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In this paper we develop a regularity theory for stationary overlapping generations economies.
We show that generically there is an odd number of steady states in which a non-zero amount
of nominal debt (fiat money) is passed from generation to generation and an odd number in
which there is no nominal debt. We are also interested in non-steady state perfect foresight
paths. As a first step in this direction we analyze the behavior of paths near a steady state. We
show that generically they are given by a second order difference equation that satisfies strong
regularity properties. Economic theory alone imposes little restriction on these paths: With n
goods and consumers who live for m periods, for example, the only restriction on the set of
paths converging to the steady state is that they form a manifold of dimension no less than one,
no more than 2nm.

1. Introduction

The theory of regularity developed by Debreu (1970) for static exchange
economics has played an important role in recent studies of the comparative
statics properties of general equilibrium models. In this paper we develop a
regularity theory for stationary overlapping generation exchange economies.

We begin by studying steady states. We show that generically there is an
odd number of steady states in which a non-zero amount of nominal debt
(fiat money) is passed from generation to generation and an odd number in
which there is no nominal debt. Generically, these latter steady states have
price levels that tend either to zero or to infinity. We are also interested in
non-steady state perfect foresight paths. As a first step in this direction we
analyze the behavior of paths near a steady state. We show that generically
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they are given by a difference equation that satisfies strong regularity
properties. Economic theory alone imposes little restriction on these paths:
with n goods and consumers who live m periods, for example, the only
restriction on the set of paths converging to the steady state is that they form
a manifold of dimension no less than one, no more than 2nm.

The regularity theory we develop here can be applied to analyze the
response of an overlapping generations economy to unanticipated shocks.
Kehoe and Levine (1982a) consider the impact of shocks under alternative
assumptions about the types of contractual arrangements existing before the
shock and the process by which perfect foresight forecasts are formed.

2. The model

We analyze a stationary overlapping generations model that generalizes
that introduced by Samuelson (1958). Initially we assume that consumers live
two periods. The model with many periods of life is discussed in section 11.
In each period there are n goods. Each generation ¢ is identical and
consumes in periods t and t+ 1. The consumption and savings decisions of
the (possibly many different types of) consumers in generation ¢ are
aggregated into excess demand functions y(p,, p, +,) in period t and z(p,, p; + )
in period t+1. The vector p,=(p},...,p;) denotes the prices prevailing in
period t. Excess demand is assumed to satisfy the following assumptions:

A.1. (Differentiability) y, z: R, —»R" are smooth (that is, C') functions.

A.2. (Walras’s law) piy(pi, Pi+ 1)+ Piv 1 2(Dis Pi+1) =0

A.3. (Homogeneity) y, z are homogeneous of degree zero.

Ad. (Boundary) ||(W(qw), 2(q)|| =0 as g—q,q€dRT\{0}. (y,2) is bounded
from below, however, for all ge R3",.

A.1 has been shown by Debreu (1972) and Mas-Colell (1974) to entail little
loss of generality. A.2 implies that each consumer faces an ordinary budget
constraint in the two periods of his life. As we later show, this is equivalent
to assuming a fixed (possibly zero or negative) stock of fiat money, A.3 is
standard. As we shall see, A.4 is used only to guarantee the existence of
interior steady states. Although the theory can be extended to allow free
goods, we do not attempt to do so here. Muller and Woodford (1983) have,
in fact, extended the type of results presented in this paper to economies with
general activity analysis production technologies that include free disposal
and allow free goods.

The space of feasible economies & are the pairs (y,z) which satisfy A.1-
A.4. This is a topological space in the weak C' topology described for
example, by Hirsch (1976). Roughly, two economies (y*,z') and (y?,z%) are
close if the functions and their first derivatives are close.
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A.1-A.4 are naturally satisfied by any demand function derived by
aggregating the individual demand functions of utility maximizing con-
sumers. Furthermore, Debreu (1974) has demonstrated that, for any (y,2)
that satisfy A.1-A.3 and any compact subset of R3",, there exists a
generation of 2n utility maximizing consumers whose aggregate excess
demands (y*, z*) agree with (y,z) on that subset. Since homogeneity allows
us to restrict our attention to prices geR?%", that satisfy such a price
normalization as Y 7", ¢’ =1, this means that problems can occur only as
some relative prices approach zero. As we point out in the next section,
however, this minor technical problem plays no role in our study of steady
states or of equilibrium price paths near steady states. Consequently, we are
justified in viewing A.1-A.4 as completely characterizing demand functions
derived from utility maximization by heterogenous consumers.

3. Steady states

A steady state of an economy (y,z)e& is a relative price vector peR" .
and price level growth factor f>0 such that

z(p, Bp) + ¥(Bp, Bp)=z(p, Bp) + ¥(p, Bp) =0. (3.1)

In other words, if relative prices in each period are given by p and the price
level grows at f8, the market is always in equilibrium. Since, if claims to good
i now cost p' then claims to good i next period cost fp', 1/f—1 is the steady
state rate of interest.

Notice that any steady state price vector (p, Bp) is a special case of a price
vector g€ R%", that satisies z(q) + y(q)=0. We are now in a position to argue
that, for our purposes, A.1-A.4 completely characterize excess demand
functions derived from utility maximization, and that we need not worry
about problems near the boundary of R3™ if (y, z) satisfies A.1-A.3 and £>0,
then there exists (y*,z*), derived from utility maximization by 2n con-
sumers, that agrees with (y,2) on S,={ge R*"|q’e=1,4' 2 ¢}. Here e=(1,..., 1).
If (y,z) satisfies A.4, then as gq,—q, qedRI\{0}, e€'(z(q)+y(q)— .
Consequently, S, can be chosen large enough so that e'(z(q) + ¥(g)) >0 for
all geS,\S,. This obviously implies that we can choose S, large enough
so that every steady state of (y,z) lies in its interior. Mas-Colell (1977) has
further demonstrated that, for any £>0 and any (y,z) that satisfies A.1-A.4
and the condition that e'(z(q) + y(¢g))>0 for all geS,\S,, there exists (y*, z*),
derived from utility maximization by 2n consumers, that agrees with (y, z) on
S, and also satisfies €'(z*(q)+y*(g))>0 for all geS,\S,. Consequently, the
only steady states of (y*, z*) are those of (y, z). Furthermore, S, can be chosen
large enough so that (y,z) and (y*, z*) agree on any open neighborhood of
these steady states in S,.
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The nominal steady state savings for the entire economy are u= —p' y(p, fp).
There are two kinds of steady states: real steady states in which y=0 and
monetary, or nominal, steady states in which u#0. Gale (1973) refers to real
steady states as balanced. By Walras’s law, p'(y+ fz)=0, which implies fp'z=
—p'y=pu. By the equilibrium condition, p'(z+y)=0, which implies p'z=pu.
Consequently, (f—1)u=0, and in a monetary steady state the interest rate
must be zero. We shall see that a real steady state has f=1 purely by
coincidence. We therefore refer to a steady state with f=1 as a nominal
steady state. Gale refers to these as golden rule steady states since they
maximize a weighted sum of utilities subject to the steady state consumption
constraint.

We now examine the number of steady states. We first separate the
nominal and real cases. We show that generically =1 and p=0 do not both
occur at the same steady state. If both f=1 and u=—p'y=0 at a steady
state, then

z(p, p) + y(p, p) =0,
(3.2)

—p'y(p, p)=0.

By virtue of Walras’s law, the first n equations may be viewed as a system of
n—1 equations while, by homogeneity, p constitutes n—1 independent
variables. (3.2) may therefore be regarded as n equations in n—1 unknowns.
Let us assume that

R.1. System (3.2) has no solution.

The importance of this regularity assumption is that it is satisfied by almost
all (y,z)e&. Here ‘almost all’ means an open dense subset of &. We call a
property generic if it is satisfied by an open dense subset of a topological
space. Note that we can easily show that genericity in & is equivalent to
genericity in the space of excess demand functions derived from utility
maximization (see the discussion of the boundary condition above). This has
implications for economies parameterized by utility functions and endow-
ments [see Mas-Colell (1974)]. The principal tool that we use to prove
genericity is the following result from differential topology [see Guillemin
and Pollack (1974, pp. 67-69)].

Transversality Theorem. Let M, V, N be smooth manifolds where dim M =m
and dim N=n. Let yeN. Suppose that fMxV—-N is a C' map, where
r>max [0,m—n], such that for every (x,v) that satisfies f(x,v)=y, rank
Df(x,v)=n; then the set of veV for which f(x,v)=y implies rank D, f(x,v)
=n has full Lebesgue measure. In other words, if y is a regular value of f,
then, for all ve V in a set of full Lebesgue measure, it is a regular value of f,.
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Since a set of full Lebesgue measure is dense, we can use this theorem to
prove the density of sets that satisfy some property. Openness usually follows
trivially from definitions. Notice that, since Df =[D, f D,f], it suffices to
demonstrate that rank D, f(x,v)=n to prove that, for almost all ve ¥, Df,(x)
has rank n whenever f,(x)=y.

Proposition 3.1.  The set of economies that satisfy R.1 is open and dense in &.

Proof. Openness is obvious. To prove density, we let v;€R", v,€R and
construct the perturbation

L

Yo=Y IS+,

Y P 1 33)
j=1

i__ i
Zy=2'—0,.

A check shows that, for v small enough, (y,,z,) € §; in other words, A.1-A.5
are satisfied. To show the set of economies that satisfy R.1 is dense, it suffices
by the transversality theorem to show that the derivative of the system in
(3.2) with respect to v has rank n at any solution: the only way 0 can be a
regular value of f,(p)=(z,(p,p)+y.(p,p), —P'y,(p,p)) is for there to be no p
for which f,(p)=0. This derivative is

ep'—1 0
0 -1
for any peS, where S, is now the set {peR”} p'e=1,p' Z¢}. This matrix has
rank n as required. Q.ED.

Nominal steady states are characterized by z(p, p) + y(p, p) =0. Since z(p, p) +
y(p, p) has the formal properties of the excess demand function of a static
exchange economy with n goods, the theory of nominal steady states carries
over directly from the static theory. For the sake of completeness we prove
the following proposition:

Proposition 3.2. Every economy (y,z)€ & has a steady state in which f=1.

Proof. Choose ¢ small enough so that €'(z(p, p)+ y(p, p)) >a for all peSy\S,
and fixed a>0. S, is obviously compact, convex, and, choosing ¢<1/n, non-
empty. For any peS,, define f(p) as the vector in S, that is closest to p+
2p,p)+y(p,p) in terms of euclidean distance. f: S,—S8, is obviously
continuous and, hence, by Brouwer’s fixed point theorem, has a fixed point.
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At any peS, f(p) is the vector that solves the problem of minimizing
1/2||f —p—2(p, p)— ¥(p, )||* subject to the constraints f>¢e and f'e=1. By
the Kuhn-Tucker theorem such a point satisfies

f—p—z(p,p)—¥(p,p) — A1 +A,e=0,
(3.4)

(f—2e)4; =0

for some 4,€R", A,eR. At a fixed point f=p. Pre-multiplying the top line
of (3.4) by (p—ee) yields (1 —ng)d, = —e'(z(p, p) + ¥(p, p)); premultiplying by p’
yields 1, =p'4,. If pedSs,, then 0> —ea=(1—ne)d, =(1 —ne)p'A; =0, which is
impossible. Consequently, since any fixed point p lies in the interior of S,,
2, =0, which implies 2, =0, and (3.4) is the steady state condition. QE.D.

Following Debreu (1970), we impose the regularity assumption

R.2. D,z(p,p)+D,z(p,p) + D, ¥(p, p) + D2y(p,p) has rank n—1 at nominal
steady states.

To show that this condition is generic (open and dense) we apply a device
that we use repeatedly in this paper. If &' and &2 are topological spaces and
f:6'—>&% is a continuous (inverse images of open sets are open) open
(images of open sets are open) mapping it follows from unraveling definitions
that, if &2 < &2, then f~%(&?) is beneric in &' if and only if &2 is generic in
&2. Continuity of f allows us to conclude f~1(&?) is open. The assumption
that f is an open mapping means that a close approximation to a point in & Zis
the image of a close approximation to the inverse image of that point in & L
This enables us to conclude that f~1(#?) is dense. Applying this principle,
since the map from & to static exchange economies with n goods is obviously
a continuous open map, and R.2 is unknown to be generic for static
exchange economies, we see that R.2 is generic in &.

We can use the fixed point index theorem developed by Dierker (1972) to
prove that R.2 implies that there is an odd number of nominal steady states.
Let J=D,z+4D,z+D,;y+D,y, evaluated at a nominal steady state p. If we
define index(p) =sgn(det[ —J7]), where J is the (n—1) x (n—1) matrix formed
by deleting the first row and column from J, then index theory 1mp11es that
Y index(p)= +1, where the sum is over all nominal steady states. For
example, if (v, z) exhibits gross substitutability, which implies that det[ — J1>0,
then there is a unique nominal steady state.

Real steady states are characterized by the equations

z(p, Bp) + ¥(p, Bp) =0, (3.5)

—p'y(p, Bp) =0.
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Walras’s law implies that p'z(p, fp)=0 at the steady state and, consequently,
that (p, ) solves (3.5) if and only if it solves

(I —ep')(z(p, Bp) + ¥(p, Bp)) =0, (3.6)
—p'y(p, Bp) =0.

Proposition 3.3. Every economy has a steady state in which = —p'y(p, fip) =0.

Proof. The proof of this proposition is similar to that of Proposition 3.2.
We find a non-empty, compact, convex set whose interior contains all steady
states that satisfy (3.5). We then define a continuous mapping of this set into
itself whose fixed points are steady states.

We begin by putting bounds on p: A.4 implies that there exists some £>0
such that €'(z(p, Bp) + ¥(p, Bp)) > >0 for all pe Sy\S, and all 0. To see why,
suppose instead that there exists a sequence (p,fi)€Sox R4 such that
€(2(py, BuP) + Y(Pi, Bip)) S and p,—pedS,. Now there is either a subse-
quence of (p,, B,) for which B, converges or one for which 1/B, converges. In
the first case, the associated subsequence (py, B.px) provides an example of a
price sequence that converges to a point on the boundary of R?" and violates
A.4. In the second case, ((1/B:)px, Px) provides such an example. Consequent-
ly, we can find an £>0 such that all steady states (p, f) have peS,. It is now
easy to put bounds on f: A4 implies that, for any peS,,p'z(p, fyp)— o0 as
B.—0 and, similarly, p'y((1/B)p,p)—o0 as fy—oo. Since S, is compact, we
can find some >0 such that —p'y(p, fp)>0 for all = and all peS, and
some 0< f<p such that —p'y(p, Bp) <O for all B< B and all peS,.

Consider now the set S,x[B,B]. It is non-empty, compact and convex.
Furthermore steady states that satisfy (3.5), if any exist, lie in its interior. For
any (p,B)eS,x[B,B] we define f(p,p) as the vector in S x[p, B] that is

closest to [p+(I—ep)(z(p, Bp) + ¥(p, BP)), B—p'y(p, Bp)] in terms “of euclidean
distance. Again using the Kuhn-Tucker theorem to characterize f(p, ), we

establish that any fixed point (p, f) = f(p, f) must satisfy
—(I—ep)(z(p, Bp) + ¥(p, Bp)) — A1 + 226 =0,
p'y(p, Bp) — A3+ 44 =0, (3.7
(p—ee)2; =0, (B—P)A3=0, (B—P)As=0
for some A,€R", A,€R, and 43,4, €R.. The choice of § and B implies that
Ay=4,=0. An argument identical to that in Proposition 3.2 implies 4,=0

and A,=0. Consequently, a fixed point of f, which necessarily exists, is a
steady state in which u= —p'y(p, fp)=0. Q.ED.
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The relevant regularity condition is

R3. I:(I_eP/)(D1Z+ﬁD22+D1Y+ﬂD2)’) (I—ep')(Dzz—i—Dzy)p] has rank n.
—y —p(D1y+pD,y) —p'Dyyp

Since S, x [B, B] is compact, a standard argument implies that economies that
satisfy R.3 at every real steady state have only a finite number of real steady
states. Define index(p, f) to be +1 or —1 according to whether the sign of
the determinant of the negative of the above matrix with its first row and
column deleted is positive or negative. Another standard argument then
implies that ) index(p, f)= + 1 when summed over all equilibria. This implies
there is an odd number of real steady states, and indeed a unique real steady
state if index(p, )= +1 at every possible steady state.

Proposition 34. Given R.1, R.3 is also generic.

Proof. The openness of R.3 is immediate from the stability of transversal
intersections and the continuity of the derivatives of (y,z). To prove density,
we use the same perturbation as that used in the proof of Proposition 3.1.
Differentiating the system in (3.6) with respect to v, we obtain

[ep’—l (I—ep)(p—1e
0 -B

at a steady state (p, B). Since this matrix has rank n, the proposition now
follows from the transversality theorem. QE.D.

Let &® be the subset of & that satisfies R.1-R.3. We can summarize the
discussion with the following result.

Proposition 3.5. &R is open dense in & Every economy in " has an odd
number of real steady states and an odd number of nominal steady states. No
real steady state has f=1. Furthermore, the number of steady states of each
type is constant on connected components of &%, and the steady states
themselves vary continuously with the economy.

Suppose we want to show that for a generic economy certain properties
are satisfied at all steady states. Mathematically, it is more convenient to
prove that for a generic economy these properties are satisfied at a particular
steady state. A useful fact about regular economies is that the latter property
implies the former. To formalize this let

FRc 6" xS, x[B, ]
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be the set of (y,z, p, f) for which (p, f) is a steady state of (y,z). Let #© be
open dense in FR. Define £° to be the subset of &% such that, if (y,z)e&°
and (y, z, p, B e FR, then (y, z, p, B) e FC. It follows directly from Proposition
3.5 and the fact that finite intersections of open dense sets are open dense
that &€ is open dense in &®. Comnsequently, in the sequel, we prove all
theorems about genericity in #®, with the understanding that this carries
over into &.

4. Restrictions on demand derivatives

After characterizing steady states the natural next step is to study the
behavior of equilibrium price paths near steady states. This is done by
linearizing the equilibrium conditions of the steady state and studying the
resulting linear difference equation. The qualitative dynamics of this system
depend on the demand derivatives D,y, D,y, D,z and D,z evaluated at the
steady state (p, f). The most convenient way to study these derivatives is to
introduce the jet mapping d:# —% where 2 is a subset of the space of six-
tuples (D,y, D,y, D;z, D,z p, B} and the mapping d applied to (y,z,p, f)
yields the excess demand derivatives evaluated at (p, f).

What restrictions should we place on the elements of 2? Differentiating
Walras’s law, we see that

Y +p'Dyy+BpDz=0,
(4.1)

Z’+p'D,y+Bp'D,z=0.

But the steady state condition says that z'+3)'=0. Consequently, we can
rewrite Walras’s law as

P'(D1y+D,y+ D,z + pD,z)=0. (4.2)
Differentiating the homogeneity assumption, we can rewrite it as
(D1y+BD,y)p=0,

(Dyz+8D,z)p=0.

(4.3)

Now let us restrict attention to economies with steady states in S, x [, B1.
We define 2 to be the six-tuples that satisfy (4.2) and (4.3) and for which
(p, B) €S, x[B, B]. The following theorem implies that the space 2 captures
all the important restrictions on demand derivatives.

Proposition 4.1 The jet mapping d is a continuous open mapping of ¥ R onto
an open dense subset of 9.
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Discussion. The idea is to make de % into a linear demand function near
steady state and average this with the original demand to obtain a sequence
(*,2*)>(y,z) where d(y,z,p,f)=d. Since linear functions do mnot satisfy
homogeneity and Walras’s law, ()*,z*) is defined first to have 2n—1
components that are linear functions of 2n—1 prices. Homogeneity and
Walras’s law extend this to 2n components in 2n prices. Then (4.2) and (4.3)
are used to show that the construction works, that is, d()*, z*, p*, B*) =d*—d.
The same general idea gives a global as well as local inverse.

Proof. Continuity of d is obvious. To prove the remainder of the propo-
sition we need to know how to convert elements of 2 into elements of F*.
Suppose deP. Let us normalize prices ge R3", by setting q'=1. Let X, be
the matrix of demand derivatives with first row and column deleted. Using
(4.1), we see that we should define y'= —p'(D,y+pD,z) and z'= —p'(D,y+
BD,z). Let G be the vector (p, Bp) with the first component deleted, and let
x4(g) be the vector (y,z) with the first component deleted. Let g, be an
arbitrary 2n—1 vector. We define the linear affine function x,:R*" " '>R?""!
by the rule %,(q,) =x,(q) + X ,(d, — 4). Suppose that xe & and that x is the last
n—1 components of x viewed as a function on R%"; ! by setting ¢'=1. We
define x, to be the weighted average

Xi(d) = M3)%4(q:) + (1 — Ag))X(gy)- (4.4)

Let BcR?", be the open ball of radius ¢>0 around q. We can construct
A:R*~15R so that it is C! and satisfies 0<A(g,) <1, A(g) =1, and A(g,)=0
for g, ¢ B. Furthermore, we can choose 4 so that Di(g)=0 and ||DA(q,)|| <3/e
[see Hirsch (1976, pp. 41-42)]. Consequently, X, coincides with X outside of
B, but x,(q)=%,(9 and Dx,(g)=X,. There is a unique extension of X, to
x,;:R%", - R?" that satisfies Walras’s law and homogeneity. Furthermore, for
¢ small enough, the boundary assumption is satisfied. Consequently, we may
assume x,;e&. Finally, a direct computation shows that d(x;, p, f)=d. This
shows how to convert element d € % into elements x; €&.

Let us first use this construction to show that d-is open. Let d=d(x, p, §),
let d*—d, and let & =max {||¢* —q||, ||%5(d) — x(@)||, || X% —Dx(g)||}. Then 0.
Furthermore, a computation using the mean value theorem shows x}—x.
Since &R is open in &, x% is eventually in &®. This implies that d is open.

Next we show d(#®) is dense in 2. Indeed, suppose d ¢ d(F®). Since x,; €6,
there is x* —>x; with x* e &®. By construction, however, the steady state (p, f)
is itself a regular state of x, in the ball B of fixed radius e Thus,
x* must have a steady state (p*, B)—(p, B). Therefore, (x*, p*, f¥)e #® and
d(x*, p*, B)—d=d(x,, p, f). Q.E.D.

This result says that any generic set in & corresponds to a generic property
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in &. Furthermore, any open set in & corresponds to a non-void open set in
&. It enables us to restrict our study entirely to the space 2.

It is of interest to see what R.1 and R.3 mean in 2. (4.1) implies that
p'y=0 if and only if p'(D,y+fD,z)p=0. R.1 is therefore equivalent to the
assumption that p'(D,;y+D;z)p=0 implies f#1. Let us define J=D,,z+
BD,z+D,y+ fD,y. Homogeneity implies that Jp=0. At steady states where
f=1 R.2 is equivalent to the assumption that J has rank n—1. At steady
states where 1 Walras’s law implies the matrix in R.3 equals

[ (I—ep)J ( —ep’)(Dzz+Dzy)p]
Bp'(D,y—D,z) —p'Dyyp '

A second application of Walras’s law shows that this has the same rank as

[ J D,z + DzJ’)P:|
Bp'(D;y—D,z)  —p'D,yp

It also implies that if Jx=0 then p(D,y—D,z)x=0. Consequently, R.3
implies that J has rank n— 1. Observe that, if there is a vector x such that
x'J=0 and x'(D,z+D,y)p+#0 and J has rank n—1, then R.3 is satisfied. It is
straightforward to show that the former condition is generic given the latter.

5. Paths near steady states

A (perfect foresight) equilibrium price path is a finite or infinite sequence of
prices {...,P;— 1, Py Pr+1- - - -} Such that p,eR% | and

2(p; - 1, P) + Y(Pe> Py +1) =0. (5.1)

Our goal is to find generic conditions under which paths near steady states
are well behaved, which means that they should follow a nice second order
difference equation.

Fix a steady state (p, f). The equilibrium condition (5.1) can be linearized
as

D,z(p,— 1~ B 7'p) +(Daz+B7'D1y)(p.~ B'p)
+B 7 'Doy(p, 1 —B ') =0. (5.2)
Here all derivatives are evaluated at (p, fp) and we use the fact that excess

demand derivatives are homogeneous of degree minus one. Suppose that the
following condition holds.



80 T.J. Kehoe and D.K. Levine, Overlapping generations economies
R4. D,y is non-singular.

Then the linearized system can be solved to find

(@+1— B9 =G(q,— 9, (5.3)

G=0 I’
G, G,

G,=—PD,y 'Dyz, G,= —D,y '(D,z+D,y), q=(p, Bp) and q,=(p,, o)
A direct implication of the implicit function theorem is

where

Proposition 5.1. If R4 holds, then there is an open cone Uc=R?%', around g
and a unique function g:U—R3",, that is smooth, homogeneous of degree one,
and such that

(a) If {p,} is an equilibrium price path and q,,q,,,€ U, then q, ., =g(q,)-
(b) If {p,} has q,€U at all times and q,.,=g(q,), then it is an equilibrium
price path. Furthermore, Dg(q)=G.

Our goal is to establish that there are generic restrictions on the demand
derivatives D,y, D,y, D,z, D,z such that R.4 holds and such that G is a nice
matrix, and to prove that under these conditions g is a nice dynamical
system. Since the qualitative properties of (5.3) are determined by the
eigenvalues of G it is natural to ask what we can say about these.
Homogeneity A.3 and (4.3) imply Gg=pfq and thus that one eigenvalue is .
Walras’s law A2 and (4.2) imply p[D,yG,D,y]G=p[D,yG,D,y] and,
since G and G’ have the same eigenvalues, one eigenvalue is equal to one. The
upshot is that since (4.2) and (4.3) are the only restriction on & these are the
only restrictions on the eigenvalues. We prove this next.

6. Restrictions on the linearized system

We are interested in discovering the properties of the linearized system as
represented by the matrix G. Consequently, we must translate the space of
demand derivatives & into the space of dynamic matrices ¢. It is convenient
to work in the subset @R of 2 for which R.1-R.4 and the following
restriction hold:

R5. K=D,y+D,y+D;z+ D,z has rank n—1.

Note that Walras’s law implies that p’K =0, so K cannot have full rank.
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Proposition 6.1.  P® is open dense in 9.

Proof. Openness is obvious. To demonstrate the density of R.4, let us define
Dy, =Dyy+vpl, D,y,=D,y—vl, D;z,=D,;z—vpl, and D,z,=D,z+uvl.
Leave p and B fixed. It is easy to verify that (D,y,, D,y,, D;z,, D,z,, p, B) is
an element of 2 if (D,y, D,y, D,z, D,z, p, f) is. Let A have the smallest
absolute value of any non-zero, real eigenvalue of D,y. Obviously, D,y, is
non-singular for any v such that 0<|o| <A.

To demonstrate the density of R.5, let us define D,y,=D,y—ov(I —ep)
where p'e=1. Observe that (D,y,, D,y, D;z, D,z, p, B) still satisfies the
relevant versions of Walras’s law, (4.2), and the homogeneity assumption,
(4.3). Now K,=K+uv(I—ep’). Let ppK,=0. We know that p’K=0. If p, is
necessarily proportional to p, then K, has rank n—1. But (py—(poe)p)
(K—0I)=0. Since K —vl is non-singular for v#0 small enough, p,=(pye)p.
Q.E.D.

Our next step, largely of technical importance, is to consider the mapping
h:9®— # where the elements of # are six-tuples (D,y, D,y, G,, G,, p, f) that
satisfy the appropriate conditions. The map h is the identity on the first two
and last two components. G; and G, are defined as G, = — D,y !D,z and
G,=—D,y Y(fD,z+D,y). Since D,y is non-singular on 2¥, h is obviously
continuous. Equally important, it has a continuous inverse on h(%®) given by
the identity on the first two and last two components and by

[D;zD,z]=—(1/)[D1yD,y]G, (6.1)
where
0 I
o, c]
as in (5.3).

Thus, h is a homeomorphism onto #®=h(2®). It remains to identify #*
Walras’s law A.2 holds if and only if

Doyl -G, —G,]=0. (6.2)
Note that this implies p'[D,yG, D,y]1G=p[D,yG, D,y] and, therefore, that
G has an eigenvalue equal to one. The homogeneity condition A.3 holds if
and only if

(D1y+D,y)p=0, (6.3)

Gq=pq, (6.4)
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where g=(p, fp). Consequently, G has an eigenvalue equal to B. R4 is
unchanged while R.5 becomes

I-G,—G, hasrank n—1. (6.5

(6.2)(6.5) and R.4 completely characterize H#*.

Finally, we focus in on G itself, considering y:#*—% where the elements
of ¢ are three-tuples of the form (G, p, f) and y is the projection map. y is
obviously continuous; we want to show that it is an open map onto y(A#™).

We examine (6.3) first. Since D,y does not appear except in this condition,
(D,y+ pD,y)p=0 serves only to determine D,y once D,y is given. Obvious-
ly, D,y may be locally chosen as a continuous function of , D,y, and p. The
second condition is Gg=fq. The third condition is 6.5 which implies that G
has a unit root.

We claim that this is all: (6.4) and (6.5) uniquely characterize %, and 7 is
open. Thus, we must show (6.2) holds. Let x be in the left null space of
I—G,;—G,. We think of x as lying in the manifold formed by identifying
radially opposite points on the unit sphere. Since I —G, —G, has rank n—1,
x is a continuous function of G. We need to be able to locally map vectors x
and p continuously into non-singular matrices D,y such that p’D,y=x. This,
however, is obviously possible. We summarize our arguments with the
following proposition:

Proposition 6.2. Let % be the space of (G, p, B) such that G has one unit root
(counting geometric multiplicity), Gg=Bq, and I — G, — G, has rank n—1. Then
the mapping of @® taking excess demand derivatives to coefficient matrices of
the linearized system is continuous open and onto 9.

In particular, G is a coefficient matrix of a linearized system of a steady state
g if and only if G has one unit root and Gg=fq. Small perturbations in G
require only small perturbations in the demand derivatives and vice versa.

7. Restrictions on eigenvalues

We now examine the implication of the restrictions on G for its eigen-
values. It is convenient to work in the subspace 4} of 4 for which %I —G, —
BG,=pD,y !(D,;z+BD,z+D;y+pD,y) has rank n—1. Since this con-
dition is already generic in 9, it is generic in 4. Let ¥ be the manifold of
eigenvalues of 2n x 2n matrices: this is the subset of 2n-tuples of complex
numbers in which complex numbers occur only in conjugate pairs and in
which vectors that differ only by the order of components are identified.
The eigenvalue evaluation map o maps 2n x 2n matrices to & and is known
to be continuous. We now consider the set 7 <& x [B, f] whose elements
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(s, B) have exactly one component equal to one and one additional compo-
nent equal to B if f#1. We extend ¢ to 7:9%—>J. We claim that the only
restrictions on the eigenvalues of G are that one equal unity and one equal S.
(If B=1, these are only one restriction.) To justify this claim we use the
following result:

Proposition 7.1. T is a continuous open mapping of 4* onto an open dense
subset of T .

Discussion. The idea is that, given G and its eigenvalues s, we can find G
corresponding to a small perturbation in s. The trick is to show that G has
the correct block form — that is, I in the upper right, 0 in the upper left.
Since s is assumed to satisfy the restrictions of having eigenvalues f and 1,
G, and G, automatically satisfy Gg= fiqg and I — G, — G, singular.

To construct the local inverse we observe that a matrix of the correct form
must have eigenvectors of the form (h,s;h). Conversely we show that, if the
eigenvectors have the form (h,5;h), G has the correct block form. Thus when
s is perturbed we hold h fixed by perturbing the second component. These
new eigenvectors and eigenvalues now yield a unique matrix G that has the
correct form.

Proof. 1 is obviously continuous. To show 7 is open, let (s, §)=1(G, p, p),
and suppose (s, f)—(s, ). We construct G*—»G with ©(G*, p*, ) =(s*, p*).
Set G*=H*C*(H*)~!. Given C*, can we choose H* so that G* has the
partitioned structure corresponding to a second order difference equation?
Obviously G* is the unique solution of G*H*=H*C*. Writing this out in
partitioned form, we see that

[o z][H';l H';z]_[Ha H';z}
G- G || HY, H%, * *

Hi, H3, || €3 Ch
=[:H§1C§1+H’§1Cli2 H’i1C§2+H’i2C’§2:|
* * ’

from which it follows that G* has the correct structure if and only if

H%, =H,,(C* H%, H%,)=H%,C%, + H},C%,,,
(1.2)
H%,=H,,(C* H},, H};) =H} ,C%, + HY ,C5,.
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Now let H be a basis for R?" such that C=H 'GH is in real canonical
form. Obviously, 6(C)=6(G)=s. Hirsch and Smale (1974, pp. 153-157) show
how to construct a sequence of real matrices C*—C with o(C*)=s*. Set
H%,=H,,, H,=H,, and H%,, H%, as defined above. By continuity H*>H
and is eventually non-singular, so G is well defined and, by construction, has
the proper structure. Furthermore, since components of s* are one and §, G*
has them as eigenvalues. Observe that, since G* has a unit root, I —G%—G%
is singular, but, since G*—G, it has rank n—1. Next, the structure of G*
implies that there is an eigenvector corresponding to B* that has the form
¢* =(p*, Bp*). We think of this eigenvector as lying on the unit sphere with
radial identification and thus being unique. Further, since G*—G, p* is the
unique component. in the right null space of B*I -G, —BG, and, therefore,
converges to p. Consequently, (G, p*, p*)—(G,p,p). Thus 7 is an open
mapping of ¥® into 7.

Finally, we want 7(%%) to be open dense in 7. Only density remains to be
shown; we do this by constructing an open dense subset of J, denoted J° R
such that 7Rct(%R). Let (s, f)eJ. We must give a generic condition on I
that makes it possible to construct a matrix G for which (s,f) are the
eigenvalues. Arranging diagohal blocks, we can construct a block diagonal

matrix
c, O
C= s 7.3
[0 C2:| 7

in real canonical form where o(C)=s and where the first diagonal entry of C
is f. We define ® to be the subset of 7 for which the above construction
can yield a matrix C such that C,—C, is non-singular. Clearly, 7 R is an
open dense subset of 7. We need only show how to invert T on 7 R Choose
peS,, let H,, be a non-singular matrix with first column equal to p, and let
H,,=H,,. Using (7.2), we set Hy;=H,C; and Hy;=H,C,. Since C, —C,
is non-singular, so is

[ Hll H12 :| (74)
H11C1 HIZCZ

Thus G is well-defined. Since C has only one unit eigenvalue, I —G, —G, has
rank n— 1. Consequently, (HCH™ !, p, f)e%. Similarly, since C has only one
eigenvalue equal to B B*I—G,—fG, has rank n—1, and in fact
(HCH %,p,B)e%". Q.E.D.

8. Nominal dynamics

Until now we have largely combined the study of real and nominal steady
states. The dynamics near each type of steady state are, however, rather
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different. We begin by studying the nominal case. Here we know only that G
has one unit root.

It is useful to define the money supply m(q,)=p,z(p,—1,p;)- This is
homogeneous of degree one. Walras’s law implies that it equals
—P,_¥(p,—1,p,), and the equilibrium condition implies that pz(p,-1,p)) =
—P¥(p,, De +1)- Consequently, m(q,)=m(g(q,)); the money supply is constant
along equilibrium price paths. At a nominal steady state u=m(q)#0. The
homogeneity condition implies that, if m(q,) =y, Dm(q,)q,=p1#0 and, there-
fore m(q,) = defines a 2n— 1 submanifold Q, <R3, that is transversal to the
steady state ray and invariant under g. We denote the restriction of g to Q,
by g,.

All interest focuses on g,. If sgnpu, =sgnu, then g, and g,, exhibit the
same dynamics except that the price level is increased by a factor of p,/u,.
Examining the linearization, we see that Dg, is G restricted to Dm{g)q,=0.
Since Q, is invariant and transversal to the steady state ray, it follows that
the generalized eigenspace of G that excludes the eigenvector ¢ spans the
space Dm(q)q, =0 and that G restricted to this space has the eigenvalues of G
excluding the one unit root known a priori to exist. Furthermore, the results
of the previous section imply that the remaining eigenvalues are unrestricted.
Let n° be the number of these eigenvalues inside the unit circle. Using
standard results, such as those in Irwin (1980), we can easily prove the
following proposition:

Proposition 8.1. There is an open dense set of economies that satisfy the
following conditions at all nominal steady states:

(a) g, is a local diffeomorphism; that is, G is non-singular.

(b) g, has no roots on the unit circle; that is, g, is hyperbolic.

(¢) g, has an n* dimensional stable manifold W, of q,€Q,, for which g,(q0)—4.

(d) g, has a2n—n’—1 dimensional unstable manifold W, of qo€Q, for which
2. '(q0)— 4

(¢) (Hartmann’s theorem) There is a smooth coordinate change c(q) such that
cog,oc =G on W,, and for a residual set of economies this holds on all
of Q, (and thus R.).

One warning should be given about the genericity of these results: they
hold for almost all economies when the only restrictions that we place on
excess demands are A.1-A.4. Suppose, however, that we restrict our attention
to economies with a single, two period lived consumer in each generation
who has an intertemporally separable utility function. Then both D,y and
D,z have at most rank one, and R4 is violated. Since the set of economies
that satisfy these restrictions is closed and nowhere dense, none of our
previous analysis applies. Kehoe and Levine (1982b) analyze this case and
show that it is essentially the same as that of an economy with one good in

every period.
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9. Real dynamics

We now study the neighborhood of a steady state g=(p, fp) with m(g)=0
and B+ 1. In this case prices are not stationary at a steady state, but grow or
decline exponentially. Let b:R%", >R be a function that is homogeneous of
degree one. We can normalize prices to focus on the convergence of relative
prices. Define g® on Q°={q,€Q|b(¢)=1} by g’(a)=g(q,)/b(g(q). If b is
monotonically increasing, then it can be naturally thought of as a price
index. As it is, it provides a one dimensional restriction on relative prices.
Homogeneity implies that b(g®(g,))=1. We say that an equilibrium price path
converges to q if g,/b(q,)—q. This is true of a path beginning at g, if and
only if the path under g” starting at q,/b(q,) converges to q.

What is the linear approximation to g°? It is G (1/B)(I—q B)G, where
B=Db(q), restricted to Bq,=0. Choosing b so that Bg,=0 defines the
generalized eigenspace of G in which the eigenvector g is excluded, we see
that the eigenvalues of G® are those of (1/8)G, excluding the unit eigenvalue
that arises from the eigenvalue B corresponding to g. One of these values is
equal to 1/B; the remaining 2n—2 are unrestricted. Let 7° be the number of
these remaining eigenvalues inside the unit circle. Then g” generically is
hyperbolic with an #° dimensional stable manifold and a 2n—#a*—1 dimen-
sional unstable manifold if < 1. Similarly g* has a #*+1 dimensional stable
manifold and a 2n—7*—2 dimensional unstable manifold if f>1.
Furthermore, g° is linearizable by a smooth coordinate change on the stable
manifold.

It is useful also to distinguish between initial conditions with m(gy)=0
(real initial conditions) and those with m(g,)#0 (nominal initial conditions).
Observe that Dm(q)=(—p' D,z p'D,y), which, by R.4, generically does not
vanish. Thus, generically Dm(g,) =0 defines a 2n—1 cone Q,<=R?", invariant
under g. This is transversal to Q° and, consequently, intersects it in a 2n—2
manifold Q% invariant under g’. Furthermore, a simple computation shows
that Q, is tangent to the eigenvectors of G except the one having the unit
root; thus QF is tangent to the eigenvectors of G* except the eigenvector with
root 1/R Since Q3 is invariant and, for g,€Q,, m(q,)=0, nominal initial g,
[those with m(q,)#0] can approach g only if f>1; otherwise, if f<1,
nominal paths cannot approach the real steady state. On the other hand, in
QP the linearized system has all the eigenvalues of (1/8)G except 1 and 1/.
The real system on the invariant manifold Q% is, therefore, generically
hyperbolic and has an #° dimensional stable manifold and a 2n—n*—2
dimensional unstable manifold. Furthermore, it is linearizable on the stable
manifold.

10. Pareto efficiency and fiat money

Consider an infinite price sequence {p,,p,.ps,...; that satisfies the con-
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ditions (p,, p, + ;)€ R?", and
zo(P1) +¥(P1, P2) =0, (10.1)

2(pe— 15 P) + Y(Pes P+ 1) =0 (10.2)

In other words, {p, P2, P3,-..} is an equilibrium price path for the economy
specified by the demand functions y and z and a demand function z, for the
old generation alive in the first period. For such an economy, where each
generation consists of a representative consumer, Balasko and Shell (1980)
have established that a necessary and sufficient condition for Pareto effici-
ency is that the infinite sum Y 1/||p,|| diverges. They require that a certain
uniform curvature condition on indifference surfaces be satisfied. This
condition, while restrictive in non-stationary models, is naturally satisfied in
a stationary model such as ours. This result can easily be extended to
economies with many consumers in each generation. Consequently, steady
states with a non-negative interest rate where <1, are Pareto efficient. So
are paths that converge to them. An economy always has a Pareto efficient
steady state since it always has a steady state where f=1. Is there anything
more we can say? Can we, for example, guarantee the existence of a Pareto
efficient steady state where u=0?

To answer these questions, let us rephrase the conditions that characterize
a steady state. Consider pairs (p, f) that satisfy the price normalization (p'e)=1.
Let f:S,x[B,B1—=R" ' be given by the first n—1 coordinate functions of

(I —ep)(z(p, Bp) + y(p, Bp)). In other words,

f(p, B)= LI —ep')(z(p, Bp) + ¥(p, BP)); (10.3)

where L is the projection operator that can be represented in standard
coordinates by the (n— 1) x n matrix.

1 0 00
01 ... 00

L=} . . R (10.4)
00 1 0

We work with the function (I —ep’)(z+y) because, unlike (z+y) itself, its
first (n—1) coordinates are equal to zero only if its last coordinate is equal to
zero. This is because p'(I—ep')(z(p, Bp) +y(p, Bp)) =0. Also, like (z+y) itself,
(I—ep’)(z+y) has the property that we can select ¢>0 small enough so
that ¢'(I —ep’)(z(p, Bp) + y(p, Bp)) > >0 for all pe Sy\S, and any B<B=B. To
see why, suppose instead that e'(I—epi)(z(px, BPi) + ¥(Pe Bp)) <0 for a
sequence (P, Bi)—(p, B), peSo. Since €(z(py, Bibi) + ¥(Pi> Bepi))—> o0 and z+y
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is bounded from below, this implies p}(z(py, BiP) + ¥(Px> BiPi))— 0. This
can only happen if 1. Walras’s law can be used to rewrite this expression
as either (1—B)piz(py, Bupi) or as (1/B)(Bx— D)piy(py, Bipi). If f>1, then
(1—=BIpiz(ps, Bipy) is bounded from below. Similarly, if f<1, then (1/8,)
(B — Dpiy(pe, Bepi) is bounded from above. In either case pi(z(p., PrPr) +
YD, BkPi)) is bounded from above, which is a contradiction.

In what follows, it is important that f be C2. To ensure this, we assume
that y and z are not only C! but also C2. We need to assume that f is C? so
that we can use the transversality theorem to prove that 0 is generically a
regular value of f. Indeed, for ve R"*!, we define

1(p, B)=L{I —ep')(z,(p, Bp) + y.(P, BD)), (10.5)

where y, and z, are defined as in the proof of Proposition 3.1. Differentiating
f» with respect to v, we obtain the n x (n+ 1) matrix

|:L<,1 ep’—I> L(I—ep’)(ﬁ—l)e].
ep

Notice that x'[(1/e'p)ep’ —I1=0 implies that x is a scalar multiple of p. Since
wL=[u; uy...u,_, 0] for any we R"~!, however, this implies that, for all
peS,, WL[(1/e'p)ep’—1]1=0 only if u=0. Consequently, this matrix has rank
n—1, and 0 is a regular value of f, for all v in a subset of R**! of full
Lesbesgue measure. It is now, as before, a straightforward matter to
demonstrate that 0 is a regular value of f for all (y,z) in an open dense
subset of &%,

What does the pre-image of 0 under f look like? Obviously, f~1(0) is
compact since S,x[B,B] is compact and f is continuous. Since f(p, )
cannot equal zero for any p on the boundary of S,, the only points in f ~(0)
on the boundary of S, x [, f] are those where B equals f or B. We have
argued that 0 is generically a regular value of f on the interior of S, x [, B
Our argument also implies that 0 is generically a regular value of f restricted
to S, x {f} for almost all fixed B; in particular, 0 is generically a regular value
of f on the boundary of S, x [8, B]. Unfortunately, S, x [8, B] is not a smooth
manifold with boundary because it has corners. Since f !(0) stays away
from these corners, however, it is a smooth one dimensional manifold with
boundary whose boundary is contained in the boundary of S,x[S,B].
Furthermore, using index theory we can show that f(p, $)=0 has an odd
number of solutions when f=p§ and an odd number of solutions when f=p.

Define m(p, f)= —p'y(p, f) for all (p, f)ef ~1(0). There are two distinct
ways for (p, f)e f(0) to be an equilibrium: m(p, f)=0 or B=1. In either
case, Walras’s law implies that (z(p, f) + y(p, B)) is equal to O.

Consider now the graph of m, {(p, f,m)eS,x[B,B1xR|f(p,)=0, m=
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m(p, f)}. It is obviously a smooth one dimensional manifold with boundary
diffeomorphic to f~'(0). Steady states of (y, z) are points where the graph of
m intersects either the n—1 dimensional submanifold of S, x [8, B] x R where
m=0 or the n— 1 dimensional submanifold where f=1. We can picture these
intersections graphically if we project S, x [8, B]1x R onto [, B] x R. Under
this projection the graph of m need not be embedded submanifold, of course,
because it may contain points of self-intersection. It is, however, an immersed
submanifold. The self-intersections are generically transversal, but this is not
important for our arguments.

A
m(p, B)

\}

[
(

Fig. 1

R.1 says that the graph of m does not pass through (1, 0); R.2 says that it
intersects the line B=1 transversally; and R.2 says that it intersects the line
m=0 transversally. Considering diagrams like that in fig. 1, we can see why
every economy does, in fact, have at least one steady state where <1 and
©=0. There is an odd number of pointg in f '(0) where f=p. Because of
the boundary condition, m(p, §)>0 at all of these points. An even number,
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possibly zero, of these points are the endpoints of paths that return to the
boundary f=p8. An odd number, at least one, must be endpoints of paths
that lead to the boundary f=pf, where m(p, f)<0. Such a path must either
cross the line m=0 where $<1 or cross the line f=1 where m=0. This same
sort of argument can be used to demonstrate that every economy has at least
one steady state where f=1 and ¢ <0.

11. Many periods of life

Until now we have considered only the case in which consumers live two
periods. Suppose instead they live m years m>2. The excess demand of
cohort ¢ in the jth year of life is denoted x/(p,, p,+ - 1). Assumptions A.1, A.3
and A.4 with the obvious notational changes are otherwise unchanged;
Walras’s law now has the form

A2, '21 Pivj—1X' Py Pram—1)=0.
=

There are two approaches to the m-years of life case. One is to use a
standard trick to reduce it to the two periods of life case. To do so we lump
together (m—1) years to form a period and (m—1) cohorts to form a
generation. Thus in period ¢ there are now n(m— 1) commodities with prices

Pe=(Pi>---> Prem-2) Where t=(m—1I)(z—1)+1.

If previously there were [ consumers in a cohort, there are now I(m—1)
consumers per generation. The excess demand of ‘young’ people in gener-
ation ¢t for the kth block of n commodities is

k
yk(f’n Per1)= z X'(Prok—1r->Pramk—i—1) (11.1)

i=1

and that of old people is

m—k
Zk(ﬁv ijt+1)= VZI xk+l(pt+m—i—15 . "apt+2m—'i*2)a (112)

where again t=(m— 1)(t—1)+ 1. This restructuring of years and cohorts is
shown in table 1. :

This approach is useful, for it shows the essential unity of the cases m=2
and m>2. As in section 8 it enables us immediately to.define



T.J. Kehoe and D.K. Levine, Overlapping generations economies 91

Table 1
Period
t=1 t=2
Year
Generation Cohort 1 2 ..m—1 m m+1...2m-2
1 1 x! x2...xmt m 0 0
0 xt...xm"2 xmTL oxm 0
m—1 0 0 ...x! x? x3 x™
2 m 0 0...0 x! x?2 xmt
m+1 0 0...0 0 x xm~2
dm—2 0 0.0 0 0 X!

m(é‘t) =ij;(ﬁtf 1 ﬁr)

m—1 m—k et
:kzl Pi+k—1 .le Deziseos Pram—i—1)
= fe=

=Py 15+ Pram—2) (11.3)
and to conclude that this remains constant along paths. More generally,
Walras’s law and the equilibrium condition can be used to show that
PP, —m+1s--»Dism—2) is constant for all ¢, not merely for t=(m—1)(t—1) as
implied by the results of section 8.

There are two drawbacks of reducing the m year to the two period case.
The first is that y and z defined above are nowhere dense in & since they
satisfy many non-generic restrictions (D,y is upper triangular for example).
Thus the genericity results do not apply directly. Second, a steady state of
(v, z) may actually be an m cycle of the m year economy; p, ., = Bp, implies
only p,+m—-1=Pp, and not p,, ="~V as we require at a steady state.

The solution to these difficulties is to work directly with the equilibrium

condition

m

Z xj(pt—j+1,'“’pt+m*j)=0a (511)

i=1

viewing this as an 2(m—1) order implicit difference equation on R". The
results of the previous sections then generalize with merely notational
changes. We review the highlights.

As in section 3 a steady state satisfies p,, , =fp,. Thus, as in that section,
(5.1') results in n+1 equations in n+1 unknowns p and B. As before there
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are both real and nominal steady states as u=m(p, Bp, Bp,..., ™ !p) is zero
or not. The existence proofs are virtually unchanged. The perturbation (3.3)
used to establish that steady states are regular (a finite odd number of each
type) and that u=0 and f=1 does not occur is now given by identifying x’
with y with x™ and z. The required perturbation is just x!=y, and x"=z,
the excess demands x?,...,x™ ! are unchanged. This gives us the needed n
degrees of freedom to establish that the steady state condition contains n
independent equations.

Turning to behavior near a steady state we establish as in section 4 the
restrictions on demand derivatives implied by Walras’s law and homogeneity.
Differentiating Walras’s law, we find the analog of (4.1)

Xi+p Y fID;x =0 @.1)

i=1

Using the equilibrium condition Y 7_, x/ =0, we can derive restriction on
demand derivatives as

M=

Py,
j=1i

BD;xi=0. (4.2)

In addition, homogeneity implies that

3 B 1D o 3

i=1

The proof of Proposition 4.1 that (4.2") and (4.3') are the only restrictions on
demand derivatives now goes through with only notational changes.

Section 5, describing the relationship between the linear and non-linear
system, is unchanged where the regularity condition is now

R4. D,x!is non-singular.

Of course ¢, =(p, _2m+3,---,P:), and the matrix G is

0 0 I 7]
0 0 I

0 I 0 0
E1 G, ... Gam-s GZm—i
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where

min[2m —i,m] L .
Giz—(Dmxl)_l[ .BJ_ID,'H—me]- (11.4)

j=max[m+1-i,1]

Arguing with notational modification as in section 6, we can establish that
D, x! is generically non-singular and homogeneity (4.2") and Walras’s law
(4.3) imply only the G has a unit root and at a real steady state a root B.

Finally, the argument in section 7 that the remaining 2(m— Dn—1
(nominal steady state) or 2(m—1)n—2 (real steady state) roots are
unrestricted can be extended. In section 7 the key was that G had the correct
block structure if and only if the eigenvectors had the form (h,s;h) where s;
was the corresponding eigenvalue; in the m years of life case it is
straightforward to show that G has the correct block structure if and only if
the eigenvectors have the form (h, s;h,...,s?™ >h).

Having shown the linearized system generically has only one restriction on
eigenvalues in the nominal case and two in the real case, we can establish the
results of the remaining sections by collapsing the m year case to the two
period case as described above.
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