su�ciently low.
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costs of auditing and punishment, and how to incorporate general signaling technologies.

2. The Basic Peer Discipline Model

We �rst introduce a streamlined model, deferring extensions to Section 5. There are N > 2

identical members i = 1, . . . , N of a collusive group. The group plays a primitive game at t = 0

which members choose actions ai ∈ A, where A is �nite, individual payo�s being u(ai, a−i). Given

a common action of the other members aR we let u(ai, aR) = u(ai, aR, . . . , aR). To avoid triviality

and since we have allowed only a �nite number of (possibly mixed) actions, we assume that there

is at least one symmetric Nash equilibrium of this game, that is, there exists an aR ∈ A such that

for all ai ∈ A we have u(ai, aR) ≤ u(aR, aR).

The focus of this paper is on sustainability of common actions aR taken at time t = 0 through

an incentive compatible peer monitoring scheme. We assume that the group has access to a peer

discipline technology - based on Kandori (1992)'s information systems approach - in which members

may audit each others behavior, the audit possibly resulting in a punishment for the auditee. The

model accounts for the self-referential nature of punishment equilibria by supposing that the group

plays a potentially unlimited number of audit rounds t = 1, 2, . . .. Peer monitoring takes place over

a simple circular network in which each group member is connected with the member to his left

and member 1 is connected to member N . Each auditor chooses whether or not to conduct the

audit.

The super-game starts with an initial �meeting� in which group members agree on a scheme

to maximize the utility of group members - this makes sense since members are ex ante identical,

so there is no con�ict of interest. At this meeting the group agrees on a common action aR

to be played at t = 0, and probabilities δt, t = 0, 1, . . . that an audit round will take place at

t + 1 (with probability 1 − δt the game ends after round t). We assume that auditing rounds

take place su�ciently quickly so that there is no discounting beyond that induced by δt. Initially

and for concreteness we assume a simple stylized network structure governing auditing - we show

subsequently that our results are robust to the speci�cation of the auditing network. Speci�cally,

if an audit round takes place members are matched in pairs with auditor i matched according to

the network structure with auditee j = i− 1. In the initial audit round an auditor who carries out

an audit assesses whether the auditee played the chosen action aR. In subsequent audit rounds an

auditor who carries out an audit assesses whether the auditee conducted the audit in the previous

round. These assessments are based on a noisy signal seen only by the auditor about the auditees

choice in the previous round.

The signal technology is as follows. Actions in the primitive game generate a signal zj0 ∈ {0, 1}
about the play of member j where we interpret 0 as �bad� and 1 as �good.� The probability of bad

signal about j is π0(a
j , aR). In subsequent rounds, depending on whether j in the role of auditor

conducted the audit or not, another bad-good signal zjt ∈ {0, 1} is generated. If the audit was

conducted then the bad signal is generated with probability π; otherwise with probability πp ≥ π.
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When an audit is conducted and the signal zjt−1 ∈ {0, 1} of the behavior of the auditee in

the previous round is 0 (interpreted as �bad� behavior) the auditee is punished. This punishment

in�icts an exogenously determined cost on the auditee of P > 0 while the cost to the auditor of

conducting the audit is θtP ≥ 0, for t ≥ 1; we assume that θt = θ for t > 1.10

To emphasize how this works: in the initial audit round the auditor assesses whether the auditee

played the �correct� action. In subsequent audit rounds the auditor assesses whether the auditee

conducted the audit in the previous round.

Since the group is bound by incentive constraints only incentive compatible plans can be chosen.

De�nition 1. A plan aR, δt|∞t=0 is peer feasible if the individual strategies of playing aR in the

primitive round and always conducting an audit in the audit rounds is a Nash equilibrium11 of the

super-game induced by the continuation probabilities δt.

At the initial meeting the group may either choose a peer feasible plan, or it may choose a

static Nash equilibrium of the primitive game together with δ0 = 0. Among these plans the group

chooses the plan that maximizes the ex ante expected utility of the members (who, recall, are ex

ante identical).

3. Enforceability, Peer Feasibility, and Optimal Group Plans

We study the optimality of group plans in three parts. First, we analyze which actions can

be enforced by some punishment scheme. Second, we analyze which actions are peer feasible

and the corresponding cost minimizing continuation probabilities. Finally we use these results to

characterize the optimal group plan.

3.1. Enforceability

Recall that in the initial primitive round the probability of a �bad� signal 0 is π0(a
i, aR) and

utility is u(ai, aR). Following the repeated game literature such as Fudenberg Levine and Maskin

(1994) we say that the initial common action aR is enforceable with respect to punishment P

if punishing the bad signal makes aR incentive compatible. This means that for all ai we have

u(aR, aR)− π0(aR, aR)P ≥ u(ai, aR)− π0(ai, aR)P . If for all ai we have u(ai, aR)− u(aR, aR) ≤ 0

we reiterate that aR is static Nash. This case is not terribly interesting since no peer discipline is

required to implement it as an outcome.

10We allow the costs of the initial audit θ1 to be di�erent than that of subsequent audits θ since determining
compliance in the primitive game is di�erent than determining whether an audit was conducted. Note that there is
no loss of generality in taking the audit cost proportional to the punishment cost as θ1, θ are arbitrary.

11We use Nash equilibrium because this is an in�nite horizon game with private information, where re�nements such
as subgame perfection have no bite and the de�nition and analysis of more suitable re�nements such as sequentiality
is complicated. However for this class of games re�nements do not matter in the generic case in which both signals
have positive probability. In this case every information set is reached with positive probability. Hence the Nash
equilibrium problem of �o� the equilibrium path play� does not arise. It follows that sequential equilibrium or even
stronger re�nements such as extensive form trembling hand perfect equilibrium are identical to Nash equilibrium.
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We now characterize enforceability. Let σ0(a
i, aR) ≡ π0(a

i, aR) − π0(aR, aR) be the bad signal

increase. Observe that if σ0(a
i, aR) > 0 we can rewrite the incentive constraint as

G̃(ai, aR) ≡ u(ai, aR)− u(aR, aR)

σ0(ai, aR)
≤ P

so that the gain function G̃(ai, aR) measures the smallest punishment needed for incentive com-

patibility. For σ0(a
i, aR) < 0 the inequality is reversed and the gain function measures the largest

punishment compatible with incentive compatibility. In case σ0(a
i, aR) = 0, so that ai is indistin-

guishable from aR, and u(ai, aR) = u(aR, aR) we de�ne the gain function to be G̃(ai, aR) = 0 since

there can be no gain from deviating. If ai is indistinguishable from aR and u(ai, aR) 6= u(aR, aR) the

gain function is de�ned as G̃(ai, aR) = [u(ai, aR)−u(aR, aR)] ·∞ - if the utility increase is negative

incentive compatibility is not an issue; if it is positive incentive compatibility is impossible. It is

then easy to check that

Lemma 1. The group action aR is enforceable with respect to P if and only if

max
ai:σ0(ai,aR)≥0

G̃(ai, aR) ≤ P ≤ min
ai:σ0(ai,aR)<0

G̃(ai, aR)

If max{0,maxai:σ0(ai,aR)≥0 G̃(ai, aR)} ≤ minai:σ0(ai,aR)<0 G̃(ai, aR) de�ne

G(aR) ≡ max{0, max
ai:σ0(ai,aR)≥0

G̃(ai, aR)}

otherwise set G(aR) =∞. 12

3.2. Peer Feasibility

We �rst work out the optimal decision making of the group concerning implementation of a

particular action aR. In Section 3.3 below we address the question of which aR to choose. De�ne

the audit signal increase σ = πp − π and notice that by assumption this is non-negative. The next

result says that optimal implementation of action aR requires minimizing the probabilities δt while

preserving incentive compatibility.

Theorem 1. If the action aR is not static Nash it is peer feasible for some δt|∞t=0 if and only

P ≥ G(aR), θ1/σ ≤ 1 and θ/σ < 1, in which case the group optimally chooses the termination

probabilities

δ0 = G(aR)/P, δt = θt/σ for t > 0

The corresponding utility attained by each member is

U = u(aR, aR)−
(
π0(a

R, aR) + θ1 +
θ1(θ + π)

σ − θ

)
G(aR).

12Note that minai:σ(ai,aR)<0 G̃(ai, aR) ≥ 0 if and only if σ(ai, aR) ≥ 0 for all ai with u(ai, aR)− u(aR, aR) > 0.
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Proof. Let πt = π0(a
R, aR) if t = 0 and πt = π otherwise. When the representative member plays

aR initially and then always chooses to perform the audit he gets utility

U = u(aR, aR)−
∞∑
t=1

(
t−1∏
τ=0

δτ

)
(θt + πt−1)P,

which is strictly decreasing in δt for each t.

Incentive compatibility in the primitive round is covered by Lemma 1 with P = δ0P ; this

gives G(aR) ≤ δ0P ≤ minσ0(ai,aR)<0 G̃(ai, aR). From the �rst inequality and δ0 ≤ 1 we then get

the condition P ≥ G(aR); and since the group utility requires us to minimize δ0, we see that

δ0 = G(aR)/P . This also implies δ0P ≤ minσ0(ai,aR)<0 G̃(ai, aR).

Consider next the decision by auditor i not to audit in round t. The only consequences of

this decision are the saving of the cost θtP and the increased probability of punishment in the

subsequent round δtσP. The incentive constraint is therefore δtσ ≥ θt. Since δt ≤ 1 this gives the

condition θt/σ ≤ 1. If the incentive constraint holds with strict inequality, then we should lower

δt, so the optimum requires this constraint hold with exact equality, that is, σδt = θt.
13 Hence

δ1 = θ1/σ and for t > 1 we have δt = θ/σ. If the cost of auditing is to be �nite, the latter must be

less than one, giving the condition θ/σ < 1 . Substituting in we �nd

U = u(aR, aR)− δ0P

(
(π0 + θ1) + (θ1/σ)

[ ∞∑
t=1

(θ/σ)t−1 (π + θ)

])
,

adding up the geometric series, and substituting for δ0P using δ0 = G(aR)/P from above we get

the result.

Remark. Observe that we can always increase δ slightly during the audit stage and obtain an

equilibrium that is strict in all the audit rounds - the price is a small reduction in group welfare.

Such an equilibrium can be more robust as it does not require individuals to �make the right choice�

when indi�erent. In the �rst period, by Theorem 1 we can achieve strict incentive compatibility if

and only if max{0,maxσ0(ai,aR)≥0 G̃(ai, aR)} < minσ0(ai,aR)<0 G̃(ai, aR).

3.3. The Optimal Group Plan and Comparative Statics

To analyze the choice of primitive group action aR observe that for given aR that satis�es

P ≥ G(aR), θ1/σ ≤ 1 and θ/σ < 1, so is peer feasible, Theorem 1 tells us that the optimum

peer-feasible utility U has a very simple form. De�ne v(aR) = u(aR, aR) − π0(a
R, aR)G(aR) to

be the initial net utility of each member from playing aR net of the minimum cost of punishment

required to make aR incentive compatible. De�ne the unit cost of auditing as

C = θ1 +
θ1(θ + π)

σ − θ

13As is usual in the optimal punishment literature the key step is identifying the incentive constraint that binds.
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Then the optimum peer feasible utility U attainable from action aR for each member is

U = v(aR)− CG(aR)

In addition to choosing for each aR an optimal audit procedure, the group must also choose an

optimal aR. One possibility is always to choose the static Nash equilibrium of the primitive game

that maximizes group utility with corresponding audit cost of zero. If C is very large this will

certainly be optimal. For smaller C the group may instead wish to choose a U -maximizing peer

feasible plan. The next result says that this entails larger v(aR) and G(aR) as C declines. That is,

as the unit cost of auditing declines, the optimal action in the primitive game has larger gains to

deviation but higher net utility.

Theorem 2. As C increases the optimized values of v(aR) and G(aR) weakly decrease.

Proof. While this follows from the general monotone selection theorem of Milgrom and Shannon

(1994) the direct proof is simple and we include it for completeness. Suppose C ′ > C and that

v′, v and G′, G are the respective values of v(aR) and G(aR) corresponding to optimal aR for C ′

and C respectively. Then v − CG ≥ v′ − CG′, v′ − C ′G′ ≥ v − C ′G. From the �rst inequality

v − v′ ≥ C(G − G′) and from the second inequality v − v′ ≤ C ′(G − G′). Since C ′ > C these

inequalities imply G ≥ G′. Rewriting the inequalities as (1/C)(v − v′) ≥ G − G′ and from the

second inequality (1/C ′)(v − v′) ≤ G−G′ shows that v ≥ v′ as well.

Finally, we can do comparative statics by analyzing the properties of C: it is evident that C is

increasing in θ1, θ, π, 1/σ. In particular if the group could choose between di�erent auditing tech-

nologies, it would prefer technologies that have low cost θ1, θ, a low failure rate on the equilibrium

path π, and a high ability to discriminate cheating as measured by the auditing signal increase

σ. Note that even with perfect monitoring - π = 0, πp = 1 - the unit cost C = θ1/(1 − θ) is still

positive provided that there is a cost of conducting the initial audit, and this is true even if the

cost of subsequent audits θ is zero. On the other hand, if the cost of conducting an initial audit θ1

is zero then the unit cost of auditing is also zero. In the case C = 0 the group will simply choose

the action aR that maximizes v(aR), the initial net utility.

The message here is the same as that in much of the moral hazard literature: more precise

monitoring leads to higher-powered incentives, an explicit statement of which can be found, for

example, in Demougin and Fluet (2001).

4. Group Size and the Strength of Groups

A particular focus of the study of groups is their ability to overcome public goods problems,

as for example in Olson (1965)'s work on individuals who voluntarily participate in special interest

groups. For example the group might be attempting to corrupt a politician as in Ades and DiTella

(1997) or Slinko and Yakovlev (2005), or it could be a consortium bidding on a contract. The more

participation a group can get from its members the stronger it will be. Here we apply the model
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of peer discipline to a prototypical model of a group facing a public goods contribution problem.

In this context we look at the relation between group size and e�ectiveness - a classical problem

studied by Olson (1965) and others - and we show how the size of a group interacts with peer

discipline to determine group strength.

We consider as a base game a simple linear14 public good contribution game: each group member

chooses between two actions ai ∈ A = {0, 1} representing the utility cost of contributing to the

public good. If a contribution is made, that is ai = 1, this results in a bene�t to the group of

s > 1 divided equally among all N members. In this case aR = 0 means that nobody except for i

contributes while aR = 1 means that everybody except for i contributes. So u(ai, aR) is given by

aR = 0 aR = 1

ai = 0 0 s− (s/N)

ai = 1 (s/N)− 1 s− 1

Our central interest is to establish the conditions under which the full contribution action aR = 1

is sustained. Notice that the condition for full contribution in the primitive game is N ≤ s, while

for N > s there is no contribution. We assume that neither π0(a
i, aR), π nor πp depend on the size

of the group - in other words we assume that auditors are close to the auditees regardless of size.

The general picture is described in the following

Theorem 3. Abbreviate σ0 = σ0(0, 1) = π0(0, 1)− π0(1, 1). De�ne

N(s, P ) =


s/
(

1− σ0(s−1)
π0(1,1)+C

)
for s ≤ 1 + [π0(1, 1) + C] ·min{P, 1/σ0}

s/ (1− σ0P ) for s ≥ 1 + [π0(1, 1) + C]P, P < 1/σ0

∞ for s ≥ 1 + [π0(1, 1) + C]/σ0, P ≥ 1/σ0

.

For N ≤ s the group contributes full e�ort, requires no costly auditing, and achieves utility U =

u(1, 1) = s − 1. For s < N ≤ N(s, P ) and θ1/σ ≤ 1, θ/σ < 1 the group employs costly auditing,

contributes full e�ort and achieves utility

U = s− 1− [π0(1, 1) + C][1− (s/N)]/σ0.

For N > N(s, P ) or θ1/σ > 1 or θ/σ ≥ 1 the group contributes no e�ort and achieves utility U = 0.

Proof. The gain to cheating is u(0, 1)−u(1, 1) = 1− (s/N) from which we see that if s ≥ N there is

no gain to cheating and voluntary contributions sustain an equilibrium with utility u(1, 1) = s− 1.

Otherwise we have GR ≡ GR(aR) = (1 − (s/N))/σ0 and require P ≥ GR and θ1/σ ≤ 1, θ/σ < 1.

The �rst of these conditions can be written as s ≥ N(1− σ0P ). In addition if the group is to wish

14The idea that value generated by group e�ort is linear in group e�ort is consistent with the continuous approach
to special interest groups argued by Becker (1983) and Tullock (2001), but is not appropriate for a setting such as a
winner take all election where there is a sharp distinction between winning and losing.
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to cooperate then it must be that the optimum peer feasible utility is U as given in the statement.

Since s < N , the condition for willingness to audit is U ≥ u(0, 0), which then reads

s− 1− [π0(1, 1) + C][1− (s/N)]/σ0 ≥ 0.

Starting with the constraint U ≥ u(0, 0): if s ≥ 1 + [π0(1, 1) + C]/σ0 this holds for all N .

Otherwise it holds with equality when

N = NU (s) ≡ s/
(

1− σ0(s− 1)

π0(1, 1) + C

)
,

and we may de�ne NU (s) =∞ when s ≥ 1 + [π0(1, 1) +C]/σ0. For smaller N the constraint holds

strictly, and for larger N it is violated. The function NU (s) is non-decreasing in s.

Turning to the constraint P ≥ GR: if P ≥ 1/σ0 this always holds. Otherwise it holds with

equality when

N = NG(s, P ) ≡ s/ (1− σ0P ) ,

and we may de�ne NG(s, P ) =∞ when P ≥ 1/σ0. For smaller N the constraint holds strictly, and

for larger N is is violated. The function NG(s, P ) is non-decreasing in s.

It follows from this that peer discipline is feasible and optimal exactly when

s ≤ N ≤ min{NU (s), NG(s, P )} = N(s, P ).

Since NU (s), NG(s, P ) are weakly increasing in s so is N(s, P ). It remains to explicitly compute

the minimum.

Take �rst the case where P ≥ 1/σ0 so that NG(s, P ) = ∞. In this case N(s, P ) = NU (s).

This covers the cases s ≥ 1 + [π0(1, 1) + C]/σ0, P ≥ 1/σ0 and s ≤ 1 + [π0(1, 1) + C] min{P, 1/σ0},
P ≥ 1/σ0.

Finally suppose that P < 1/σ0. Observe that for s = s = 1 + [π0(1, 1) +C]P we have NU (s) =

NG(s, P ), and for s ≶ s̄ it is NU (s) ≶ NG(s, P ). This covers the remaining cases.

What does this theorem tell us? If peer discipline is not available because θ1/σ > 1 or θ/σ ≥ 1

there is a pure public goods problem, and the group contributes full e�ort as long as individuals have

adequate incentive to provide e�ort - that is N ≤ s. Once the group becomes too large the group

ceases to provide e�ort. If peer discipline is available, that is θ1/σ ≤ 1, θ/σ < 1, then the group

continues to provide full e�ort in the range s < N ≤ N(s, P ). In case N(s, P ) is �nite, qualitatively

this is similar to the pure public goods case - peer discipline can merely sustain contribution with a

larger group size. The comparative statics of N(s, P ) have the monotonicity properties we expect:

lower cost of peer discipline as measured by smaller π0(1, 1) + C and larger σ0 increase the size of

group that can sustain e�ort.

Of particular interest is the case in which N(s, P ) =∞. This requires that the punishment be

adequately large for the given initial signal quality - P ≥ 1/σ0 - and that s be su�ciently large:
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s ≥ 1 + [π0(1, 1) + C]/σ0. This case is useful to understand what happens with very large groups.

For back of the envelope purposes it might be useful to think of the large groups of farmers across

countries. Here we have a problem similar to the paradox of voting: it is not very plausible that

the individual lobbying e�orts of a single farmer increase the chances of farm subsidies enough to

be individually worthwhile. Moreover, in countries of di�erent sizes the absolute number of farmers

varies considerably. If the peer discipline technology and the bene�t per farmer of farm subsidies

s are roughly the same in the di�erent countries, and if N(s, P ) is �nite, then in countries with

few farmers N ≤ N(s, P ) we should �nd lobbying e�ort and farm subsidies, while in countries

with many farmers N > N(s, P ) we should �nd no lobbying and no farm subsidies. However,

we �nd that countries of wildly di�erent sizes often have similar levels of subsidies. For example

(OECD 2010 data): the EU and Canada have roughly similar per capita GDP, similar democratic

political systems and both have about a 2% share of agriculture in GDP. As a percentage of output

value farm subsidies in Canada are 16% and the EU 20%. Yet as measured by either GDP or

population the EU is more than ten times the size of Canada. The case where peer discipline leads

to N(s, P ) = ∞ covers this facts: full e�ort is provided independent of group size, so no matter

the number of farmers or size of country, the amount of per capita public good achieved should be

roughly similar - as it is.

This argument seems to go against the Olson (1965) idea that larger groups should be less

e�ective. Can we reconcile our peer discipline model with the Olsonian observation that a small

group is often more e�ective than a large group? Here we think of farmers as a small group,

compared to the large group of non-farmers. So far we have been considering increasing group size

while keeping the per-capita size of the bene�t s �xed. This makes sense if we want to compare, say,

farm lobbies between di�erent countries of di�erent sizes. The Olson experiment though compares

di�erent lobbies of di�erent sizes within the same country competing for the same prize. To wit:

if the entire group contributes e�ort, the total bene�t to the group of size N is S = Ns. Here

we are asked to keep S �xed - that is, the value to all farmers of getting subsidies is (roughly)

equal to the value to all non-farmers of not paying subsidies. Hence S is �xed and the same for

groups of di�erent sizes, so the per capital bene�t s = S/N depends on group size. For the few

farmers the sF corresponding to receiving farm subsidies is large; for the many non-farmers the

sNF corresponding not paying for farm subsidies is small. Hence, even if both groups have access to

exactly the same peer discipline technology, we can have sF ≥ 1 + [π0(1, 1) +C]/σ0 for farmers and

sNF < 1 + [π0(1, 1) + C]/σ0 for non-farmers. In this case, farmers will be e�ective and contribute

full e�ort, but non-farmers will be ine�ective and not contribute e�ort.

We should remark on another implication of the model with respect to group size: the total

e�ort of the group increases with the size of the group unless N(s, P ) is �nite and the group becomes

too large. This is because a larger group has more resources - that is, there are more members to

provide full e�ort. This anti-Olsonian implication has been noted in other models such as Esteban

and Ray (2001) in which there is a mix of private and public incentives.
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5. Extensions and Limitations

We have analyzed a very spare and stripped down model, which necessarily has many limitations.

Here we discuss these limitations and the relevant extensions of the basic model. We should

emphasize that we do not explore changing the basic structure of the model: ex ante identical

members and sequential auditing. Without ex ante identical members we do not have a clear

theory of what agreement they might reach, and with more complicated dynamic auditing we

cannot apply the simple Kandori (1992) repeated game social norm computations. We also do not

consider more complicated dynamic games a group might play: for example repeated primitive

games and reputational e�ects. In addition to the extension considered in this section, the Web

Appendix shows how to extend to model to multiple signals in place of 0-1 signals.

5.1. Renegotiation

If the group can collude initially, why can it not do so later? If the group can costlessly collude

after the primitive game has been played it will always cancel the audits, since ex post these are

costly and the actions in the primitive round can no longer be changed. This makes peer discipline

impossible ex ante since everybody will know that the agreement to audit is not credible. Hence for

peer discipline to take place it must be costly to collude in order that the peer discipline mechanism

has commitment value.

It is sensible to assume that collusion is costly because in practice it is. In the simple model

we described the initial collusion as taking place in a �meeting.� This might be a single face-to-

face meeting of the entire group, or some more decentralized or less personal means of reaching

an agreement. We know that explicit discussions are important in practice since they are ex-

plicitly forbidden under anti-trust law yet never-the-less people are sometimes caught engaging in

these discussions. From a theoretical point of view we know that common knowledge is central to

Nash equilibrium, and again from practice we know that common knowledge is reinforced through

discussions and meetings - looking the other person in the eye both �guratively and actually.

This leads us to introduce a simple model of costly collusion: we assume that collusion can take

place only if a �meeting� is held, and this meeting has a per participant cost - the cost of both

organizing and attending the meeting. There are two types of meetings that are important: the

initial meeting to decide the collusive scheme and subsequent meetings after the primitive round

in which the original scheme may be renegotiated. These subsequent meetings may be held at the

end of any round. We assume that each type of meeting has a cost associated with it, and that the

meeting is held if it is in the best interest of the group to meet at that time.

Formally we assume that the initial meeting has a cost per member κ0 associated with it, and

that if the meeting does not take place, a default outcome aR0 occurs. Since there is no meeting

to agree on collusion, it is natural to assume that aR0 is static Nash, and if there are several static

Nash outcomes, for simplicity we assume that the group can - even without a meeting - coordinate

on a most favorable static Nash equilibrium.
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If a meeting is held subsequent to the initial primitive round the agenda is clear: the remaining

audits and punishments should be dropped and the game ended. Ex ante at the initial meeting

and prior to the initial round it is in the interest of the group to avoid this outcome, since it will

undermine the collusive peer discipline arrangement. Hence the group may undertake activities to

make subsequent meetings more costly and di�cult - to take an extreme example, at the end of

the initial meeting everybody may be required to smash their cell phones with a hammer as part

of the agreed upon action aR. To model this, we assume that the cost per member of subsequent

meetings may depend upon the action, that is, has the form κ(aR). In other words, some actions

(�smash the cell phones�) may make subsequent meetings more costly.

We say that an action aR is renegotiation feasible if it is peer feasible, if the optimal member

utility from implementing aR is at least κ0 and if at the end of any round the expected cost of

auditing and punishment is no greater than κ(aR). In other words, it pays to hold the initial

meeting and does not pay to hold subsequent meetings.

In e�ect our original simple model assured renegotiation feasibility by implicitly assuming that

κ0 = 0 and that κ(aR) =∞. We now consider the general case. In the Appendix we prove

Theorem 4. If the action aR is not static Nash it is renegotiation feasible if and only if P ≥ G(aR),

θ1/σ ≤ 1 and θ/σ < 1 (as in Theorem 1), and additionally the three following inequalities are

satis�ed:

u(aR, aR)−
(
π0(a

R, aR) + C
)
G(aR) ≥ u(aR0 , a

R
0 ) + κ0(

π0(a
R, aR) + C

)
G(aR) ≤ κ(aR)

θ + π

σ − θ
(max{θ1, θ}P ) ≤ κ(aR).

The �rst condition is that the bene�t of introducing a peer enforcement scheme must be su�ciently

large that it is worth holding a meeting in the �rst place. The second condition is that it must not

pay to hold a meeting after the primitive round, the third condition is that it not pay to hold a

meeting after the �rst or subsequent audit rounds.

To understand this result, note that the third inequality is di�erent in nature than the other

two. In particular the left-hand-side θ+π
σ−θ (max{θ, θ1}P ) does not depend upon aR so that no matter

how good u(aR, aR) and how small a positive number is G(aR) this condition may none-the-less

fail. If κ(aR) = κ independent of the action taken, so that di�erent actions do not have di�erent

commitment value, then this condition either fails for all aR or is satis�ed for all aR and is indepen-

dent as well of N . In this sense the third inequality represents an absolute requirement similar to

the peer feasibility conditions θ1/σ ≤ 1 and θ/σ < 1. Notice also that the inequality seems also to

restrict the size of P - but this is deceptive, because it really restricts θP, θ1P which is to say, not

the size of the punishment, but rather and more intuitively, the cost of auditing. If this is too great

relative to the cost of having a meeting then no renegotiation feasible arrangement is possible.

The �rst inequality embodies two conditions. The �rst is that G(aR) should not be too large,

the second is that u(aR, aR)−u(aR0 , a
R
0 ) should be fairly large. Both of these strengthen an already

13



existing requirement for a peer discipline implementation to be desirable in the sense of being better

than static Nash.

The fact that κ(aR) depends on aR obviously introduces a bias in favor of actions for which

κ(aR) is large: all other things equal such actions are more likely to be renegotiation feasible.

The Public Good Contribution Case

A good way to appreciate the content of the theorem is to apply it to our public good contribu-

tion example. Assume for simplicity that P > 1/σ0 and s ≥ 1+[π0(1, 1)+C]P so that N(s, P ) =∞.

As a benchmark case suppose that all meetings have the same cost: that is, κ0 = κ(aR) = κ. For

contribution enforced by peer discipline to be the group optimum we need as before the peer

feasibility conditions θ1/σ ≤ 1 and θ/σ < 1. The third condition for renegotiation feasibility is

θ + π

σ − θ
(max{θ, θ1}P ) ≤ κ,

while since GR(aR) = (1− s/N)/σ0 the second condition is

[π0(1, 1) + C][1− s/N ]/σ0 ≤ κ

for which in turn a su�cient condition is [1 + C]/σ0 ≤ κ. Both of these conditions are absolute in

the sense that they depend neither on aR nor on N . If κ is large enough both are satis�ed.

On the other hand, large κ goes against the �rst constraint which may be written as

s− 1− [π0(1, 1) + C][1− s/N ]/σ0 ≥ κ.

In the original model this condition with κ = 0 was exactly the one needed for willingness to audit, so

that this condition simply strengthens the existing condition. It is no longer enough for the bene�t

of auditing to be positive: it must be larger than κ, the cost of calling the meeting. We can also give

a su�cient condition for this constraint that does not depend on N : s− 1− (π0(1, 1) + C) /σ0 ≥ κ.
If s is su�ciently large then this condition is satis�ed and the group colludes on full contribution

for all N . However, without the availability of peer punishment they make the full contribution

only if N ≤ s. The key qualitative feature of the peer discipline model of public goods contribution

is preserved in the face of renegotiation even when the cost of holding all meetings is the same.

5.2. Generalized Matching Procedures

The basic model supposes a very simple procedure in which each member j is audited by the

member i = j + 1 to his right and in which all the audits end at the same time as determined

by 1 − δt. However, more elaborate procedures are possible. We now describe a broader class of

procedures and show that the results based on simple matching are robust.

Let I = {1, 2, . . . , N} be the set of members. In general we can consider a matching of auditees

to auditors described by maps mt : I → I with the convention that if a member is assigned to

audit himself mt(j) = j then no audit takes place. Moreover, we require that if i /∈ mt(I) then
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mt+1(i) = i, that is, once a player does not conduct an audit, he cannot be audited next period as

there is nothing to audit. A generalized matching process is then a random choice of mt where the

probability distribution over matchings depends on the history of previous matchings. A generalized

matching process thus incorporates the random rule for ending the game. The simple base case

is that if the game has not ended mt(j) = j + 1 while if the game has ended mt(j) = j. With

generalized matching the group in its initial meeting does not choose ending probabilities but rather

a generalized matching process - which necessarily also incorporates the ending procedure.

Notice that we allow the possibility that an auditor is assigned to audit more than one auditee.

In this case we assume that each audit has a separate cost, that the auditor makes a separate

decision about whether to conduct each audit, and that in the next period if he is audited his

auditor must separately audit each of his audits. This means that from the perspective of incentive

compatibility each audit is a separate unit and it makes no di�erence if two audits are conducted

by the same or by di�erent members.

The key idea is the standard mechanism design procedure of standing the problem on its head.

Any generalized matching procedure induces initial probabilities pi0 that member i will be audited

and depending on the history for each assigned match ij at time t probabilities pijt that the audit

decision will in turn be audited the next period.

Our basic conclusion is that allowing generalized matching procedures makes essentially no

di�erence:

Theorem 5. If the action aR is not static Nash and it is peer feasible then pi0, p
ij
t is optimal if and

only P ≥ G(aR), θ1/σ ≤ 1 and θ/σ < 1 and

pi0 = G(aR)/P, pijt = θt/σ.

The corresponding optimal utility for a member is

U = u(aR, aR)−
(
θ1 + π0(a

R, aR) +
θ1(θ + π)

σ − θ

)
G(aR).

Proof. This is essentially an observation about the proof of Theorem 1. Obviously the incentive

constraints must be satis�ed with inequality pi0 ≥ G(aR)/P, pijt ≥ θt/σ. Reducing the probability

of audits reduces the expected number of audits in all future periods and so reduces the cost of

audits, hence optimality requires that the incentive constraints hold with exact equality. This of

course gives exactly the same expected cost of audits as in Theorem 1.

There is one proviso: we may wish to consider only matching procedures such as the simple one

with the property that no pair of members is assigned to repeatedly audit each other. The reason

is that when two members repeatedly audit each other they more or less costlessly �meet� and so

will collude to avoid the audits. This is why we have assumed from the beginning of the paper that

N ≥ 3.
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Notice that there are many generalized matching procedures that are not optimal, some ob-

viously so, such as ones that result in the game ending in �nite time. But besides the simple

procedure, many other procedures are possible. For example we might in the initial period only

audit only a fraction φ of the population and in subsequent periods audit all the auditors. Here

the probability of being audited after the primitive round is δ0φ. Hence the incentive compatibility

condition is δ0 = GR/(φP ). This means that we must require φ ≥ GR/P - that is, depending on

the gain to deviating and the available punishment, we cannot choose φ too small.

5.3. Punishment Cost Spillover and Choice of Punishment

We have assumed that the cost of punishment is borne only by the �guilty� party. In practice,

however, the cost of punishment may spill over to other group members. The most common forms

of punishment - some sort of exclusion, ranging from being denied the opportunity to participate in

group events to imprisonment - will generally harm group members as well as the designated target

of the punishment. For example, if Tim is punished by being excluded from joining the group at

the bar after work then David su�ers the loss of Tim's companionship. Or it may be that David

feels sorry for Tim. We refer to this a punishment cost spillover.

We have also assumed that there is only one possible kind of punishment - generally there are

degrees of punishment, for example a member may be excluded for a week or for a month, or may be

partially excluded. The choice of type of punishment is closely linked to the spillover cost because

di�erent types of punishments will generally have di�erent spillover costs - and in particular we

might expect that very severe punishments may have disproportionately high spillover costs.

We �rst formally introduce the notion of spillover cost. In doing so we need to specify which

group members su�er from the spillover. The consequence of spillover to the auditor is more costly

to the group than the cost of spillover to other members: it increases the incentive of the auditor

to not conduct the audit so as to avoid the spillover cost. Consequently if di�erent group members

su�er di�erent levels of spillover costs, the group will want to appoint as auditor the member who

least su�ers these costs. For simplicity we assume that it is possible to appoint an auditor who

su�ers no spillover cost and that the spillover costs are equally divided among the remaining group

members. Hence when punishment is imposed on i there is a spillover cost of ψP divided equally

among group members other than i and his auditor i− 1. Since the punishment occurs only with

probability πt the expected cost is ψPπt. Since each member pays a share 1/(N − 2) of the cost of

the N − 2 matches in which he is neither auditee nor auditor this is also the per capita expected

spillover cost, leading to a simple change in the computation of the optimal utility:15

U = u(aR, aR)−
(
θ1 + π0(a

R, aR)(1 + ψ) +
θ1(θ + π(1 + ψ))

σ − θ

)
G(aR).

15It is easy to treat also the case in which the spillover costs are shared equally among all members including the
auditor. In this case the cost to the auditor of conducting the audit is (θt + ψπt/(N − 1))P , and the equation below
should be adjusted accordingly. Note however that if the group is relatively large, ψπt/(N − 1) will be very small
compared to θt, so that the adjustment will not make much di�erence.
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Note that the spillover costs do not necessarily have to be positive, although we would generally

want to assume that ψ > −1 so that the punishment does not bring a net bene�t to the group.

Negative spillover cost corresponds to punishments that involve a transfer payment. The most

obvious example is the payment of a �ne, but there are other possibilities. For example, punishment

might involve a demotion, in which case another member of the group might bene�t from being

promoted to �ll the vacant spot. Since lower spillover costs are better, punishments involving

transfer payments are highly desirable if they are feasible - in the repeated game setting with

imperfect private information as in Fudenberg Levine and Maskin (1994) it is the use of transfer

payment punishments that gives rise to near e�ciency as the discount factor approaches one.

Having formally introduced spillover costs to the model we no examine the implications of having

available many types of punishments of varying severity. If the audit costs θ1P, θP and spillover

costs ψP are �xed then we see as we increase P that θ1, θ, ψ decline and this lowers the cost of

discipline and raises group utility. If, as we expect, increasing the level of punishment raises these

costs then there is a trade-o� that we now spell out. For simplicity we examine the case in which

we may choose a punishment technology P1 in the initial period and a technology Pt = P in the

subsequent periods t > 1, while we hold �xed the audit cost At = θtPt and allow the spillover costs

ψPt to vary. This also re�ects our intuition that the cost of auditing (for a �xed signal technology)

should not much vary with the cost of punishment and that as a practical matter the reason for

using more moderate punishments - community service rather than incarceration rather than the

death penalty in the case of penal systems - is that the spillover cost of more severe punishments

is disproportionately large.

Formally, we assume that the trade-o� between punishment size and spillover cost is captured

by an increasing continuous function ψP = f(P ) de�ned on 0 ≤ P ≤ P where P is the worst

possible punishment. In general since randomization is possible we expect f to be convex, but this

is not essential. For any choice of P the audit costs A1 and At = A, t > 1 are held �xed implicitly

allowing θt to vary so that θt = At/Pt . In the Appendix we prove

Theorem 6. If there is some technology pair ψ1P1 = f(P1), ψP = f(P ) with corresponding

θ1 = A1/P1, θ = A/P that satis�es the constraints 0 ≤ P1, P ≤ P , P1 ≥ G(aR), P ≥ A1/σ and

θ/σ < 1 then the problem of maximizing

U = u(aR, aR)−
(
θ1 + π0(a

R, aR)(1 + ψ1) +
θ1(θ + π(1 + ψ))

σ − θ
P

P1

)
G(aR)

subject to those constraints has a solution and it is an optimal peer discipline scheme.

6. Conclusion

We have developed a model of group behavior with explicit account of individual incentives

inside the group. In a public goods contribution example we argue that the model gives more

appropriate predictions with respect to large groups than a voluntary contribution approach.
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Not all enforcement mechanisms are peer discipline mechanisms. Hierarchical schemes - such

as those in the principal-agent model - are commonplace. Yet peer discipline mechanisms play

a role even within hierarchical organizations. Indeed, it is not always the case that social norms

within a hierarchical organization are enforced because the executive has the right to punish his

subordinates, who have the right to punish their subordinates and so forth. The key point is that -

regardless of contracts and laws - the �right� to punish exists because other people recognize it as a

right and it is part of a social norm that itself is enforced through peer punishment. On the other

hand social norms and peer enforcement mechanisms in hierarchical organizations sometimes serve

to subvert rather than enhance the goals of the hierarchy. Several examples help clarify the point.

Consider �rst the very hierarchical military. Here is a quotation from Senator James Inhofe:16

�Army and Marines always feel that when we're out there, we're not doing it for the �ag or the

country; we're doing it for the guy in the next foxhole.� That is - in combat - despite the hierarchical

structure and severe punishments for cowardice - there are many opportunities to shirk. The

enforcement mechanism - the reason soldiers risk their lives when there is little chance that their

superiors will �nd out - is the enforcement by �the guy in the next foxhole.� In the military peer

enforcement reinforces the hierarchical organization.

In the other direction, the �code of blue silence� is an unwritten rule that police o�cers do not

report the misconduct of other o�cers. The following quotation from Frank Serpico testifying before

the Knapp Commission on police corruption in New York City in 1971 reveals the enforcement

scheme: �an honest police o�cer can[not] act...[against corruption] without fear of ridicule or reprisal

from fellow o�cers.� Notice that peer monitoring must play an essential role in this - if an o�cer rats

on another o�cer, other o�cers (the auditors) must report this to the police force more generally.

We think we can be reasonably con�dent - based on our avid watching of movies about police

corruption if nothing else - in asserting that failure to report a �rat� is itself subject to reprisal. In

this case the peer discipline mechanism serves to subvert the hierarchical organization.

We do not believe that the simple model here sheds light on all issues involving all kinds of

organizations - rather we think it provides a useful and simple tool for studying peer enforcement

and one that is compatible with more elaborate models that - for example - combine hierarchical

and other kinds of enforcement schemes with peer punishment schemes.
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Appendix

Theorem. [4 in text] If the action aR is not static Nash it is renegotiation feasible if and only if

P ≥ G(aR), θ1/σ ≤ 1 and θ/σ < 1 and

u(aR, aR)−
(
π0(a

R, aR) + C
)
G(aR) ≥ u(aR0 , a

R
0 ) + κ0(

π0(a
R, aR) + C

)
G(aR) ≤ κ(aR)

θ + π

σ − θ
(max{θ1, θ}P ) ≤ κ(aR).

Proof. The �rst part simply reiterates the conditions for peer feasibility. The three displayed

inequalities are the additional constraints that arise from costly meetings. There are two conditions:
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it must be worth calling the initial meeting, and it should not be worthwhile to hold a subsequent

meeting.

It is worth calling an initial meeting to implement aR if and only if the utility U from the

implementation exceeds the default utility u(aR0 , a
R
0 ) by at least κ0, that is,

u(aR, aR)−
(
π0(a

R, aR) + C
)
GR − u(aR0 , a

R
0 ) ≥ κ0.

Rearranging this gives the �rst displayed inequality of the theorem.

Second and �nally it must not be strictly worth calling a meeting at the end of any round.

There are three possibilities: to call a meeting at the end of the primitive round 0, at the end of

the �rst round 1, and all subsequent rounds are identical, so if it is worth calling a meeting we

can assume that it is done right away - that is, at the end of round 2. The bene�t of any of these

meetings is saving the expected cost of auditing and punishment conditional on the current round.

In the primitive round we already know this to be

K0(a
R) =

(
π0(a

R, aR) + C
)
GR.

At the end of the �rst round we may compute

K1 =

∞∑
t=2

(
t−1∏
τ=1

δτ

)
(θt + πt)P = δ1

(
1 +

δ

1− δ

)
(θ + π)P =

θ + π

σ − θ
(θ1P )

and at the end of the second round

K =
∞∑
t=3

(
t−1∏
τ=2

δτ

)
(θt + πt)P =

δ

1− δ
(θ + π)P =

θ + π

σ − θ
(θP ).

Hence the additional necessary and su�cient conditions are K0(a
R) ≤ κ(aR) which is the second

displayed inequality of the theorem and K1 ≤ κ(aR),K ≤ κ(aR) which combine to form the third

displayed inequality of the theorem.

Theorem. [6 in text] If there is some technology pair ψ1P1 = f(P1), ψP = f(P ) with corresponding

θ1 = A1/P1, θ = A/P that satis�es the constraints 0 ≤ P1, P ≤ P , P1 ≥ G(aR), P ≥ A1/σ and

θ/σ < 1 then the problem of maximizing

U = u(aR, aR)−
(
θ1 + π0(a

R, aR)(1 + ψ1) +
θ1(θ + π(1 + ψ))

σ − θ
P

P1

)
G(aR)

subject to those constraints has a solution and it is an optimal peer discipline scheme.

Proof. First with respect to the constraints we have de�ned θ1 = A1/P1. This means that θ1/σ ≤ 1,

the old form of the constraint of adequate punishment for the �rst period audit, would be P1 ≥ A1/σ

which is not correct since the punishment for failure in the �rst period audit is now P not P1. Hence

we explicitly write out the constraint P ≥ A1/σ. Second, the objective function is the correct one:
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the group is not constrained to choose the same technology in the �rst period as in subsequent

periods, nor since the incentive constraint is di�erent in the initial period than in subsequent

periods, will it generally wish to do so. However, we have imposed the constraint that after the

initial audit of play in the primitive game a single technology be chosen for use in all audits of

audits. Notice that G(aR) = δ0P1 while Pt = P may not equal P1 for t > 1, which explains the

factor of P/P1 in the cost of auditing for t > 1.

The only issue in the maximization is the constraint θ/σ < 1. Notice that the solution for

P,ψ = f(P )/P, θ = A/P is independent of the rest of the problem and simply minimizes

J =
θ + π(1 + ψ)

σ − θ
P

subject to 0 ≤ P ≤ P , P ≥ A1/σ and θ/σ < 1, so the issue is the existence of a solution of this

problem. Since A1 > 0 we have P bounded away from zero, so J approaches +∞ at a rate bounded

below independent of the other parameters as θ/σ → 1 . It follows that if there exists a feasible

solution to the constraints we can �nd an ε > 0 so that the optimum subject to the constraint

θ/σ ≤ 1− ε is also the optimum subject to constraint θ/σ < 1. Basically it is not a very good idea

to choose a P so low that θ ends up very close to σ.

If the probabilities of punishment on the equilibrium path π0(a
R, aR) = π = 0 then the spillover

cost does not matter, and again it is best to choose the largest possible punishment to minimize θ1, θ.

Otherwise the solution may be a more moderate punishment. As we noted in the proof the solution

for P,ψ is independent of the rest of the problem. This has two consequences. First, it is not a good

idea to choose P very large when π > 0 since then the function J to be minimized approaches +∞.

Indeed, if A = 0 so that audits other than the initial one are costless, we should choose P as small

as possible, that is, equal to A1/σ to minimize the cost of punishing the initial auditor. Second, the

choice of P,ψ, θ does not depend on aR. By contrast the objective function determining P1, ψ1, θ1

depends on π0(a
R, aR) and the constraint on G(aR). That is, the solution to this problem di�ers

from solutions we have considered previously in that the �rst period solution depends in general on

aR. Consequently we should write P1(a
R), ψ1(a

R), θ1(a
R). This minor generalization of the theory

makes perfectly good sense in any case: although we have heretofore assumed that the �rst period

audit procedure is independent of the particular target aR it also makes sense that di�erent audit

procedures with di�erent costs would be used to monitor di�erent target actions. Note, however,

that if A1 depends on aR then in general so will P, θ, ψ because the constraint P ≥ A1/σ now

depends on aR.

Web Appendix: Multiple Signals

The basic model assumes that there is a simple signal whether or not a punishment is merited.

While this simpli�es notation and exposition, it turns out to be without loss of generality. We focus

on the case of the primitive game, since in practice the speci�cation of the game may naturally

lead to many signals. Similar considerations apply to the auditing games.
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Suppose the signals Z ∈ Z can take on many values with probabilities π0(Z|ai, aR). There

is a common probability 1 − δ0 that no audit takes place and nobody is punished. When an

audit does take place and the signal Z is observed let βZ denote the probability that the auditee

is punished. Since the probability of the punishment is arbitrary, we may continue to take the

size of the punishment P to be �xed. Hence the incentive constraint in the primitive round is

u(ai, aR) − u(aR, aR) − δ0
∑

Z∈Z [π(Z|ai, aR) − π(Z|aR, aR)]βZP ≤ 0. Since we may assume the

group minimizes costs of auditing in subsequent rounds, the objective function is

V β = u(aR, aR)− δ0P

(∑
Z∈Z

π0(Z|aR, aR)βZ + θ1 +
θ1(θ + π)

σ − θ

)
.

For any non-negative vector of individual punishment probabilities β = (βZ)Z∈Z let |β| be the
sup norm. For any such β we de�ne a canonical binary signal process z ∈ {0, 1} as a random

function of Z by Pr(z = 0|Z) ≡ βZ/|β|, and let πβ0 (ai, aR) ≡ Pr(z = 0|ai, aR) =
∑

Z∈Z Pr(z =

0|Z)π0(Z|ai, aR). For given aR and β let Gβ = G(aR) and πβ0 = π0(a
R, aR) and let B be the set of

all pairs (Gβ, πβ0 ) generated by probability vectors β. De�ne

Uβ ≡ max
(Gβ ,πβ0 )∈B

u(aR, aR)−
(
πβ0 + θ1 +

θ1(θ + π)

σ − θ

)
Gβ.

The basic result is this:

Theorem 7. For given aR there is an incentive compatible δ0, β if and only if aR is enforceable

with respect to the corresponding canonical binary process for some punishment 0 ≤ P1 ≤ P . In

case aR is enforceable with respect to some canonical binary process then max
(Gβ ,πβ0 )∈B

Uβ exists

and is the greatest utility achievable by any peer discipline scheme that uses the signals Z ∈ Z.

Proof. First, if there is an incentive compatible δ0, β there is an optimal one since the incentive con-

straints are de�ned by weak inequalities. Second, observe that δ0, β satisfy the incentive constraints

if and only if δ̂0 = |β|δ0, β̂ = β/|β| does so. Moreover the cost of initial punishment

δ0P

(∑
Z∈Z

π0(Z|aR, aR)βZ

)

is the same for both. However, if |β| < 1 we have δ̂0 < δ0 so that the scheme δ̂0, β̂ results in

no smaller a value of the objective function, and if θ1 > 0 a strictly larger value of the objective

function. Hence there is an optimal scheme in which |β| = 1.

Next �x δ0, β. By de�nition of the canonical binary process we have

πβ0 (ai, aR) =
∑
Z∈Z

π0(Z|ai, aR)βZ/|β|

so that u(ai, aR)−u(aR, aR)−δ0P
∑

Z∈Z [π0(Z|ai, aR)−π0(Z|aR, aR)]βZ ≤ 0 if and only if u(ai, aR)−
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u(aR, aR)−δ0|β|P [πβ0 (z|ai, aR)−πβ0 (Z|aR, aR)] ≤ 0. Hence if πβ0 is enforceable with respect to δ0|β|P
then δ0, β is incentive compatible. Conversely if δ0, β is incentive compatible then πβ0 is enforceable

with respect to δ0|β|P .
Finally, observe that

Uβ − V β = δ0P (1− |β|)
(
θ1 +

θ1(θ + π)

σ − θ

)
.

Since there is an optimal multi-signal scheme with |β| = 1 the corresponding canonical scheme yields

exactly the same value of the objective function. On the other hand if there is a feasible canonical

scheme πβ0 that yields a higher utility than this then the multi-signal scheme δ0 = Gβ/P, β/|β| is
incentive compatible and yields exactly the same utility as Uβ, a contradiction.

24


